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Abstract

Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic
dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has
been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory
response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is
connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of
S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits
macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-
kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal
activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by
LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition
of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of
sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also
with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin
immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions.

Citation: Japtok L, Schaper K, Bäumer W, Radeke HH, Jeong SK, et al. (2012) Sphingosine 1-Phosphate Modulates Antigen Capture by Murine Langerhans Cells via
the S1P2 Receptor Subtype. PLoS ONE 7(11): e49427. doi:10.1371/journal.pone.0049427

Editor: Jagadeesh Bayry, Institut National de la Santé et de la Recherche Médicale U 872, France
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Introduction

A multiplicity of specialized antigen presenting cells (APCs) is

located in the skin, which belongs to the family of classical

dendritic cells (DCs). The most important DC subset in the skin

are the Langerhans cells (LCs), which recognize and capture

haptens due to their pronounced endocytotic capacity [1–3]. In

response to the detection of antigen, that have penetrated the

stratum corneum, LCs migrate to skin-associated lymph nodes and

cross-communicate with T-lymphocytes. They present peptide–

MHC complexes, which lead to a selection of antigen-specific

lymphocytes. This process is connected with the terminal

differentiation of LCs and the expansion and differentiation of

T-cells. Due to their prominent role in initiation of immune

responses, it is not astonishing that LCs have been discussed as

central participants in the development of allergic contact

dermatitis (ACD) [1,4]. However, although it is well established

that LCs are prototypic APCs, their specific role in immunogenic

and tolerogenic responses is still not fully elucidated [5].

It has been indicated that sphingosine 1-phosphate (S1P) plays a

pivotal function in a variety of cells including immune cells [6,7].

Thus, it is well established that the egress of T- and B-cells from

lymphoid organs and their positioning in these organs are

mediated by S1P signaling [8–11]. Moreover, S1P is involved in

the modulation of several functions of natural killer cells,

neutrophils, mast cells, macrophages and DCs [12–16]. S1P is

produced from sphingosine by sphingosine kinases (SphK) from

which two subtypes have been described, denoted as SphK1 and

SphK2 [17,18]. The complexity of S1P-mediated actions can be

explained by the fact that it functions not only inside the cell but

also acts as a ligand of G protein-coupled receptors (GPCRs),

when it is secreted into the extracellular environment. Although

the mechanism of release of S1P from cells is not completely

understood, recent studies have drawn attention to the involve-

ment of the ATP binding cassette (ABC) family of transporters

[19,20]. Until now five high-affinity receptors for S1P, designated

as S1P1–S1P5, have been identified. The importance of these

GPCRs in physiological and pathophysiological conditions has

been clearly demonstrated by gene deletion studies and reverse

pharmacology [21,22].

Most recently, it has been shown that S1P influences LC

homeostasis. Contact hypersensitivity (CHS) is one of the most

intensively studied animal model to examine immunological

mechanisms of ACD and to investigate the role of immunomod-
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ulators in this disease [1,23]. In this model, topically administered

S1P inhibited the inflammatory reaction in the sensitization as well

as in the elicitation phase of CHS [24]. S1P reduced the weight

and cell count of the draining auricular lymph node, as well as

immigrated LCs provoked by repetitive topical administration of

the hapten. It has been suggested that S1P inhibits LC migration

from the side of antigen exposure to the draining lymph node via

the S1P1 receptor subtype [24,25]. Thus, it was presumed that a

high topical administration of S1P induces a receptor internali-

zation of S1P1 resulting in an unresponsiveness of LC migration.

These data supply evidence that the strategy of targeting the

migratory response of LCs with locally acting S1P represents an

emerging option in the treatment of ACD. It should be mentioned

that established immunosuppressive drugs like tacrolimus and

rapamycin possess a similar action on the migratory response of

skin DCs [26]. Besides this, the antigen uptake as initial step of

ACD is diminished in the presence of rapamycin [27,28]. Thus, it

was of great interest to investigate whether S1P also influences

antigen uptake by LCs. Indeed, here we provide evidence that S1P

inhibits the ability of LCs to capture antigen. Moreover,

examination of the molecular mechanism indicated the impor-

tance of the S1P2 receptor subtype in this key step of ACD. These

data might contribute to the understanding of the biological basis

for effects of S1P on LCs, and thus may help to develop novel

options for the treatment of ACD.

Materials and Methods

Ethics Statements
All animal work have been conducted according to relevant

national and international guidelines. All experiments were

approved by the Bezirksregierung Hannover, Germany (Az.

33.12-42502-04-10/0074).

Materials
S1P was synthesized as described recently [29]. S1P was

dissolved in methanol and stored at 280uC. For each experiment,

stored S1P was dried and freshly diluted in 0.5% fatty acid free

BSA/PBS. Iscove’s modified Dulbecco’s medium (IMDM) with

GlutaMax was obtained from Invitrogen (Karlsruhe, Germany).

RPMI-1640, FCS superior, penicillin and streptomycin were from

Biochrom (Berlin, Germany). Recombinant mouse (rm)-GM-CSF

was purchased from Miltenyi Biotec (Bergisch Gladbach, Ger-

many). Probenecid and MK571 were purchased from Biomol

(Hamburg, Germany). Fatty acid free BSA, Ipegal, sodium

desoxycholate, SDS, phenylmethylsulfonyl fluoride (PMSF), leu-

peptin, aprotinin, pepstatin, EDTA, sodium fluoride, sodium

orthovanadate, FITC-labeled dextran (average mol wt 40,000),

Mannan, Rottlerin, LY294002, Fumitremorgin C and siRNA

were obtained from Sigma-Aldrich (Schnelldorf, Germany).

Monoclonal rabbit anti-phospho Akt (Ser473) antibody (Ab),

monoclonal rabbit anti-total Akt Ab, secondary anti-rabbit IgG

HRP linked Ab, SDS sample buffer, dithiothreitol, LumiGloH
reagent and peroxide were purchased from New England Biolabs

(Ipswich, USA). SEW2871 and FTY720-phosphate (FTY720-P)

were obtained from Cayman Chemical (Michigan, USA).

VPC24191 was purchased from Avanti Polar Lipids (Alabaster,

USA). Reversin121 was purchased from Santa Cruz Biotechnol-

ogy (Heidelberg, Germany). K6PC-5 was a generous gift from

NeoPharm (Daejeon, Korea). The primary anti-mouse MHC II

Ab (I-A/I-E, rat IgG2b) was purchased from Pharmingen

(Hamburg, Germany). Biotinylated secondary rabbit anti-rat IgG

and CyTM3-conjugated streptavidin were obtained from Jackson

Immunoresearch Laboratories (West Grove, USA). eFluorH450

anti-mouse CD11c Ab and APC anti-mouse MHC class II Ab (I-

A/I-E, rat IgG2b) were obtained from eBioscience (Frankfurt a.

M., Germany). Primers were synthesized by eurofins MWG

Operon (Ebersberg, Germany).

Mice
Female mice (BALB/c) were purchased from Charles River

(Sulzfeld, Germany). The mice were 6 to 8 weeks old, housed in

groups of 5 to 6 mice per cage with a 12 h dark/light cycle and

received food and water ad libitum.

Cell Culture
The long term immature LC-like DC line XS52, which was

established from the epidermis of a newborn BALB/c mouse, was

kindly provided from G. Müller (Mainz, Germany). The

generation of XS52 cells has been well described [30]. XS52 cells

were cultured in IMDM with GlutaMax supplemented with 10%

FCS superior, penicillin/streptomycin (100 IU/ml/100 mg/ml),

50 U/ml rm-GM-CSF and NS47 fibroblast supernatant (10%) in

a humidified 5% CO2 incubator. The NS47 fibroblastic stromal

cell line was kindly provided from A. Takashima (University of

Toledo, OH). The generation and functional properties of NS47

cells have been well characterized [31]. Cells were cultured in

IMDM with GlutaMax supplemented with 10% FCS superior,

penicillin/streptomycin (100 IU/ml/100 mg/ml) in a humidified

5% CO2 incubator. After reaching a confluence grade of 90% the

supernatants were collected and used as a supplement for XS52

culture medium.

Bone marrow-derived DCs (BM-DCs) were generated accord-

ing to a standard protocol established by Lutz et al. (1999) with

slight modifications [32]. Briefly, bone marrow was cultured in

IMDM with GlutaMax supplemented with 10% FCS superior,

penicillin/streptomycin (100 IU/ml/100 mg/ml), 20 ng/ml rm-

GM-CSF. Fresh medium supplemented with rm-GM-CSF was

added on days 3, 6, and 8. Analysis of the day-10 cell suspension

by flow cytometry demonstrated a high yield of CD11c and MHC

class II-positive cells.

Mice Treatment and Skin Explant Culture
Mice ears were treated daily over a period of 3 days with S1P

(100 mg dissolved in 80 ml methanol) or vehicle (6 mice per each

group). 24 h after the last treatment mice were sacrificed by

cervical dislocation. Ears were separated and divided into dorsal

and ventral halves by means of two forceps. The skin explant

culture was performed as recently described [33]. The dorsal ear

halves were placed epidermal side up onto culture medium

consisting of 250 ml RPMI-1640 supplemented with 0.4% BSA

and 250 ml PBS containing FITC-labeled dextran (1 mg/ml).

Incubation time with the antigen was 2 h at 37uC.

Preparation and Evaluation of Epidermal Sheets
The preparation of epidermal sheets was described earlier [34].

In short, the epidermis was separated from the dermis by means of

3.8% ammonium thiocyanate solution. Epidermal DCs were

detected with the primary anti-mouse MHC class II Ab in a 1:150

dilution. Labelling of the Ab was visualised by using biotinylated

rabbit anti-rat IgG and coupling the Ab to a fluorochrom by

streptavidin-biotin technique (1:4000, CyTM3-conjugated strepta-

vidin). The evaluation was performed using a confocal laser

microscope (Leica TCS SP5, Wetzlar, Germany). After MHC

class II labeled cells and FITC-labeled dextran positive cells were

counted, the percentage antigen uptake was calculated. Due to
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insufficient MHC class II staining in one epidermal sheet/group,

the epidermal sheets of 5 mice per group could be quantified.

Flow Cytometric Analysis of Tracer Uptake
XS52 cells and BM-DCs (2 6 105 cells) were rinsed twice with

PBS and endocytosis was determined by adding FITC-labeled

dextran solution (1 mg/ml in IMDM) containing indicated S1P

receptor modulators. After the incubation period of 15 min,

uptake was stopped by washing the cells four times with ice-cold

CellWashH and analyzed on a FACSCanto II (BD Biosciences,

Heidelberg, Germany). In some experiments, cells were preincu-

bated with the inhibitors as described in the figure legends. BM-

DCs were additionally counterstained with APC anti-mouse MHC

class II Ab and eFluorH450 anti-mouse CD11c Ab. Uptake of

FITC-labeled dextran was recorded in MHC class II low and

CD11c positive cells (immature BM-DCs). Data shown represent

uptake in experimental conditions minus background uptake (cells

pulsed at 4uC).

Western Blot Analysis
XS52 cells were seeded in six-well plates (2 6105 cells per well)

and cultured for 24 h. After stimulation, cells were rinsed twice

with ice-cold PBS and harvested in lysis buffer (PBS without Ca2+/

Mg2+, 1% Ipegal, 0.5% sodium-desoxycholate, 0.1% SDS, 1 mM

PMSF, 1 mg/ml leupeptin, 1 mg/ml aprotinin, 1 mg/ml pepstatin,

1 mM sodium orthovanadate and 50 mM sodium fluoride).

Lysates were centrifuged at 14,0006g for 30 min. Samples

containing 20–40 mg protein were boiled in SDS sample buffer

(100 mM Tris/HCl, pH 6.8, 4% SDS, 0.2% bromophenol blue,

20% glycerol, 200 mM dithiothreitol) and separated by 10% SDS

PAGE. Gels were blotted overnight onto PVDF membranes. After

blocking with 5% non-fat dry milk for 1 h at 37uC, membranes

were incubated with the appropriate primary Ab at a dilution of

1:1000 for 2 h at room temperature, and further incubated with

HRP linked secondary Ab for 1 h. Detection was performed using

LumigloH according to the manufacturers protocol on ChemiDoc

XRS+ (Bio-Rad Laboratories GmbH, Muenchen, Germany).

Neon Transfection of siRNA
Down-regulation of S1P2 and ABCC1 was performed using the

Neon Transfection system and the Neon 100 mL transfection kit

(Invitrogen, Karlsruhe Germany). In detail, XS52 cells were

washed with PBS and resuspended in 100 mL Neon resuspension

buffer R containing siRNA (final concentration in growth medium

100 nM) for every 56105 cells. For all experiments cells were

treated with S1P2 siRNA, ABCC1 siRNA or control siRNA

consisting of a scrambled sequence that does not lead to the

specific degradation of any known cellular mRNA. The cell siRNA

mixture was aspirated into a 100 mL Neon Tip by the Neon

Pipette. Cells were than pulsed once with a voltage of 1500 mV

and a width of 30 ms in the Neon electrolytic buffer E2. After

electroporation, cells were transferred into 1.9 mL of prewarmed

XS52 growth medium without antibiotics supplementation. After

a time period of 24 h, down-regulation of S1P2 receptor subtype as

well as ABCC1 was confirmed by real time PCR and cells were

used for experiments. The following siRNA duplexes correspond-

ing to DNA target sequence of mouse S1P2 receptor or ABCC1

were used:

S1P2:59-CGA CAU UUC UGG AGG GUAA [dT] [dT]–39,

59-UUA CCC UCC AGA AAU GUCG [dT] [dT]-39 and 59-

CUC UCU AUG CUA AGC ACUA [dT] [dT]-39, 59-UAG

UGC UUA GCA UAG AGAG [dT] [dT]-39.

ABCC1:59-CUC UGU UCA AGG UGU UAUA [dT] [dT]-39,

59-UAU AAC ACC UUG AAC AGAG [dT] [dT]-39and 59-GUG

UAG AGU UCC GGG AUUA [dT] [dT]-39, 59-UAA UCC

CGG AAC UCU ACAC [dT] [dT]-39.

Quantitative Real Time PCR
XS52 total RNA was isolated using High Pure RNA Isolation

Kit (Roche Applied Sciences, Mannheim, Germany) following

quality check by spectroscopy. Reverse transcriptase reaction was

carried out to convert 1 mg isolated mRNA into cDNA using the

FermentasAid First strand cDNA synthesis kit (Fermentas GmbH,

St. Leon-Rot, Germany) according to the instructions of the

manufacturer. An aliquot of cDNA solution (1 mL) was subjected

to quantitative real time PCR using a LightCycler480 II and the

SYBR Green PCR master mix (Roche Applied Sciences,

Mannheim, Germany). GAPDH and hypoxanthine phosphoribo-

syltransferase 1 (HPRT1) were used as normalization controls.

The thermal cycle profile used was denaturing for 10 s at 95uC,

annealing primers for 10 s at 60uC, and extending the primers for

10 s at 72uC. The PCR amplification was performed at 45 cycles

with monitoring fluorescence. The primer sets used were: for

mouse GAPDH 59-CCT CGT CCC GTA GAC AAA ATG-39

(forward), 59-TGA AGG GGT CGT TGA TGGC-39 (revers),

mouse HPRT1 59-TGG ATA CAG GCC AGA CTT TGTT-3

(forward), 59-CAG ATT CAA CTT GCG CTC ATC-39 (revers),

mouse S1P2.

59-TTA CTG GCT ATC GTG GCT CTG-39 (forward), 59-

ATG GTG ACC GTC TTG AGCAG-39 (revers), mouse ABCB1

59-AGT GGA CCC AAC AGT ACT CTGAT-39 (forward), 59-

GCA CCA ATC CCG GTG TAATA-39 (revers), mouse ABCC1

59-GCCC CAG TGT TAC TGG TCA-39 (forward), 59-CAA

AAA GGTG GCG AGCAG-39 (revers), mouse ABCG2 59-GCC

TTG GAG TAC TTT GCA TCA-39 (forward), 59-AAA TCC

GCA GGG TTG TTGTA-39 (revers).

Determination of S1P by Mass Spectrometry
S1P was extracted by a modified two-step lipid extraction

previously described [35]. Briefly, 1 mL medium of XS52 cells

(106 cells) was transferred into a glass tube and 100 pmol C17-S1P

as internal standard, 100 mL of a 3N NaOH solution, 1 mL of

chloroform and 1 mL of methanol/HCl (99.8:0.2 v/v) were

added. After separation, the aqueous phase was acidified with

100 mL concentrated HCl and extracted with 1.5 mL chloroform.

The organic phase was evaporated and the dried lipids were

resolved in 200 mL methanol. Sample analysis was performed by

rapid resolution liquid chromatography/tandem mass spectrom-

etry (LC-MS/MS) using a quadrupole/time-of flight (QTOF)

6530 mass spectrometer (Agilent Technologies, Waldbronn,

Germany) operating in the positive electrospray ionization (ESI)

mode. Chromatographic separations were performed by a X-

Bridge column (C18, 4.66150 mm, 3.5 mm particle size, 138 Å

pore size, Waters GmbH, Eschborn, Germany). Elution was

performed using a gradient consisting of eluent A (water/formic

acid 100:0.1 v/v) and eluent B (acetonitril/tetrahydrofuran/

formic acid 50:50:0.1 v/v). The precursor ions of S1P (m/z

380.2560) and C17-S1P (m/z 366.2404) were cleaved into the

fragment ions of m/z 264.2700 and m/z 250.2529 respectively.

Quantization was performed with Mass Hunter Software.

Statistical Analysis
Data are expressed as the mean 6 SEM of results from at least

three experiments, each run in triplicate. Statistics were performed

using Students t test. *P , 0.05 and **P , 0.01 indicate a

statistically significant difference vs. control experiments.

Macropinocytosis and Sphingosine 1-Phosphate

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e49427



Results

Topical Application of S1P Inhibits Endocytosis by LCs in
an in situ Animal Model

Most recently, it has been indicated that topical application of

S1P attenuate inflammatory response in a murine model of ACD

[24]. Nevertheless, the influence of S1P on antigen capture, which

is the initial step of ACD, has not been examined. Thus, it was of

great interest whether topical application of S1P also influences

endocytosis by LCs. For this purpose, an in situ experimental

approach was developed visualizing the capture of FITC-labeled

dextran by epidermal DCs. Immunohistochemical analysis of

epidermal sheets showed an efficient uptake of FITC-labeled

dextran by LCs identified by the expression of MHC class II in situ.

There was a significant difference on endocytosis by LCs

depending whether mice were treated with vehicle or S1P. Indeed

as presented in Fig. 1A, topical administration of S1P drastically

reduced the endocytotic capacity of LCs. Quantitative determi-

nation revealed that uptake of FITC-labeled dextran was reduced

by almost 40%, when mice were exposed to S1P (Fig. 1B).

S1P Inhibits Endocytosis in the Murine LC-cell Line XS52
as well as in BM-DCs

The in situ experiments indicated that S1P influences uptake of

FITC-labeled dextran. To further substantiate the role of S1P on

this initial step, uptake of FITC-labeled dextran was examined on

the immature LC cell line XS52. In particular, measurement of

endocytosis by FACS revealed that S1P diminished the ability of

XS52 cells to capture FITC-labeled dextran in a dose-dependent

manner (Fig. 2A). As presented in Fig. 2B, a significant inhibition

of endocytosis in response to S1P was visible at a concentration of

0.1 mM, whereas a maximal decrease of antigen capture occurred

at 10 mM of S1P. Analysis of FACS data confirmed that

endocytosis of FITC dextran in XS52 cells was diminished by

more than 70% in the presence of 10 mM S1P. To examine

whether the inhibitory effect of S1P on FITC-labeled dextran

capture is restricted to XS52 cells but also visible in further DC

population, BM-DCs were generated. Measurement of endocyto-

sis clearly indicated that FITC-labeled dextran uptake by BM-DCs

is also reduced in the presence of S1P in a dose-dependent

manner. A maximal inhibitory effect (approximately 50%) was

obvious in the presence of 10 mM S1P (Fig. 2C).

S1P Inhibits Macropinocytosis via Modulation of
Phosphatidylinositol 3-kinase (PI3K) Activity

LCs possess at least three different mechanisms by which

antigen uptake can occur, namely macropinocytosis, phagocytosis

and receptor-mediated endocytosis [36]. To address potential

uptake mechanisms of FITC-labeled dextran in XS52 cells,

capture of this soluble endocytotic tracer was performed in the

presence of Mannan and Rottlerin. When cells were pretreated

with Mannan to block receptor-dependent endocytosis, FITC-

labeled dextran uptake was not significantly diminished. On the

contrary, preincubation with Rottlerin, which selectively inhibits

macropinocytosis [37], led to a significant reduction of FITC-

labeled dextran uptake indicating that macropinocytosis is the

prominent mechanism how FITC-labeled dextran is captured by

XS52 cells (Fig. 3A).

It has been clearly demonstrated that the PI3K/Akt pathway

may be involved in the regulation of antigen uptake via

macropinocytosis [38]. To proof that this pathway is also essential

for macropinocytosis in XS52 cells, capture of FITC-labeled

dextran was performed in the presence of the PI3K-inhibitor

LY294002. As expected, LY294002 prevented the phosphoryla-

Figure 1. The effect of S1P on the endocytosis of FITC-labeled dextran by epidermal DCs in skin explant cultures. Mice were topically
treated for 3 days with 100 mg S1P/daily. Skin explant cultures were performed and the dorsal ear halves were incubated with FITC-labeled dextran
(1 mg/ml) for 2 h at 37uC. Epidermal DCs were detected via MHC class II staining and endocytosis was visualized in epidermal sheets using confocal
microscopy. One out of three experiments with similar results is shown (A). The percentage of dextran uptake was calculated by counting of MHC
class II- and FITC-labeled positive cells. Data are expressed as the mean 6 SEM of results from at least three experiments (B). **P , 0.01 indicates a
statistically significant difference vs. control experiments.
doi:10.1371/journal.pone.0049427.g001
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Figure 2. The effect of S1P on endocytosis of FITC-labeled dextran by XS52 cells and BM-DCs. Cells were incubated with FITC-labeled
dextran in the presence or absence of the indicated S1P concentrations for 15 min. FITC fluorescence intensity of XS52 cells (A) and BM-DCs was
analyzed by flow cytometry. Relative endocytosis by XS52 cells (B) and immature BM-DCs (MHC class II low and CD11c positive) (C) was calculated as
mean values of FITC-labeled positive cells after subtraction of 4oC background fluorescence. Data are expressed as the mean 6 SEM of results from at
least three independent experiments. *P , 0.05 and **P , 0.01 indicate a statistically significant difference vs. control experiments (B,C).
doi:10.1371/journal.pone.0049427.g002

Figure 3. Uptake of FITC-labeled dextran by XS52 cells via macropinocytosis in a PI3K dependent manner. Cells were preincubated
with Rottlerin (3 mM), Mannan (1 mg/mL), and LY294002 (10 mM) for 30 min. Then, cells were incubated with FITC-labeled dextran for 15 min. S1P
(5 mM) was used as positive control. Fluorescence intensity of cells was analyzed by flow cytometry and relative endocytosis was calculated. Data are
expressed as the mean 6 SEM of results from at least three independent experiments. **P , 0.01 indicate a statistically significant difference vs.
control experiments (A). Cells were treated with the indicated concentrations of S1P or LY294002 (10 mM) for 15 min followed by the detection of Akt
activity using Western blot analysis (B). Values of the densitometric analysis are expressed as x-fold decrease of phosphorylated Akt (p-Akt) formation
compared to untreated cells 6 SEM from three experiments. **P,0.01 indicates a statistically significant difference versus control (B).
doi:10.1371/journal.pone.0049427.g003
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tion of Akt, the main downstrean target of PI3K (Fig. 3B). This

was accompanied by an inhibition of FITC-labeled dextran

macropinocytosis by XS52 cells (Fig. 3A). Consequently, it was of

interest to examine whether S1P-mediated inhibition of macro-

pinocytosis is mediated via modulation of the PI3K/Akt pathway.

When XS52 cells were stimulated with S1P a dose dependent

reduction of Akt phosphorylation was detected (Fig. 3B). In detail,

a significant inhibition of the phosphorylation status of Akt was

visible with 0.5 mM of S1P, whereas a maximal reduction of

phosphorylated Akt occurred with 10 mM of S1P (Fig. 3B). It

should be noted that the inhibitory effect of S1P on PI3K activity

is in congruence with effective concentrations to diminish

macropinocytosis.

S1P Inhibits Macropinocytosis and Phosphorylation of
Akt via the S1P2 Receptor Subtype

It has been suggested that S1P acts as both an extracellular

ligand for cell surface receptors and an intracellular signaling

molecule [7]. To address whether the inhibitory effect of S1P on

macropinocytosis and phosphorylation of Akt is mediated by a

specific receptor subtype, the aptitude of specific S1P receptor

agonists was examined. It has been shown that XS52 cells express

4 of 5 S1P, namely S1P1–4 but not S1P5 [39]. As presented in

Fig 4A, neither FTY720-P, which is an agonist of all S1P receptors

except the S1P2 receptor subtype, nor the S1P1/S1P3 agonist

VPC24191 and the selective S1P1 agonist SEW2871 were able to

impair the capacity of XS52 cells to capture FITC-labeled

dextran. Congruently, phosphorylation of Akt was not modulated

by the use of these agonists (Fig. 4B). These results suggest that the

inhibitory effect on antigen uptake is modulated by the S1P2

receptor subtype or by a non-receptor mediated action. To proof

this assumption, the S1P-mediated action on FITC-labeled

dextran uptake and Akt-phosphorylation was determined after

down-regulation of S1P2 by siRNA. Real-time PCR revealed that

siRNA reduced the mRNA expression of S1P2 by more than 80%

compared to control cells (Fig. 5A). Down-regulation of S1P2

almost completely diminished the ability of S1P to reduce

macropinocytosis (Fig. 5B). In agreement S1P-mediated inhibition

of Akt-phosphorylation was diminished (Fig. 5C) indicating that

the S1P2 receptor subtype is essential for S1P-mediated modula-

tion of macropinocytosis and inhibition of Akt-phosphorylation.

Most interestingly, down-regulation of S1P2 drastically increased

the basal endocytotic capacity of XS52 cells. Thus, the ability of

Figure 4. Effects of S1P receptor modulators on uptake of FITC-labeled dextran and PI3K activity. XS52 cells were incubated with FITC-
labeled dextran in the presence or absence of S1P (5 mM), FTY720-P (1 mM), VPC24191 (10 mM), and SEW2871 (1 mM) for 15 min. Fluorescence
intensity of cells was analyzed by flow cytometry and relative endocytosis was calculated. Data are expressed as the mean 6 SEM of results from at
least three independent experiments. **P , 0.01 indicate a statistically significant difference vs. control experiments (A). Cells were treated with
similar concentrations of S1P, FTY720-P, VPC24191, and SEW2871 for 15 min followed by the detection of Akt activity (B). Values of the densitometric
analysis are expressed as x-fold decrease of p-Akt formation compared to untreated cells 6 SEM from three experiments. **P,0.01 indicates a
statistically significant difference versus control (B).
doi:10.1371/journal.pone.0049427.g004
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XS52 cells to capture antigen was increased by more than 50%

(Fig. 5B). In congruence with these results, the basal activity of

phosphorylated Akt was also elevated (Fig. 5C).

S1P Release from XS52 Cells via ABCC1 is Involved in
Macropinocytosis

As down-regulation of S1P2 not only diminished S1P-mediated

action but also affected the basal activity of XS52 cells on

macropinocytosis, it can be assumed that S1P is continuously

produced and secreted from XS52 cells. A significant increase of

S1P into the medium could be detected over a time period of 6h

(Fig. 6A). Thus, the question remains how S1P is secreted from

XS52 cells. Several studies in other cell types indicate that

intracellular generated S1P can be released into the extracellular

environment via ABC-transporters. Especially a participation of

ABCB1, ABCC1, and ABCG2 has been discussed [19]. Quanti-

tative real-time PCR revealed that all these ABC-transporters are

present in XS52 cells (Fig. 6B). Thus, macropinocytosis was

examined in the presence of the ABCB1 inhibitor Reversin121,

the ABCG2 inhibitor Fumitremorgin C and the ABCC family

inhibitor Probenecid. In detail, Reversin121 and Fumitremorgin

C did not influence FITC-labeled dextran uptake, whereas

Probenecid increased the endocytotic capacity of XS52 cells by

almost 50% suggesting that a member of the ABCC family is

involved in S1P release (Fig. 6C). Moreover, to prove the

involvement of the ABCC1, macropinocytosis was analyzed after

down-regulation of ABCC1 by the use of specific siRNA as well as

in the presence of the specific ABCC1 inhibitor MK-571. Real-

time PCR indicated that siRNA reduced the mRNA expression of

ABCC1 by almost 90% compared to control cells (data not

shown). Indeed, down-regulation of ABCC1 increased the ability

of LCs to capture FITC-labeled dextran by more than 40%

Figure 5. S1P inhibits macropinocytosis of FITC-labeled dextran via the S1P2 receptor subtype. XS52 cells were transfected with siRNA
against S1P2 or control siRNA and silencing was detected by quantitative real time PCR (A). Transfected and control cells were incubated with FITC-
labeled dextran in the presence or absence of S1P (5 mM) for 15 min and macropinocytosis was detected by flow cytometry. Relative endocytosis are
expressed as the mean 6 SEM of results from at least three independent experiments. **P , 0.01 indicate a statistically significant difference vs.
control experiments (B). Transfected or control cells were treated with S1P (5 mM) for 15 min followed by the detection of Akt activity (C). Values of
the densitometric analysis are expressed as x-fold decrease of p-Akt formation compared to untreated cells 6 SEM from three experiments. **P,0.01
indicates a statistically significant difference versus control (C).
doi:10.1371/journal.pone.0049427.g005
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(Fig. 6D). In agreement, FITC-labeled dextran uptake was also

enhanced by the use of MK-571 confirming the participation of

ABCC1 in the S1P-release (Fig. 7B). To further substantiate that

ABCC1 is responsible for carrying of S1P, the content of S1P in

the extracellular environment was measured in the presence of

MK-571. As expected, MK-571 almost completely diminished the

ability of XS52 cells to secrete S1P into the extracellular medium

(Fig. 7A). To further demonstrate an autocrine mechanism of S1P

on inhibition of endocytosis, S1P-formation was increased by the

use of the specific Sphk1 activator K6PC-5 [40]. Stimulation of

XS52 cells with K6PC-5 significantly increased extracellular levels

of S1P (Fig. 7A). Consequently, it was of interest to analyse FITC-

labeled dextran uptake in the presence of K6PC-5. As it is shown

in Fig. 7B, macropinocytosis of FITC-labeled dextran was

significantly reduced when cells were treated with the Sphk1

activator. In agreement, phosphorylation of Akt was reduced after

treatment with K6PC-5 (Fig. 7C). A decrease of Akt-phosphor-

ylation in response to the Sphk1 activator occurred already after

5 min with a maximal inhibition at 15 min.

Taken together, these data indicate that intracellular generated

S1P is released via ABCC1 and acts in analogy to extracellular

added S1P on the S1P2 receptor subtype to inhibit macropino-

cytosis.

Discussion

It has been supposed that pathogens entering the body via the

epidermis would encounter, be taken up, processed and finally

Figure 6. S1P is generated by XS52 cells and released to the extracellular environment. XS52 cells were cultivated over a time period of
6 h and S1P levels in the extracellular environment was detected (A). Quantitative real time PCR analysis of ABCB1, ABCC1, and ABCG2 of three
different sets of cells was performed using HPRT1 and GADPH as reference genes (B). Cells were preincubated with Reversin 121 (10 mM),
Fumitremorgin C (10 mM), and Probenecid (2.5 mM) for 6 h (C). Cells were transfected with siRNA against ABCC1 or control siRNA and silencing was
detected by quantitative real time PCR (D). Then, cells were incubated with FITC-labeled dextran for 15 min. Fluorescence intensity of cells was
analyzed by flow cytometry and relative endocytosis was calculated. Data are expressed as the mean 6 SEM of results from at least three
independent experiments. **P , 0.01 indicates a statistically significant difference vs. control experiments.
doi:10.1371/journal.pone.0049427.g006
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presented in draining lymph nodes by LCs, which were therefore

the initiating cells for a T cell immune response [4]. Several studies

indicate that LCs possess a critical role in the development of

CHS, which is a delayed-type hypersensitivity response to a

topically applied hapten [41–44]. It has been shown that a specific

depletion of LCs in the skin is connected with an inefficient

transport of an antigen to draining lymph nodes, resulting in a

suboptimal priming of T cells and a reduced CHS [45,46]. Thus,

it is not astonishing that several immunomodulators like cyclo-

sporine A, tacrolimus, rapamycin, cilomilast, and glucocorticoids

mediate their antiinflammatory effects via the modulation of LC

functions [26,47,48]. Most recently, the sphingolipid S1P has also

been identified to reduce the inflammatory response in the

sensitization as well as the elicidation phase of CHS [24]. It has

been suggested that topical administration of S1P inhibits the

migration of LCs. Indeed, a S1P gradient plays a crucial role in

guiding LCs from the peripheral skin site to the lymph nodes [49].

In vitro cell culture assays revealed that S1P is a migratory

stimulus of LCs and that the S1P1 and S1P3 receptor subtypes are

responsible for the migratory response [39]. Thus, inhibition of

migration after a topical treatment with S1P in the CHS model

can be explained by either an internalization of the S1P1 receptor

subtype or an dysregulation of the S1P-gradient.

Nevertheless, it has also been indicated that immunomodulators

like rapamycin affects not only the migratory behaviour of APCs

but also their endocytotic capacity [27,28]. In agreement, our

studies of epidermal sheets demonstrated that topical treatment

with S1P leads to an inhibition of antigen uptake by LCs. This is

confirmed by in vitro cell culture assays of immature LCs showing a

dose-dependent reduction of endocytosis. It is of interest that an

opposite effect of S1P has been described in mature BMDCs as the

endocytotic behaviour in response to S1P is increased [50,51].

Our results indicate that endocytosis by immature BMDCs is also

diminished in the presence of S1P suggesting that the modulation

of antigen capture is not restricted to LCs. In this context it should

be mentioned that rapid uptake of antigen by mature DCs is not as

sufficient as in immature cells and moreover does not necessarily

contribute to an efficient presentation of antigen on the cell surface

[52].

In an immature stage LCs are able to take up antigen via several

different mechanisms. As professional APCs, LCs are prone to

internalize mannose via the C-type lectin receptor Langerin, as the

majority of glycoproteins from bacteria and yeast are mannosy-

lated [36]. Moreover, efficient capture of soluble antigen is

mediated via macropinocytosis. LCs are a prominent cell type to

pinocytose constitutively without the receipt of external stimuli,

which enables LCs to screen a large volume of fluid for antigen

followed by a processing and presentation of concentrated antigen

[38]. Our study indicate that S1P inhibits uptake of FITC-labeled

dextran via macropinocytosis, which plays a central role in the

development of CHS [53]. Macropinocytosis has been character-

ized as an actin-dependent process that requires the Rho-family

GTPases, including Rac1 and Cdc42, for actin cytoskeletal

rearrangements [54]. It has been well established that this process

is mediated by a modulation of the PI3K activity allowing a fine-

tuned regulation of antigen uptake [38]. Noradrenaline rapidly

Figure 7. Autocrine modulation of macropinocytosis by XS52 cells via formation and release of S1P. XS52 cells were cultivated in the
presence or absence of MK-571 (15 mM) and K6PC-5 (10 mM) over a time period of 6 h and S1P levels in the extracellular environment was detected
(A). Cells were preincubated with MK-571 (15 mM) for 6 h and K6PC-5 (10 mM). Then, cells were incubated with FITC-labeled dextran for 15 min.
Fluorescence intensity of cells was analyzed by flow cytometry and relative endocytosis was calculated. Data are expressed as the mean 6 SEM of
results from at least three independent experiments. **P , 0.01 indicate a statistically significant difference vs. control experiments (B). Cells were
treated with 10 mM of K6PC-5 for the indicated time periods followed by the detection of Akt activity (C). Values of the densitometric analysis are
expressed as x-fold decrease of p-Akt formation compared to untreated cells 6 SEM from three experiments. *P , 0.05 and **P,0.01 indicate a
statistically significant difference versus control.
doi:10.1371/journal.pone.0049427.g007
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enhances antigen capture by DCs via a(2)-adrenoceptor-mediated

PI3K activation resulting in an immune enhancement following

acute stress [55]. In agreement, our results indicate that S1P is able

to reduce PI3K activity via an activation of the S1P2 receptor

subtype, which consequently leads to a reduction of antigen uptake

by macropinocytosis. The discrepancy between Kd-values of S1P2

and the most effective concentration to inhibit macropinocytosis

could be explained by a high unspecific binding of the S1P/BSA

complex. Moreover, it has been shown that S1P in micromolar

concentrations also influences PI3K activity via the S1P2 receptor

subtype in further epidermal cells [56]. Thus, it has been shown

that S1P induces cell growth arrest in keratinocytes by stimulation

of S1P2 and subsequent reduction of PI3K activity. Most

interestingly, our results indicate that down-regulation of S1P2

not only prevents the inhibitory effect of S1P on antigen uptake

but also increase the basal level of the macropinocytotic capacity.

These results provide evidence that intracellular formed S1P acts

in an autocrine manner via S1P2 to control immunological

balance of antigen capture. This hypothesis was substantiated by

the use of K6PC-5 which is a direct inducer of Sphk1 [40]. This

activator enhanced the extracellular level of S1P, which was

accompanied by a reduced macropinocytosis. Thus, it is not

astounding that reduced S1P levels have been reported in lesional

skin of dogs with atopic dermatitis [57]. It seems likely that

reduced S1P levels are the result of an extent metabolism via the

S1P-lyase, which cleaves S1P into phosphoethanolamine and

hexadecenal [58]. In this light it has clearly been highlighted that

S1P-lyase activity is altered not only in atopic lesions in dogs but

also in humans [59,60].

Although our results predict the significance of S1P2 in the

modulation of macropinocytosis, it has been pointed out that

FTY720-P, which is an agonist on all S1P receptors except S1P2,

reduced allergic inflammatory response in CHS [24]. In any case,

the antiinflammatory effect of S1P should not solely be explained

by a reduced antigen uptake. Several mechanisms for example a

reduced migratory response of DCs, a defective T-cell stimulatory

effect and a systemic effect may contribute to the protective effect

of FTY720. Thus, it has been reported that topical administration

of FTY720 is accompanied by systemic effects causing lympho-

penia. In analogy, long-term treatment with topical administered

S1P results in lymphopenia due to slightly elevated S1P-levels in

plasma which could synergistically contribute to the antiinflam-

matory action of local S1P [24]. Moreover, it has been shown that

S1P inhibits LPS-mediated IL-12p70 production in DCs. This

cytokine is essential to guide differentiation of T cells into a Th1,

cytotoxic/inflammatory state [61].

Yet it was not clear how S1P generated intracellularly is released

from LCs reaching the S1P2 receptor subtype. Here, we provide

evidence that the ABCC1 is involved in the secretion of the

sphingolipid regulating macropinocytosis. Nevertheless, ABCC1

activity is also crucial for migration and differentiation of DCs

indicating to fulfill an important physiological role in this cell type

[62]. Moreover, the transporter has also been identified to secrete

intracellular generated S1P from mast cells, which emphasize that

ABCC1 is not an unique feature for the transport of S1P in LCs

but also in further immune cells [63].

Taken together, our results indicate that the sphingolipid S1P is

a tantalizing signaling molecule in LCs regulating antigen capture

via the ABCC1/S1P2 and PI3K axis. The notion that regulatory

missions of LCs are modulated directly by the S1P microenviron-

ment contributes to the understanding of the molecular mecha-

nism why S1P is beneficial in CHS.
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