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Abstract

Low-copy-number molecules are involved in many functions in cells. The intrinsic fluctuations of these numbers can enable
stochastic switching between multiple steady states, inducing phenotypic variability. Herein we present a theoretical and
computational study based on Master Equations and Fokker-Planck and Langevin descriptions of stochastic switching for a
genetic circuit of autoactivation. We show that in this circuit the intrinsic fluctuations arising from low-copy numbers, which
are inherently state-dependent, drive asymmetric switching. These theoretical results are consistent with experimental data
that have been reported for the bistable system of the gallactose signaling network in yeast. Our study unravels that
intrinsic fluctuations, while not required to describe bistability, are fundamental to understand stochastic switching and the
dynamical relative stability of multiple states.
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Introduction

Stochastic fluctuations are ubiquitous in any real dynamical

system: physical, chemical, biological, etc. In particular, living

organisms are subject to fluctuations (or noise) of distinct origins.

At the cellular level, it is a well known fact that biochemical

reactions inside a cell are discrete and stochastic events and

present inherent randomness. This randomness is more evident

when the molecules involved in the dynamical process are present

in small numbers. These fluctuations can have disturbing or

ordering roles.

Recently, it has been shown that cells may exploit noise in

different beneficial ways. For instance, noise may act as a trigger

for phenotypic variability since fluctuations enable the exploration

of the phase space through different types of dynamics ([1–5], for

reviews). This has been observed in several natural systems, like in

the gallactose utilization network in the budding yeast [6], the

process of DNA uptake from the environment in B. subtilis [7,8],

photoreceptor differentiation in the fruit fly retina [9] and in stem

cell differentiation [10–12]. Since the roles and benefits of

stochastic phenomena in natural systems are starting to be

elucidated, it becomes relevant to characterize thoroughly the

features of such stochastic phenomena in terms of the driving

fluctuations.

In bistable or multistable systems, variability or phase space

exploration can occur through stochastic switching, i.e. the random

transition from one state to another one, and it has been shown to

be beneficial for isogenic populations in changing environments

[13,14]. Well known examples of bistable systems are biochemical

switches which have two stable solutions corresponding to high

and low (ON/OFF) concentration states [15]. Genetic switches

have been reported abundantly in natural systems (see [16–20] for

some examples) and have been constructed synthetically as well

[21–24]. Commonly, these switches arise from nonlinear dynamics

involving a positive feedback loop in which a molecular species

upregulates, directly or indirectly, its own production.

In biochemical bistable systems stochastic switching becomes

more probable when the bistable states have little enough

differences in copy numbers [25–28]. This switching enables

phenotypic variability but prevents stable memory of past history

[6]. Experimentally, both bistability and hysteresis have been

reported for several stable switches [6,29,30]. The dependence of

hysteresis (or memory of past history) and stochastic switching on

circuit architectures such as positive and negative feedbacks has

been evaluated both experimentally and theoretically [6,31].

Importantly, the natural system of the gallactose signaling network

in yeast has been driven to a regime showing frequent enough

stochastic switching and its rates have been measured [6].

Herein we address the issue of how intrinsic noise modulates

stochastic switching rates. To this end, we use one of the simplest

descriptions of a biochemical bistable switch which corresponds to

autoactivation. In this case, a single molecular species describes the

switch and its nonlinear dissipative dynamics can be related to

overdamped dynamics on an energy potential [22,32]. In order to

characterize stochastic switching dynamics in this circuit, the most

appropriate theoretical scenario to be used is the Master Equation

since it incorporates in a natural way the presence of intrinsic

fluctuations. We use as well the corresponding Fokker-Planck

equation since it enables the theoretical evaluation of the switching

rates. In order to pinpoint the dynamical features introduced just

by intrinsic noise, we make a comparison with a second model

using the Langevin dynamics formalism. In this latter model,
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fluctuations arise instead from a thermal bath, i.e. from non-

intrinsic, uniform noise. Altogether, our study characterizes the

dependence of steady and dynamical properties of autoactivation

on intrinsic noise.

Methods

1 Deterministic description
We have used a simple chemical kinetic model for autoactiva-

tion commonly used in the literature (see [15,22,31] for instance).

In this autoactivation circuit, a protein promotes its own

production according to a Hill function with cooperativity n.

Since usually mRNA degrades more rapidly than protein, we

consider mRNA dynamics to be much faster than protein

dynamics (quasi-steady state approximation) and use a single

equation, which describes the protein dynamics. The deterministic

dynamic equation for such a system is

dx

dt
~Rza

xn

Kdzxn
{kdegx, ð1Þ

where x denotes the concentration of protein, a is the maximum

production rate, n represents cooperativity, K
1=n
d sets the value at

which the production rate is half its maximum value, kdeg is the

degradation rate and R is the basal production rate. We can

rewrite this equation with dimensionless variables in such a way

that the least possible parameters are left:

d~xx

d~tt
~~RRz~aa

~xxn

1z~xxn
{~xx~{

dU(~xx)

d~xx
, ð2Þ

where

~xx~
xffiffiffiffiffiffi
Kd

n
p , ~tt~kdegt,

~aa~
a

kdeg

ffiffiffiffiffiffi
Kd

n
p , ~RR~

R

kdeg

ffiffiffiffiffiffi
Kd

n
p ,

and U(~xx) is the energy potential, which for n~2 reads:

U(~xx)~~aa arctan(~xx)z
~xx2

2
{(~aaz~RR)~xx: ð3Þ

For this dimensionless dynamics, ~aa has been used as control

parameter. This deterministic description as described above is

independent of the cell volume V . However, when this framework is

related to stochastic kinetic reactions, the dependence on the cell

volume becomes evident. Accordingly, and for the sake of

compactness, herein we introduce the parameter values from

[31]: Kd~10 nMn, R~0:4 nM min{1, kdeg~2 min{1, and n~2.

In order to satisfy Vx~N, where N is the number of molecules,

then the dimensionless cell volume shall be ~VV~V
x

~xx
~Vn

ffiffiffiffiffiffi
Kd

p
,

which, using the value V~30 nM{1, is ~VV~94:9. All the study has

been performed using the dimensionless variable and parameters.

For the sake of simplicity, hereafter these dimensionless variable and

parameters are not indicated with tilde or superindex.

2 Stochastic description I: Multiplicative noise model
When the molecular species are present in small numbers, the

stochasticity of chemical reactions becomes more evident and the

deterministic description no longer describes accurately the real

dynamics. A stochastic description is then required. Biochemical

reactions can be described by birth-death processes governed by

chemical master equations [28]. To model the autoactivation circuit

dynamics we have considered two transition processes N?Nz1
and N?N{1 with rates, following [31], given by, respectively,

W1(N)~ Rza
Nn

NnzVn

� �
V , ð4Þ

W2(N)~N: ð5Þ

N stands for the number of molecules and V for the

nondimensional cell volume properly adjusted for the dimension

transformation described above. The corresponding Master

equation [33] is

LP(N,t)

Lt
~W1(N{1)P(N{1,t)z ð6Þ

zW2(Nz1)P(Nz1,t){(W1(N)zW2(N))P(N,t),

where P(N,t) is the probability distribution at time t.

We have simulated numerically this Master equation dynamics

with the Gillespie algorithm [34] with custom-made software.

Rewriting the Master equation with concentration (continuous)

variables, the corresponding Fokker-Planck equation [25,35] for

the system is obtained

LP(x,t)

Lt
~{

L
Lx

A(x)P(x,t)z
1

2V

L2

Lx2
B(x)P(x,t), ð7Þ

A(x)~
ax2

x2z1
{xzR, B(x)~

ax2

x2z1
zxzR, ð8Þ

where P(x,t) is the probability of having a concentration x at time

t. The Fokker-Planck equation is amenable to theoretical

stochastic analysis. This equation can be readily solved in the

stationary regime [35], obtaining the steady state probability

Ps(x)~Ce{2Vw(x), ð9Þ

where C is a normalization constant and w(x) is the effective

stochastic potential (as opposed to the deterministic potential in Eq

(3))

w(x)~
1

2V
ln

B(x)

V

� �
{

ðx

0

A(s)

B(s)
ds: ð10Þ

An equivalent description to the Fokker-Planck equation, which

provides actual stochastic trajectories as opposed to probability

distributions, is the Langevin equation. The Langevin equation

corresponding to Eq (7) in the Itô interpretation [33] is

dx

dt
~A(x)z

ffiffiffiffiffiffiffiffiffiffi
B(x)

p
j(t) ð11Þ
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where j(t) is a Gaussian white noise with

vj(t)w~0, vj(t)j(t’)w~
1

V
d(t{t’): ð12Þ

This corresponds to the so-called chemical Langevin equation

[36]. This description identifies B(x)=V with the square power of

the noise intensity. The noise becomes reduced as the cell volume

V increases. For V??, we recover the deterministic description

of Eq (2).

Notice that the noise term appears in the Langevin equation

with a state-dependent term,
ffiffiffiffiffiffiffiffiffiffi
B(x)

p
, multiplying it. Therefore, the

intrinsic noise coming from the biochemical reactions arises

naturally in this equation as a multiplicative noise. Hereafter we

call this dynamics (either in the Langevin, Fokker-Planck or

Master equation description) as the multiplicative noise scenario.

Like the Master equation, the Langevin description enables the

time-integration of the dynamics, obtaining simulated stochastic

trajectories. In contrast with the Master equation description, the

Langevin approach focuses on a continuous variable, the

concentration of the molecular species. We have numerically

integrated this Langevin equation with custom-made software

using the algorithm in [37].

3 Stochastic description II: Additive noise model
For comparison, we have studied also the states and dynamics of

a description that takes constant noise regardless of the protein

concentration x. This corresponds to analyze the autoactivation

circuit in a thermal bath. It does not correspond to a description

based on the stochastic chemical equations and the noise term

does not account for intrinsic fluctuations. Instead, this is a

description which has been commonly used in the study of genetic

circuits to introduce fluctuations as a mere jiggling of the steady

states, without taking into account the origin of this randomness.

We have constructed this dynamics from the Langevin equation

by setting the deterministic dynamics plus a noise term which is

state-independent:

dx

dt
~A(x)z

ffiffiffiffiffiffi
B0

p
j(t), ð13Þ

with j given by Eq (12). Notice that the difference with the

multiplicative noise scenario relies on the use of B0, a constant,

instead of the function B(x). Hereafter we call this approach the

additive noise case, since the noise enters in an additive way. The

stationary solutions and the bifurcation diagram of this model are

the same as for the deterministic model.

The Fokker-Planck equation corresponding to the above

Langevin equation (13) reads:

LP(x,t)

Lt
~{

L
Lx

A(x)P(x,t)z
B0

2V

L2

Lx2
P(x,t): ð14Þ

From this Fokker-Planck equation we can obtain the stochastic

potential for the additive case, �UU(x), which is proportional to the

deterministic energy potential U(x) up to shift and scale factors:

�UU(x)~
1

2V
ln

B0

V

� �
{

ðx

0

A(s)

B0
ds~C1zC2U(x), ð15Þ

where C1 and C2 are constants given by B0 and V . Accordingly,

the relative stability of the states provided by this function is the

same as the one derived from the energy potential U(x).

For a good comparison between the additive and multiplicative

noise cases, we have chosen a value of B0 such that the stochastic

potential w(x) and the potential �UU coincide at the OFF state value

of the multiplicative noise dynamics. For each a, a B0 value can be

evaluated. However, we have observed no significant differences if

a common value of B0 is used for any a. Thus in all figures, unless

indicated otherwise, we have used B0~0:09 which corresponds to

a~1:5.

We have simulated stochastic trajectories of the concentration x
from the Langevin equation using the Heun algorithm [38] and, to

avoid unrealistic negative values of x, a reflecting boundary at

x~0 has been introduced.

4 Mean First Passage Time (MFPT)
The MFPT gives the average time to switch from one state to

another one. The MFPT, T(x), satisfies the following differential

equation [33]

A(x)
LT(x)

Lx
z

1

2V
B(x)

L2T(x)

Lx2
~{1, ð16Þ

which can be solved with the proper boundary conditions: an

absorbing boundary at the maximum and a reflecting boundary

either at 0 or ? ,

TOFF?ON~2V

ðxmax

xOFF

dy

y(y)

ðy

0

y(z)

B(z)
dz,

TON?OFF ~2V

ðxON

xmax

dy

y(y)

ð?

y

y(z)

B(z)
dz,

where

y(x)~exp

ðx

x0

2VA(x’)
B(x’)

dx’

8><
>:

9>=
>;: ð17Þ

with x0~0 for the OFF?ON transition, and x0~xmax for the

ON?OFF transition.

The theoretical results concerning the MFPT have been

obtained by calculating numerically (using a Romberg algorithm

[39]) these expressions for both the multiplicative and the additive

noise cases (in the additive noise case, B(x)~B0 has been used).

We have also obtained the MFPT from simulations of the

stochastic trajectories of the number of molecules, obtained from

the Master equation, and of the concentration, obtained from the

Langevin equations by simulating trajectories around each stable

state, measuring how long do they take to cross the maximum of

the potential for the first time and averaging this value for 100 to

500 repetitions of the same process (which just differ in the

stochastic numbers).

Results

1 Bistability
It is well known that positive feedback loops formed by

autoactivation exhibit bistability. Specifically, both the determin-

istic and stochastic models presented in sections 1 and 2

respectively in Methods have been shown to have a bistable

Escape Rates and Molecular Noise in a Switch
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regime [22,31]. However, no detailed comparison of both

descriptions has been performed yet, as far as we know. In this

section we are interested in evaluating the effect of intrinsic

fluctuations in the steady states. Accordingly, we compare the

bifurcation diagrams for the stochastic multiplicative noise and for

the deterministic models. From a biophysical point of view, by

doing so we are comparing the features of the same autoactivation

circuit in two cells with very different volumes. The autoactivation

circuit in the cell with a small volume would be described by the

stochastic multiplicative noise model, whereas it would be well

approximated by the deterministic description in the cell with a

very (extremely) large volume.

The bifurcation diagram for the control parameter a, related to

the maximal molecular production rate, is shown in Fig. 1. The

steady state solutions of the bifurcation diagram have been

obtained by computing numerically (Mathematica Software [41])

the minima and maxima of the potentials, Eqs (3) and (10), for the

deterministic and stochastic models. As it is shown, both

descriptions show a very similar bifurcation diagram with a

bistable regime for intermediate values of a in which two stable

states, a low-concentration state (OFF) and a high-concentration

(ON) state, can coexist. The steady state concentrations are very

similar among the two descriptions. A difference among the

bifurcation diagrams is an enlargement of the bistability region for

the stochastic multiplicative noise model. However, when

stochastic switching between the states is taken into account, this

enlargement becomes not relevant. Indeed, for this region, it is

extremely easy to escape from the OFF state and to switch

(irreversibly, for very long time scales) to the ON state [31]. Hence,

bistability is not expected to be observed in this region precluding

the observation of differences between the deterministic and the

stochastic descriptions (compare insets in Fig. 1). In fact, bistability

is especially obvious in a narrow region (a&2) which is common to

both descriptions (see grey areas in the figure).

Our results show that stable steady state concentrations do not

depend strongly on intrinsic fluctuations. These results indicate

that bifurcation diagrams of autoactivation circuits obtained

experimentally can be fitted appropriately just by the deterministic

description of the dynamics.

2 Fluctuations
Intrinsic stochasticity of the biochemical reactions of the

autoactivation circuit result in state-dependent multiplicative noise

(see section 2 in Methods). Fluctuations are expected to be larger

in the ON state than in the OFF state (Fig. 2A) because the noise

intensity increases with the concentration according to the

function B(x). Since dynamics such as MFPTs depend on absolute

fluctuations we have computed the standard deviation of

concentrations in each stable steady state. Numerical simulations

of the stochastic multiplicative noise dynamics show that for all the

bistable region, absolute fluctuations are larger in the ON state

than in the OFF state (Fig. 2B).

The coefficient of variation (i.e. relative fluctuations, defined as

the standard deviation over the mean) is larger in the OFF state

Figure 1. Steady state values do not change significantly when
intrinsic noise is included. Bifurcation diagram for the deterministic
model (black) and the multiplicative noise model (red). Stable steady
states (continuous lines) and unstable steady states (dashed lines) are
minima and maxima, respectively, of the potentials. The bifurcation
diagram of a stochastic description with a thermal bath (additive noise)
is necessarily the same as the one of the deterministic model. The
stationary probability distribution for the multiplicative noise model, Eq
(9), for different a values is shown in grey scale. Insets: Stationary
probability distributions for the multiplicative noise model for a~2:15
(top) and a~4:00 (bottom).
doi:10.1371/journal.pone.0031407.g001

Figure 2. Intrinsic multiplicative noise drives larger absolute
fluctuations in the ON state. A Time evolution of the concentration
x for a~2:18. Error bars denote the fluctuations size in each state,
which is much higher in the ON state. B Fluctuations in the OFF steady
state (filled symbols) and in the ON steady state (empty symbols) for the
multiplicative noise model (red) and for the additive noise model
(black). Fluctuations are measured as the standard deviation from the
steady state. For the multiplicative noise model, fluctuations in the ON
state are larger than in the OFF state. For the additive noise model,
fluctuations in the OFF and ON states are similar. Standard deviations
have been computed over samples of sizes ranging from 100 to 1000
repetitions of the corresponding Langevin dynamics at time t = 100. For
the additive noise model we have used a different B0 value for each a,
as explained in section 3 in Methods.
doi:10.1371/journal.pone.0031407.g002

Escape Rates and Molecular Noise in a Switch
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and decreases for larger volumes, as expected (see Table 1) [40].

However, it is important to notice that the coefficient of variation

is not the relevant magnitude in our analysis as we will show

below.

Fluctuations in an energy potential well depend on the shape of

the potential. Since the energy potential corresponding to

autoactivation dynamics is asymmetric we can expect the ON

and OFF states to exhibit different standard deviations even if the

noise intensity is the same in both cases. To ensure that the

differences in standard deviation observed in Fig. 2B are driven by

intrinsic noise and are not just the result of an asymmetric energy

potential, we computed the standard deviation for each steady

state for an additive noise model (see section 3 in Methods). In this

additive noise model, the noise intensity is the same for all states

and the dynamics are subjected to the energy potential of

autoactivation. Note that noise in this additive noise model stands

for a thermal bath and not for intrinsic fluctuations. As shown in

Fig. 2B, fluctuations in the additive noise model are very similar in

the OFF and ON states. This result indicates that the asymmetry

of the energy potential does not drive a significant difference in the

fluctuations around each steady state, and thus is not responsible

for the large differences observed in the multiplicative noise model

with intrinsic noise.

Altogether we have shown that intrinsic noise in the positive

feedback loop of autoactivation creates larger absolute fluctuations

in the ON state than in the OFF state.

3 Stochastic switching
Stochastic switching dynamics depend on the energy potential

and on fluctuations. Since intrinsic noise drives different

fluctuations in the ON and OFF states we may expect different

switching dynamics from each state. To evaluate the role of

intrinsic noise on the switching dynamics, we measured the escape

or switching rates as the inverse of the MFPT (see section 4 in

Methods) for the multiplicative noise dynamics. When plotting

these rates as a function of the energy barrier (Fig. 3A), we see that

the switching becomes asymmetric: for the same energy barrier

height, it is more probable to switch from the ON state than from

the OFF state.

To corroborate whether this asymmetry is driven by intrinsic

noise, we measured the escape rates for the additive noise model.

For this model, the asymmetric effect is absent (Fig. 3B). Together,

our results show that state-dependent intrinsic noise in autoacti-

vation dynamics drive an asymmetric switching.

Importantly, the differences in fluctuations among the ON/

OFF states arising from intrinsic noise are preserved for different

cell volumes and are little sensitive to changes in the cell volume (Table 1). Hence, we can expect that the phenomenology of

asymmetric switching rates holds for a wide range of cell volumes.

Fig. 4 shows this is indeed the case. For larger cell volumes the

switching rates decrease overall (since the switch becomes more

stable [25]), but they still show a similar relative asymmetry. It is

still more probable to switch from the ON state than from the

OFF state for equal energy barrier height values. This result

stresses the importance of intrinsic fluctuations at a fundamental

level.

The asymmetry can be also observed in the value of a at which

the switching rates from the OFF states and from the ON states

are the same [31]. This value is larger when intrinsic noise is taken

into account (aadd
c ~1:99, amult

c ~2:16, see Fig. 5). This shift

indicates that intrinsic fluctuations enlarge the control parameter a
region for which it is less frequent to switch from the OFF state

than from the ON state.

Our results show that intrinsic fluctuations in autoactivation

dynamics introduce a state-dependent noise which consistently

Table 1. The ratio between fluctuactions in the OFF and ON
states is mantained at larger volumes.

OFF ON OFF/ON

V~94:9 0:474 0:131 3:62

V~474:5 0:208 0:062 3:33

Relative fluctuations in each steady state for two different nondimensional cell
volumes V for a~2:13 for the multiplicative noise model. Relative fluctuations
have been computed as the ratio between the standard deviation over the
mean steady state. Standard deviations and mean values have been extracted
from Langevin dynamics as in Fig. 2. As shown, relative fluctuations decrease
with cell volume, but are always larger in the OFF state. The ratio between the
relative fluctuations in the two states is indicated in the last column. This ratio is
little sensitive to the cell volume.
doi:10.1371/journal.pone.0031407.t001

Figure 3. Intrinsic multiplicative noise generates an asymmetry
in switching rates. A Switching rate versus energy barrier for the
stochastic system with intrinsic multiplicative noise. The lines represent
the values obtained through theoretical MFPT calculations, Eq (16), and
the circles represent the values obtained through simulation (Gillespie
and Langevin are identical). In both panels, the energy barriers were
calculated from Eq (3). Blue colour corresponds to switching from ON to
OFF and green color corresponds to OFF to ON switching. B Switching
rate versus energy barrier for the additive noise case. Notice how the
rates for both states keep the same relation with the energy barriers.
Colour code is as in previous panel. Symbols correspond to theoretical
MFPT calculations. Simulations are in perfect agreement, but are not
represented for clarity. In both panels, the nondimensional cell volume
is V~94:9.
doi:10.1371/journal.pone.0031407.g003

Escape Rates and Molecular Noise in a Switch
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drives larger absolute fluctuations in the ON state and elicit a

faster switching rate from this state than from the OFF state for the

same energy barrier height. Remarkably, this type of asymmetry is

in agreement with the one reported experimentally for the

gallactose signaling switch in yeast cells [6]: it is more probable

to switch from the ON to the OFF state than viceversa.

4 Relative stability of steady states
It is worth here to comment the previous results on asymmetric

switching and the role of intrinsic noise on the relative stability

between states. To this end, we compared the stochastic potential

of the multiplicative noise model Eq (10) with the energy potential

Eq (15). Note we used Eq (15) which is, up to scale and shift

factors, the deterministic energy potential Eq (3). We set B0 to

match the potentials at the OFF state (see section 3 in Methods),

facilitating their comparison.

The two potentials are shown in Fig. 6. The stochastic potential

for the multiplicative noise scenario has been previously reported

in [31]. As shown in Fig. 6, the multiplicative noise affects

drastically the ON state, reducing the barrier height and

decreasing the curvature of the potential at the ON state.

Moreover, the fact that the well potential in the ON state

becomes flattened due to the intrinsic multiplicative noise implies

larger fluctuations in the copy number which, in turn, will induce

faster transitions. These two changes favor the transition rate from

the ON state to the OFF one, thus reducing the stability of the ON

state.

These results show that inherent and intrinsic fluctuations in a

positive feedback loop based on autoactivation drive large changes

which could reduce the differences in the stability of the steady

states. Hence, the relative stability of the bistable states is a

dynamical phenomenon which is very sensitive to the noise

characteristics.

Discussion

We have presented a theoretical and numerical analysis of the

role of intrinsic noise in a bistable switch with autoactivation

dynamics. Our theoretical approach is consistent and independent

of a particular scenario either using Master or Langevin equations,

and is complemented with numerical integrations and stochastic

simulations. Our results exemplify that intrinsic noise in

autoactivation dynamics, which result in multiplicative noise

(state-dependent fluctuations), are a relevant ingredient for the

dynamics but not for the characterization of the steady states.

Specifically, while the bifurcation diagram is mostly unchanged

Figure 4. The asymmetry of switching rates does not disappear
at larger volumes. Switching rates for different cell volumes as a
function of the energy barrier. Switching rates (computed from Eq (16))
of the stochastic system with intrinsic multiplicative noise for an
adimensonal cell volume V~94:9 (circles) and for a larger volume
V~5|94:9 (crosses). The energy barrier heights were calculated from
Eq (3). Blue color corresponds to ON to OFF switching and green
corresponds to OFF to ON switching. The asymmetry of the switching
rates is observed for both volumes.
doi:10.1371/journal.pone.0031407.g004

Figure 5. Intrinsic multiplicative noise increases the domain
where the OFF state predominates. Switching rates for stochastic
transitions from ON to OFF (blue) and viceversa (green) for the additive
(dashed lines) and for the multiplicative (continuous lines) systems,
computed from Eq (16). The critical value ac at which the switching
rates for the two transitions are equal is shifted from aadd

c ~1:99 in the
additive case to amult

c ~2:16 for the multiplicative noise scenario. Results
for Langevin simulations of the additive noise model (squares) and for
Gillespie simulations of the multiplicative noise model (circles) are
depicted.
doi:10.1371/journal.pone.0031407.g005

Figure 6. Intrinsic multiplicative noise changes the relative
stability of the ON state. Stochastic potential of the additive noise
model (black dashed line, Eq (15)) and of the multiplicative noise
scenario (red continuous line, Eq (10)) for a~2:15. As shown, the ON
state is clearly destabilized by multiplicative noise. This is also observed
for different values of a.
doi:10.1371/journal.pone.0031407.g006

Escape Rates and Molecular Noise in a Switch
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when intrinsic noise is taken into account, the switching dynamics

and the relative stability of the states are very sensitive to state-

dependent fluctuations.

Recently it has been shown that noise can be different in the

ON and OFF states of feedforward loop genetic circuits [42]. For a

genetic circuit involving positive and negative feedbacks it has

been also shown that intrinsic noise can stabilize a deterministi-

cally unstable state [43]. Herein, we show that intrinsic noise in

autoactivation dynamics drives the ON state less stable. Specifi-

cally, intrinsic noise drives larger absolute fluctuations in the ON

state which elicit a faster switching rate from this state than from

the OFF state for the same energy barrier height. Remarkably, this

phenomenology holds for different cell volumes, and accordingly

for different noise intensities. We have termed this phenomenon

asymmetric stochastic switching.

Asymmetric stochastic switching has been observed in the

gallactose signalling network in yeast [6]. In this network, a

positive feedback loop involving the cytoplasmic molecule Gal3p

drives bistability of low (OFF) and high (ON) pathway activity

states in which GAL3 expression is low and high respectively [6].

For a specific parameter regime, yeast cells can switch spontane-

ously and stochastically between these states during the time

period being analyzed. When comparing the switching rates from

each (OFF/ON) state for the same value of the energy barrier

height, Acar et al. obtained that it is more probable to switch from

the ON to the OFF state than viceversa [6]. Moreover, they

measured the fluctuations of GAL3 expression in each state and

concluded that fluctuations are larger in the ON state than in the

OFF state [6]. These two features, larger probability of switching

from the ON state and larger fluctuations in the ON state, are

analogous to the ones we obtain by theoretical and numerical

means for the stochastic autoactivation switch with intrinsic noise.

Together, our study explains that although the bistability

phenomenon is rather independent of the noise characteristics, the

relative stability of each state and stochastic switching dynamics

are dynamical features very sensitive to the kind of noise: additive

or multiplicative. A simplistic approach with an additive noise can

not address all the possible phenomenologies and one has to resort

to carefully considering noise as an intrinsic part of the system,

which is relevant at a fundamental level and not as a correction.
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