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Abstract

Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in
bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel
putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved
among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci.
The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal
LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade a-glucan
polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I
pullulanase. Studies performed on whole bacteria indicated that the presence of a-glucan polysaccharides in culture
medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging.
Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but
not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of a-glucans. As reported for other
streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of
the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized
with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent,
also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP
as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections.
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Introduction

The use of carbon sources is essential to the ability of bacteria to

colonize the host and potentially cause disease in humans. In

particular, highly polymerized a-glucan polysaccharides, such as

starch and glycogen, are most likely to be found in environmental

niches. Indeed, it is known that dietary-derived starches are very

abundant in the human colon [1,2,3], while glycogen is deposited

in large amount in the vaginal ephitelium during times of high

estrogen availability [4,5]. Recent reports using in vivo models of

colonization showed a correlation between the expression of

proteins involved in sugars metabolism and virulence. For

example, the malto-oligosaccharide/maltodextrin–binding com-

ponent of the Group A streptococcus malto-oligosaccharide ABC

transporter has been shown to be directly involved in virulence in

a mouse model of oropharynx infection [6]. More recently,

Shelburne et al. demonstrated that in human saliva the transcript

levels of several GAS carbohydrate utilization proteins other than

glucose are highly expressed [7]. In addition, a signature-tagged

mutagenesis study on S. pneumoniae (SPN) highlighted that a

number of a-glucan–active enzymes seems to be virulence factors

in a mouse model of lung infection [8].

Because of the complex structures of highly polymerized a-

glucans, bacteria require an appropriate combination of enzymes

for de-polymerization to oligo- and monosaccharides. Among

these enzymes are ascribed pullulanases. Pullulanases have a

glycosidic hydrolase activity towards a-glucan polysaccharides and

are considered key extracellular components in bacterial metab-

olism. GAS and Streptococcus pneumoniae (SPN) pullulanases, named

PulA and SpuA respectively, have been recently described [9,10].

They are anchored to the cell wall at their C termini by an

LPXTG motif and possess a modular structure harboring a

carbohydrate binding motif belonging to family 41 (CBM41) well

distinct from the catalytic domain (CD) [11]. CBMs are currently

classified into 47 families on the basis of amino acid sequence [12].

In particular, family 41 in the CBM classification was identified for

the first time in a pullulanase enzyme of the marine bacterium

Thermotoga maritime and it shares a high specificity for a-glucans. Of

interest, PulA has been described to have multifunctional activities

as the capability to hydrolyze pullulan, a linear polysaccharide of
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maltotriosyl repeating units linked by a-(1,6) glycosidic linkage

[9,13] and to act as a strepadhesin able to bind to thyroglobulin,

submaxillar mucin, fetuin, and asialofetuin [9]. PulA expression is

up-regulated by Mga and down-regulated by Rgg, both of which

are central transcriptional regulators of S. pyogenes gene expression

[13]. In addition, it has been recently reported that the

recombinant forms of PulA and SpuA CBMs showed high affinity

for glycogen-rich alveolar type II cells [10].

Group B streptococcus (GBS) is an extracellular mucosal pathogen

causing neonatal meningitis and invasive diseases in non-pregnant

adults. GBS colonizes the lower gastrointestinal and genital tracts

of healthy adults, as approximately 20–30% of healthy women are

colonized rectovaginally with GBS [14]. To date, the mechanisms

underlying the capacity of GBS to use carbon sources available at

site of colonization are largely undefined. By sequence analysis of

the GBS genomes, we discovered a novel surface exposed a-glucan

degrading-enzyme belonging to the streptococcal family of pull-

ulanase (SAP). Functional characterization of SAP revealed that

the protein is immunogenic in humans and that sera from SAP

immunized animals are able to reduce the capacity of SAP to

degrade a-glucans. Of particular interest, anti-SAP sera were also

impairing GAS pullulanase activity. These evidences may draw up

the basis for new strategies for preventing the use of environmen-

tally available complex carbohydrates by streptococci.

Results

Identification and genomic analysis of SAP
The increasing interest on streptococcal metabolism of complex

host-derived carbohydrates supported by recent studies on the

involvement of metabolic genes in Group A streptococcus (GAS)

infections [15], led us to investigate the presence in GBS of

surface-associated genes with putative a-glucan hydrolase activity.

In silico analysis of recently sequenced GBS genomes [16,17,18]

revealed the presence of a gene (3759 bp) encoding a protein of

1252 amino acid sharing a multimodular architecture comprising

a leader peptide (residues 1–41) containing a YSIRK-G/S-like

motif [19]. A tandem of putative carbohydrate binding motifs

(CBMs) and a glycoside hydrolase catalytic module were also

identified (Fig. 1A). On this basis, we named this new protein

Streptococcus agalactiae pullulanase (SAP). The sap gene is present in

all sequenced GBS strains and the protein is highly conserved,

with an amino acid identity ranges between 98 and 100%. SAP

repeated CBMs bore ,20% amino acid sequence identity to

family 41 CBM found in a secreted Termotoga maritime pullulanase.

CBM41 binds tightly to a-glucan polysaccharide comprising

primarily a-(1,4) glycosidic linkages [10]. Of interest, we found

that CBMs also shared ,66% and ,54% identity to CBMs

described in GAS (Spy1972, PulA) and Streptococcus pneumoniae

(SPN) (SP0268, SpuA) pullulanases respectively (Fig. 1B). Of

interest, the second CBM also contains a putative fibronectin-like

domain (Fig. 1B, aminoacids in italics). The anchoring domain of

SAP to the peptidoglycan is formed by the consensus LPKTG

sequence, followed by a hydrophobic transmembrane segment and

a charged C-terminal tail. Analysis of the SAP amino acid

sequence revealed the presence of an YNWGY motif, common to

pullulanases (Fig. 1 C, red box). As shown in Fig. 1C, the catalytic

domain is composed by four regions (aa 717 to 723, aa 781 to 789,

aa 812 to 817, and aa 897 to 903) conserved among streptococcal

pullulanase enzymes (Fig. 1C, green boxes). The putative catalytic

triad Asp802-Glu831-Asp919 was identified inside each of the

catalytic domains (Fig. 1C). Moreover, we identified a tryptophan

residue and a tyrosine residue, in regions III and IV respectively,

as found in other pullulanases [20].

The recombinant form of SAP shows a specific
pullulanase enzymatic activity

The sap gene from the COH1 strain, without the signal

sequence and the cell-wall anchoring region, was cloned into

pET21b(+) expression vector. As shown in Fig. 2A, two main

bands of 130 and 98 kDa were observed on SDS-PAGE gel,

suggesting that two forms of the protein were being produced in E.

coli. This is in agreement with previous data reported in the

literature [21,22] and our data (Bombaci et al., unpublished

observations) indicating the same protein pattern for recombinant

PulA. On the basis of N-terminal sequencing analysis of the low

MW form of SAP, which revealed the MKVQPNDYVF motif, we

predicted a second putative GTG translational start codon within

the COH1 sap ORF at position +1036 and a possible Shine-

Dalgarno region (59-AGGAGA-39) 4 bp upstream of this point.

The resulting translation product obtained from this start site yield

a smaller protein lacking both CBMs. A mixture of the high and

low molecular weight forms of SAP (H+L) was purified by affinity

chromatography. Moreover, by anionic exchange chromatogra-

phy, we were also able to separate SAP (L) from SAP (H+L). Both

SAP recombinant preparations were used to demonstrate that a

pullulanase enzymatic activity was associated to the protein.

The capacity of recombinant SAP to catalyze the degradation of

a-glucan polysaccharides was tested by 3,5-dinitrosalicylic (DNS)

acid assay (see Experimental procedures). As shown in Fig. 3A,

recombinant SAP was active on pullulan, glycogen type IX from

bovine liver, amylopectin and starch, in which glucose residues are

linked by both a-1-4 and a-1-6 glycosidic linkages. On the

contrary, SAP was unable to catabolize amylose, which is a linear

glucose polymer carrying exclusively a-1-4 glycosidic linkages. For

the specific cleavage of a-1-6 glycosidic linkages, we hypothesize

that SAP is likely to be a Type I pullulanase [23].

Of interest, comparison of SAP(H+L) versus SAP(L) prepara-

tions, showed that they were both active on pullulan, starch and

amylopectin, while only SAP(H+L) was able to degrade glycogen.

This finding suggests that the CBM contributes to the specific

interaction with glycogen, in agreement with previous reports

[8,10].

In addition, we compared the enzymatic activity of SAP versus

GAS pullulanase (PulA) using different carbohydrates as sub-

strates. As shown in Fig. 3B, no statistically differences were

observed among SAP(H+L) and PulA for the capacity to degrade

pullulan, glycogen, amylopectin and starch. These data postulate

that, although the overall sequence conservation is around 60% of

identity, pullulanase enzymatic activity well correlates between

SAP and PulA.

SAP is a Type I pullulanase that generates maltotriose
residues

In order to confirm the classification of SAP as a type I

pullulanase we evaluated the modifications of the structure of

pullulan after incubation with SAP by NMR spectroscopy. Fig. 4A

shows the proton NMR spectra of pullulan incubated in the

presence or absence of SAP(H+L). All the signals have been

assigned by using 1H-1H 2D NMR scalar chemical shift

correlation spectroscopy, which gave results in agreement with

the assignments reported in the literature [24]. The NMR

chemical shift of selected signals, particularly looking at the

anomeric region (about from 5.8 to 4.5 ppm), has been used to

monitor the structural degradation of the polysaccharides. The 1H

NMR spectrum of pullulan after the addition of SAP(H+L)

(Fig. 4A) contains the C1 protons present in the starting material

and a new anomeric a-linked signal [H1a
(C Maltotriose] at 5.33 ppm,

GBS Pullulanase Activity
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Figure 1. Modular organization of the SAP protein from the COH1 strain. (A) In green the signal peptide sequence. In gray the two tandems
CBM41, in yellow the catalytic domain (glycoside hydrolase family 13) and in red the C-terminal LPKTG cell-wall anchoring motif. (B) Sequence
alignments of individual CBM41s from GBS COH1 (SAN_1346), 515 (SAL_1339), CJB111 (SAM_1238), A909 (SAK_1302), NEM (gbs_1288), H36B
(SAI_1308), 2603 V/R (SAG_1216) strains, GAS SF370 strain (Spy_1972) and SPN TIGR4 strain (SP_0268). The conserved residues present in the a-
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generated by enzymatic cleavage of the glycosidic bonds. The

reducing end b-linked signal [H1b
(C Maltotriose] is not detectable due

to the overlapping with the major HDO peak. Since the peak

integral ratio between (H1a
(C) Maltotriose+H1b

(C) Maltotriose) and

H1a
1-4 (A+B) Maltotriose is 1:2, we can conclude that the SAP cleaves

a-(1,6) glycosidic linkages between the units A and C generating

maltotriose units [25,26].

Glycogen molecular size distribution before and after the

addition of SAP(H+L) was instead determined by size exclusion

chromatography. As reported in Fig. 4B, the intensity of glycogen

RI signal decreased after 20 min from the addition of SAP(H+L).

From these data we can conclude that SAP is also active on

glycogen as confirmed by DNS acid assay.

Alpha-glucans modulates SAP expression on bacterial
surface

We observed that when GBS was grown in THB medium, a

rich medium normally used to culture GBS in laboratory, SAP was

not expressed on bacterial surface (data not shown). Since bacterial

pullulanases are known to be regulated by specific carbon sources

[27], we hypothesize that the amount of glucose in THB medium

(2 g/L) may down-regulate SAP expression. Therefore, expression

analysis was performed by using a Complex Medium (CM) to

which different a-glucans were added. We investigated the

mechanisms of regulation of SAP expression by RT-PCR,

Immuno-Electron Microscopy (IEM), confocal microscopy, FACS

and Western blotting (WB). As expected, SAP messenger RNA

transcript was undetectable when GBS was grown in CM

supplemented with glucose (Fig. 5A). On the other hand, a band

corresponding to SAP appeared in RNA extracts from bacteria

grown in CM plus maltose, pullulan or glycogen. As shown in

Fig, 5A, a single band recognized by anti-SAP antibodies was

revealed by WB analysis in the mutanolysin-sensitive peptidogly-

can protein fraction of bacteria grown in the presence of a-

glucans. Control experiments indicated that a cytosolic protein

(SAG0274), predicted to be an alpha-glycerophosphate oxidase,

was present in bacterial extracts but not in culture supernatants,

excluding the presence of contaminants from bacteria debris (data

not shown). In addition, FACS analysis (Table 1), IEM and

confocal imaging (Fig. 5B) also confirmed that SAP expression on

GBS surface is a-glucans dependent. To confirm the specificity of

the assays used, we constructed in COH1 strain a sap deletion

mutant. As expected, the mutant strain was negative for SAP

expression as confirmed by RT-PCR (Fig. 5A), WB analysis

(Fig. 5A) and FACS analysis (Table 1).

A SAP deficient mutant strain shows an impaired
capacity to grow in pullulan and glycogen containing
complex medium

To investigate whether SAP enzymatic activity is essential for

bacterial replication in the presence of a-glucans, we compared

COH1 wild type strain versus COH1Dsap strain for the ability to

grow in CM supplemented with different carbohydrates. As

expected no growth differences were observed among these strains

when glucose or maltose, that are not pullulanase substrates, were

added to the CM (Fig. 6A and B). On the other hand, the presence

of pullulan or glycogen in CM while did not affect the capacity of

the sap mutant strain to replicate, increased the growth rate of the

wild type strain (Fig. 6C and D).

In order to confirm that the capacity of GBS to hydrolyze a-

glucans is associated to an a increased expression of SAP, we

compared a total protein extract derived from COH1 wild type and

COH1Dsap strains grown in the presence of different carbohy-

drates, for the ability to degrade pullulan. As shown in the Fig. 7,

pullulanase activity was only observed in the protein extracts of

COH1 wild type grown in the presence of sugars inducing SAP

Figure 2. Expression of SAP recombinant protein. (A) SDS-PAGE of the mixture of the high and low molecular weight forms of SAP (left lane) as
obtained after affinity chromatography and SAP(L) as obtained after anionic exchange chromatography (right lane). (B) Schematic representation of
the recombinant form of SAP. Due to the presence of an alternative translation site the protein is expressed in two forms: SAP(H), the full-length form
of the enzyme; SAP(L), the truncated form without the CBMs.
doi:10.1371/journal.pone.0003787.g002

glucan binding site are boxed in red. In italics is indicated the fibronectin type III repeat. (C) Sequence alignment of the putative pullulanase catalytic
domains between GBS COH1 strain (SAN_1346), GAS SF370 strain (Spy_1972) and SPN TIGR4 strain (SP_0268). The four conserved regions designated
CDI, CDII, CDIII and CDIV form the catalytic domain and are boxed in green. Indicated with an asterisk are the amino acids forming the putative
catalytic triad Asp802-Glu831-Asp919. The YNWGY sequence motif is marked with a red box.
doi:10.1371/journal.pone.0003787.g001
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expression, such as pullulan and glycogen. These findings suggest

that GBS utilize a-glucans as a carbon energy source and that

pullulanase is indispensable to this activity.

SAP is recognized by human sera
Recent reports revealed that both sera from patients with GAS

and SPN infections contained antibodies reactive with pullulanases

[28,29]. In order to assess whether human sera recognized

recombinant SAP, we tested 4 sera from normal healthy

volunteers. By quantitative ELISA we found that all sera tested

showed antibody titers against SAP(H+L) and that IgG concen-

trations were in a range of 54.8–116.7 mg/ml, with a geometric

mean concentration of 76.7631.9 mg/ml. Of interest, antibody

titers against SAP(L) were lower compared to SAP(H+L) (Fig. 8A).

The specificity of the assay was confirmed by competitive ELISA

using the purified recombinant SAP protein as an inhibiting

antigen (Fig. 8B). The addition of an unrelated recombinant GBS

surface protein did not inhibit antibody binding to the SAP protein

in this assay (Fig. 8B). These findings other than indicating the

specificity of the antibody response towards SAP, suggest that the

CBMs might be important for the immunogenicity of the protein.

Anti-SAP antibodies block SAP and PulA enzymatic
activity

In order to test whether the immunoglobulin-mediated response

towards SAP impaired bacterial metabolic activity versus a-

glucans, we tested by DNS acid assay the capacity of mouse and

rabbit anti-SAP sera to prevent GBS pullulanase activity. We

performed dose-dependent experiments incubating SAP-express-

ing bacteria with different sera dilutions in a range between 0.1–

2%. As shown in Fig. 9, we observed that a SAP mouse antiserum

was able to block in a dose dependent fashion the ability of GBS

COH1 strain to degrade pullulan up to 80% of the initial activity

(Fig. 9A). As expected, the addition in the assay of two unrelated

sera did not inhibit GBS SAP activity (Fig. 9A). Similar results

were obtained performing the experiments using glycogen as a

substrate (data not shown). Depletion of specific anti-SAP

antibodies by absorbing the anti-SAP serum to a CNBR resin

coated with recombinant SAP, resulted in no inhibition of GBS

capacity to catabolize pullulan (Fig. 9A). As a control, the

absorbed anti-SAP serum lost the capacity to recognize the

recombinant form of SAP in immunoblotting assay (data not

shown). These data clearly postulate that anti-SAP antibodies

mediate in vivo prevention of GBS pullunase activity. The attempt

to reduce SAP enzymatic activity by adding to bacteria human

sera containing anti-SAP antibodies (up to a concentration of

10%) or anti-SAP antibodies purified from human sera was

unsuccessful (data not shown). We hypothesize that the quantity

and quality of anti-SAP antibodies derived from adult healthy

volunteers that have been in contact with GBS, is not sufficient for

our in vitro assay. Unfortunately, no sera from convalescent patients

or with GBS invasive disease are at the moment available in our

laboratory.

Since SAP CBM appears to be a very immunogenic domain

(Fig. 8A) and that it is highly homologous among streptococcal

pullulanases, we decided to test whether anti-SAP specific sera

were able to reduce the capacity of GAS to catabolize pullulan.

For these experiments we used GAS SF370 strain, which in the

presence of pullulan expresses PulA, as demonstrated by both

Western Blotting and FACS analysis (data not shown). As shown

in Fig. 9B, we observed that a SAP antiserum was able to reduce

the activity of GAS to catabolize pullulan, up to 50% of the initial

activity. These data confirm our hypothesis that the activity of

anti-pullulanase antibodies may be cross-species.

Discussion

The increasing need of new vaccine-based preventive strategies

replacing the antibiotic prophylaxis used for eradicating GBS

colonization of the genital tract of pregnant women, has recently

led to identification of antigens conferring a broad protection in

mice [30]. The discovery of novel immunogenic virulence factors

has also opened new perspectives to tackle GBS-associated

infections [31,32]. In this context, we considered of importance

the understanding of GBS genes involved in adaptive metabolism

of the bacterium. Indeed, the mechanisms underlying the capacity

of GBS to use complex carbon sources available at site of

colonization are largely undefined. Several lines of evidence are

now indicating that degradation of complex host-derived carbo-

Figure 3. Recombinant SAP enzymatic activity determined by
DNS acid assay (A) Determination of the activity of SAP
recombinant forms on different a-glucan substrates. The
mixtures contained 1% (w/v) of each substrate dissolved in PBS. After
incubation of recombinant SAP and a-glucans at 37uC for 1 h, DNS
buffer was added and the release of reducing groups was determined
by reading the absorption at 575 nm. The same sample without the
enzyme was used to correct for non-enzymatic release of reducing
sugars. (B) Comparison between recombinant SAP(H+L) and recombi-
nant PulA for the capacity to degrade a-glucans. Experimental protocol
as in (A). The data are the mean of 3 independent experiments 6 SD.
The asterisk indicates a significant difference between values (p,0,01).
doi:10.1371/journal.pone.0003787.g003
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Figure 4. Analysis of SAP(H+L) enzymatic activity on pullulan and glycogen. (A) NMR spectra indicate the generation of maltotriose units
after the addition of SAP(H+L) to the reaction mixture containing pullulan. Pullulan NMR spectra were recorded on the native polysaccharide (2SAP)
and after the addition of the recombinant enzyme (+SAP). NMR experiments were recorded at 25uC on Bruker Avance 600 MHz spectrometer and
using 5-mm probe (Bruker). For details see the Experimental Procedures section. (B) SEC-HPLC analysis indicates that SAP(H+L) is active on glycogen.
Two chromatograms were recorded at 214nm, one on the native glycogen polysaccharide (black line) and the other 1 h later the addition of
SAP(H+L) (blue line). A gel filtration analytical column with a fractionation range of Mw PEG/PEO 26103–36105 Da was used. For details see the
Experimental Procedures section.
doi:10.1371/journal.pone.0003787.g004
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hydrates is crucial to bacterial virulence. In particular, analysis of

the transcriptome of GAS in a mouse soft tissue infection model

developed by J. Musser’s group [15], identified a series of genes

highly expressed during adaptive metabolic responses triggered by

nutrient signals and hypoxic/acidic conditions in the host. Of

interest, among them were identified genes related to amino acid

and maltodextrin utilization such as PulA. Indeed, GAS

metabolism of complex host-derived carbohydrates may be

particularly important during soft tissue infections because of

abundant host glycoproteins and host cell contents released during

cell lysis. GAS allows transcription of carbohydrate utilization

genes and virulence factors also in other low-glucose environmen-

tal conditions such as those found in human oropharynx and saliva

[15]. In agreement with our findings, it has been recently

demonstrated that GAS pullulanase is up regulated in bacteria

grown in human saliva, where glucose levels are low, compared to

the growth in nutrient rich medium [7]. On this basis, we

hypothesize that similar expression patterns may be induced by

GBS during colonization of lower gastro-intestinal and female

genital tracts, known to be poor in glucose but rich in a-glucans

[2,4]. Our data indicate that SAP-expressing GBS strains actively

degrade glycogen and that the recombinant form of SAP lacking

both CBMs loses activity versus this substrate. Based on these

evidence, we propose that SAP may have a role in vivo during the

establishment of vaginal colonization and confirms the specificity

of CBMs for glycogen [10]. Moreover, in silico analysis of GBS

available genomes revealed that SAP is the only surface associated

protein containing glycosidic domains (Santi et al., unpublished

results) and since SAP appears to be the only enzyme expressed by

GBS capable to catabolize a-glucans, we suggest that this enzyme

may be vital for GBS permanence in environmental niches poor in

glucose. We are currently testing this hypothesis, and preliminary

data have shown that deletion of the sap gene reduces the capacity

of GBS to colonize the vagina in a mouse model of infection

(Pezzicoli et al., unpublished results).

The importance of a-glucans metabolizing enzymes in strepto-

coccal adaptation to the host is further highlighted by recent

reports revealing they are immunogenic. Indeed, 81% of

convalescent-phase sera from patients with invasive GAS infec-

tions had antibodies reactive with PulA [28] and sera taken from

patient recovering from pneumococcal infections had high titers

against SpuA [29]. In agreement to this, we found that also SAP is

immunogenic in human sera, supporting the hypothesis that this

enzyme is expressed in vivo during GBS infections. However, to our

knowledge the functionality of streptococcal pullulanase-induced

antibody-mediated immune response has not been yet addressed.

The fact that incubation of bacteria with an anti-SAP serum

reduces GBS pullulanase activity, led us to hypothesize that in vivo

antibody-mediated immune response towards SAP might affect

GBS adaptive metabolism resulting in a decreased capacity to

survive in the host.

Emerging theories on human-microbe mutualism suggest that

the mechanisms that underlie microbial community structure and

host–symbiont relationships should be considered for planning

prevention strategies for human health. Indeed, as recently

proposed by David A. Relman [33], it should be investigated

the role of microbial communities, and not just individual species,

Figure 5. In vivo SAP protein expression is modulated by the presence of a-glucans. (A) RT-PCR and WB analysis of SAP expression in
COH1 wt strain and COH1Dsap strain grown in the presence of different sugars. Peptidoglycan-associated protein fraction was separated by 10% (w/
v) SDS-PAGE. Blots were overlaid with a mouse anti-SAP polyclonal antibody and stained with HRP-conjugated antibody. (B) Immunogold electron
microscopy and confocal imaging of SAP expression in COH1 wild type strain and COH1Dsap strain grown as in (A). For IEM, fixed bacteria were
incubated with an anti-SAP serum and then labeled with secondary antibody conjugated to 10-nm gold particles. Scale bars 200 nm. In confocal
imaging experiments, bacteria were stained with mouse polyclonal anti-capsular type III antibodies (red) and the SAP protein with rabbit polyclonal
anti-SAP antibodies (green). Magnification, 6100.
doi:10.1371/journal.pone.0003787.g005

Table 1. Exposure of SAP on bacterial surface in the presence
of different carbohydrates.

Glucose Maltose Pullulan Glycogen

COH1 7* 56 232 255

COH1Dsap 0 0 0 0

COH1-13 62 308 453 452

*Numbers indicate the delta mean of fluorescence relative to bacteria incubated
with a SAP immune serum versus bacteria incubated with a pre-immune
serum.

doi:10.1371/journal.pone.0003787.t001
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Figure 6. The capacity of GBS to grown in pullulan and glycogen depends on SAP expression. The graphs represent the growth curves
relative to GBS COH1 wild type strain and COH1Dsap mutant strain grown in complex medium alone or with the addition of glucose (A), maltose (B),
pullulan (C) and glycogen (D). White circles indicate the COH1 wild type strain incubated in the presence of sugars, while white squares the same
strain incubated in complex medium alone. Black circles represent the COH1Dsap strain grown in complex medium supplemented with sugars, while
black squares are relative to the same strain grown in complex medium alone. A typical experiment, out of 4 performed giving identical results, is
shown. (E–F) Comparison of CFU/ml recovered after growing GBS COH1 wild type and COH1Dsap for 3 h in the presence of pullulan (E) or glycogen
(F). The data are the mean of 3 independent experiments 6 SD. The asterisk indicates a significant difference between values (p,0,01).
doi:10.1371/journal.pone.0003787.g006
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as pathogens. In this perspective, reduction of the fitness of

pathogens by affecting their metabolic activity towards essential

nutrients may be more effective than a general bactericidal

activity, as the one offered by an antibiotic treatment. Vaccines

able to specifically prevent infection from multiple microorganisms

are highly desirable. In this context, our finding that anti-SAP sera

other than preventing GBS catabolism of pullulan, significantly

reduce pullulanase activity in a GAS strain expressing PulA is of

extreme importance. In particular, we hypothesize that the

immunization of individuals with SAP will raise antibodies, which

by impairing the metabolic activity of pathogenic streptococci

might shift the equilibrium that regulates the colonized human

niches in favor of the commensal population.

In conclusion, the evidence reported in this paper may draw up the

basis for preventing streptococcal infections by using immunogenic

metabolic enzymes as target molecules for vaccine development. The

fact that, at least for pathogenic streptococci, such enzymes are well

conserved opens new perspectives in the development of strategies

preventing infections from multiple species.

Materials and Methods

Sequence analysis
The alignment of SAP protein encoded by sap gene from 2603 V/

R (TIGR Accession SAG_1216), 515 Ia (SAL_1339), NEM316

(gbs1288), H36B (SAI_1308), CJB111 (SAM_1238), A909

(SAK_1302) and COH1 (SAN_1346) strain as well as SpuA

(SP_0268) and PulA (Spy_1972) was performed using ClustalW [34].

Bacterial strains and growth conditions
S. agalactiae strains COH1 serotype III was used in this study.

Escherichia coli DH5a and DH10BT1 were used for cloning

purposes and E. coli BL21 (lDE3) for expression of SAP fusion

protein. S. agalactiae was cultivated at 37uC in Todd-Hewitt broth

(THB) up to desired OD600. E. coli was grown in Luria-Bertani

broth (LB); E. coli clones carrying the plasmids pJRS233 or

pET21(b)+ and derivates were grown in the presence erythromy-

cin (400 mg/mL) or ampicillin (100 mg/mL), respectively. The

complex medium (CM, 10 g/l proteose peptone, 5 g/l trypticase

peptone, 5 g/l yeast extract, 2.5 g/l KCl, 1mM Urea, 1mM

Arginine, pH 7.0) was used for GBS growth with defined carbon

sources. The sugar concentrations were 1% final. To evaluate

growth in CM, GBS was initially grown to log phase (OD600 0.3)

in THB. The cells were harvested by centrifugation, washed twice

in an equivalent volume of phosphate-buffered saline (PBS) and

diluted 1 to 50 in CM. Growth was monitored spectrophotomet-

rically at a wavelength of 600 nm.

SAP recombinant protein expression and purification
In order to express the recombinant form of SAP, the open

reading frame of the sap gene from S. agalactiae COH1 serotype III

was used as a template. The construct was amplified by PCR using

specific primers GBS5F and GBS5R introducing NdeI and XhoI

restriction enzyme sites (Table 2).

The PCR products were cloned into the pET21(b)+ vector and

the plasmid transformed in E. coli BL21 (DE3) cells. BL21 (DE3)

cells were grown in LB-Amp (100 mg/ml ampicillin) and induced

with IPTG at a final concentration of 1 mM for 3 hours. The

resulting biomass was suspended in 0.3 M NaCl, 50 mM Na-PO4

buffer, pH 8.0 and cells were lysed by enzymatic digestion. The

sample was then loaded onto a His-Trap Ni-Activated Chelating

Sepharose FF column (Amersham Biosciences, Milan, Italy) at a

flow rate of 5 ml/min. Bound proteins were then eluted from the

column by running a gradient from 0 to 50% of 500 mM

Imidazole, 0.3 M NaCl, 50 mM Na phosphate buffer, pH 8.0 in

12 CV. The IMAC eluted material was collected in 2.5-ml

fractions and those ones containing the SAP-His protein pooled.

An anionic exchange chromatography was used to separate the

two forms of SAP. The pooled fractions from Ni-IMAC were

dialyzed against 30mM TRIS, pH 8.0 and then loaded on to a

HiTrap Q HP 5 ml column (GE) to further purify the two forms of

recombinant SAP. The purification was achieved by running a

gradient from 0 to 50% 1M NaCl in 30mM TRIS, pH 8.0 in 16

CV at 5 ml/min. The collected fractions were analyzed by SDS-

PAGE (CriterionTM pre-cast gel, 200V, 55 min) and pooled

according to apparent MW. The final preparation of the protein

was obtained in PBS, pH 7.4 after dialysis.

Construction of COH1 sap deletion mutant
The sap gene was deleted in GBS strain COH1, according to the

procedure previously described [35]. The in-frame deletion

fragment was obtained by Splicing Overlap Extension (SOE)

PCR using the primers P1, P2, P3 and P4 (Table 2). The XhoI

restriction enzyme cleavage sites were incorporated at the 59-end

of the primer to clone the fragment into the XhoI-digested

pJRS233 plasmid. After cloning the in frame deletion fragment in

pJRS233, the plasmid pJRS233Dsap was obtained.

The plasmid pJRS233Dsap was then transformed into the

COH1 strain by electroporation and transformants were selected

after growth at 30uC on agar plates containing 1 mg/ml

erythromycin. Transformants were then grown at 37uC with

erythromycin selection as previously described [36]. Integrant

strains were serially passaged for 5 days in liquid medium at 30uC
without erythromycin selection to facilitate the excision of plasmid

pJRS233Dsap, resulting in the sap deletion on the chromosome.

Dilutions of the serially passaged cultures were plated onto agar

plates, and single colonies were tested for erythromycin sensitivity

to confirm the excision of pJRS233Dsap. The resulting strain was

named COH1Dsap.

Bacterial extracts
GBS protein extracts were prepared by growing bacteria up to

OD600 0.4 in CM plus sugars, washed in PBS and incubated for

Figure 7. Detection of pullulanase activity in GBS total extracts.
Bacteria grown in a complex medium supplemented with the indicated
sugars were used to prepare total extracts. Bacterial extracts were then
incubated with pullulan and pullulanase enzymatic activity measured
by DNS acid assay. The asterisks indicate a significant difference
between the activity of the wild type strain versus the mutant strain
derived extracts (p,0,01). The data are the mean of 3 independent
experiments 6 SD.
doi:10.1371/journal.pone.0003787.g007
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1 h at 37uC in 500 ml of Tris-HCl 50 mM (pH6.8) containing

protease inhibitors and 400 U/ml of mutanolysin (SIGMA, MO,

USA). The bacterial suspension was then pelleted and the

supernatants containing peptidoglycan associated proteins used

for western blotting analysis of SAP. In order to prepare GBS

extracts relative to the secreted protein fraction, supernatant of

bacteria cultures grown to OD600 0.4 were collected. Proteins in

1 ml of supernatant were precipitated with 10% of trichloroace-

ticacid (TCA) for 1 hr at 4uC. Protein were then pelletted, washed

with cold acetone and resuspended in Tris-HCl pH 6,8.

RT-PCR
COH1 was grown in CM medium plus sugars up to OD600 0.4.

Total GBS RNA was isolated using the Rneasy mini kit (Qiagen)

according to manufacturer’s instructions, except that bacteria were

lysed with 100 ml of lysozyme (30 mg/ml) in Tris-EDTA buffer

and 2,000 U of mutanolysin, and the mixture was incubated for

15 min at 37uC. Quantification of the transcripts was completed

by reverse transcription and semi-quantitative RT-PCR using

ImPromII RT (Promega) following manufacturer’s instructions.

Briefly 2 mg of sample and 0.5 mg of random hexamers were

added to a final volume of 5 ml. Samples were incubated in a

thermocycler (Biometra) at 70uC for 5 min followed by a quick

chill at 4uC. The mixture was used in a 20-ml (total volume) cDNA

synthesis reaction mixture comprising 4 ml of Improm-II 56
reaction buffer (Promega), 2.4 ml MgCl2 at 25 mM, 2 ml of dNTP

mix (each dNTP at 2.5 mM), 0.25 ml of Rnasin RNase inhibitor

(Promega) and 1 ml of Improm-II reverse transcriptase. The

reaction was performed at 42uC for 60 min. In the negative

controls, the reverse transcriptase was substituted with water. 2 ml

of cDNA were then added to the PCR reaction consisting of 16
reaction buffer, 200 mM dNTP’s, 0.2 mM primer pair, 1 U

PlatinumTaq dna polymerase (Invitrogen). GBS Gyrase A (GyrA)

was used as an internal housekeeping control. PCR reactions

consisted of a 7-min denaturation step 94uC, followed by a

variable number of cycles. PCR products were electrophoresed

through 2% agarose gels and images were acquired by laser

densitometry (Gel-Doc Imaging System).

Figure 8. Human sera specifically recognize SAP. (A) Immuno-reactivity of human sera towards recombinant SAP(H+L) and SAP(L). The data
were obtained by ELISA and represent the mean6SD of 4 human sera. (B) Results of competitive-inhibition ELISA demonstrating antigenic specificity
of human antibodies reacting with plates coated with recombinant SAP. Percent inhibition of binding of human serum by each inhibiting antigen
was determined by comparison of absorbance at 492 nm in the presence and absence of inhibitor. White circle labels indicate the mean6SD of the %
inhibition by SAP of 4 human sera. Black square labels indicate % inhibition by an unrelated GBS protein (AP-1).
doi:10.1371/journal.pone.0003787.g008
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NMR analysis
Samples of pullulan (Sigma) and glycogen (Sigma) were

prepared by dissolving polysaccaride powder (10 mg) in 0.7 mL

of deuterated PBS buffer at pH 7.2 (D2O, 99.9% atom D –

Aldrich was used) to a uniform concentration. Samples were

therefore transferred to 5-mm NMR tubes (Wilmad Glass. Co.).

70 mL of SAP were therefore added to the pullulan and glycogen

samples in the NMR tubes. For every sample, two NMR spectra

were recorded, the first on the native polysaccharide and the

second 1 hour later (incubation at 25uC) after the addition of

enzyme. Samples of maltose (Sigma) and maltotriose were also

prepared by dissolving 10 mg of powder in 0.7 mL of deuterated

PBS buffer at pH 7.2. 1H NMR experiments were recorded at

25uC on Bruker Avance 600 MHz spectrometer and using 5-mm

probe (Bruker). For data acquisition and processing XWINNMR

software package (Bruker) was used. 1-D proton NMR spectra

were recorded using a standard one-pulse experiment. 64 scans

were collected and averaged, giving a total acquisition time of ca.

10 min. The transmitter was set at the HDO frequency, collecting

32 k data points over a spectral window of 6,000 Hz. 1H NMR

spectra were obtained in quantitative matter using a total recycle

time to ensure a full recovery of each signal (56 Longitudinal

Relaxation Time T1). Spectra were Fourier Transformed to 32 k

data points after applying a 0.2 Hz line broadening function and

referenced relative to the HDO resonance at 4.79 ppm.

Size Exclusion Chromatography (SEC)-HPLC analysis
Samples of glycogen were prepared by dissolving polysaccaride

powder (1 mg) in 0.1 mL of PBS at pH 7.2 to a uniform

concentration. Samples were therefore transferred to 1 mL vials

(Waters). 10 mL of SAP were therefore added to the glycogen

sample. Two chromatograms were recorded, the first on the native

polysaccharide and the second 1 hour later (incubation at 25uC)

after the addition of enzyme.

A TSK G4000PW (TosoHaas) gel filtration analytical column

(7.5 mm630.0 cm) with a fractionation range of Mw PEG/PEO

2,000–36105 Da was used. Samples were loaded onto the gel

filtration column and eluted isocratically in 100 mM sodium

phosphate + 100 mM NaCl buffer pH 7.2 at a flow rate of 0.5 ml

min21 for 50 min. The elution was monitored with a Ultimate

3000 Photodiode Array detector (Dionex) coupled with the

Ultimate 3000 HPLC system (Dionex). For data acquisition and

processing Chromeleon software package (Dionex) was used.

Fluorescence-activated cell sorter analysis
In order to quantify the exposure of SAP on the bacterial

surface, GBS was grown up to OD600 0.4 in CM with 1% sugar,

fixed with 1% PFA for 20 min at RT and incubated with mouse

anti-SAP serum or mouse anti-PBS serum (negative control) in

0.1% BSA plus 20% of Normal Calf Serum (NCS) for 1 h at 4uC.

Bacteria were then washed in PBS containing 0.1% BSA and

incubated with the phicoerytrin (PE) conjugated secondary

antibodies (Jackson Immuno Research Inc., PA, USA) for

45 min at 4uC. After washing bacteria were resuspended in

Figure 9. Anti-SAP antibodies block SAP and PulA enzymatic
activity. (A) COH1 strain was grown in pullulan and assayed for the
capacity to degrade pullulan in the presence of different anti-sera. The
effect of specific anti-sera was tested in a dose range between 0.5 and
2%. White circles indicate the effect of a mouse anti-PBS serum; black
circles indicate the effect of an antiserum from an unrelated surface-
associated protein; black squares indicate the effect of a mouse anti-
SAP serum; white triangles indicate the effect of a mouse anti-SAP
serum absorbed to a CNBR resin coated with SAP. (B) as in (A) except for
testing the inhibitory activity of an anti-SAP serum on GAS SF370 strain.
doi:10.1371/journal.pone.0003787.g009

Table 2. List of primers used in the study.

Primer Sequence (59 to 39)

Recombinant protein

GBS5F CTAGCTAGCGAAGAAGTAAGTGTTTCTC

GBS5R CCCGCTCGAGATTAGCTTCATTTGTCAGA

COH1Dsap

P1 CCCGCTCGAGTCATCTACACACGCATTTTTCC

P2 TCCAGTTTTTGGCAAGGGAGTATTTTGCAATGTAGATGG

P3 TTGCAAAATACTCCCTTGCCAAAAACTGGAGATAAGTCA

P4 CCCGCTCGAGTTCCTAATGCTGTCTTCCCAAC

F corresponds to forward primer and R to reverse primer. Restriction sites are
underlined.
doi:10.1371/journal.pone.0003787.t002
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200 ml of PBS and analyzed by a FACSscan flow cytometer

(Becton Dickinson) by using FlowJo software program.

Immunogold labeling and electron microscopy
GBS strains COH1 were grown at 37uC up to OD600 0.3

(exponential phase) in CM plus 1% sugars. Bacteria were then

centrifuged for 10 min at 3000 rpm (RT), washed and resus-

pended in 1 ml of PBS. Formvar-carbon-coated nickel grids were

floated on drops of GBS suspensions for 5 min. The grids were

then fixed in 2% PFA for 5 min, and placed in blocking solution

(PBS containing 1% normal rabbit serum and 1% BSA) for

30 min. The grids were then floated on drops of primary

antiserum against the SAP protein diluted 1:20 in blocking

solution for 30 min at RT, washed with six drops of blocking

solution, and floated on secondary antibody conjugated to 10-nm

gold particles diluted 1:20 in 1% BSA for 30 min. The grids were

examined using a TEM GEOL 1200EX II transmission electron

microscope.

Confocal immunofluorescence microscopy
In order to visualize SAP on bacterial surface, COH1 was

grown in CM plus sugars up to OD600 0.4 and washed in PBS.

Bacterial pellet were fixed in 2% PFA for 20 min at RT and

spotted on POLYSINETM slides (Menzel-Glaser). The slides were

then blocked with 3% BSA for 1 h and incubated with a mix of

rabbit anti-serotype III capsule and mouse anti-SAP antibodies

diluted in 1% BSA for 1 h at RT. Bacteria were then stained with

goat anti-mouse and anti-rabbit Alexa Fluor conjugated antibodies

(excitation at 488 nm and 568 nm, respectively) (Molecular

Probes) for 20 min at RT. Slow Fade reagent kit (Molecular

Probes) was then used to mount cover slips. The slides were

analysed with a Bio-Rad confocal scanning microscope.

3,5-dinitrosalicylic acid (DNS) assay
Pullulanase activity was determined by measuring the enzymat-

ic release of reducing groups from a-glucans by the DNS

colorimetric method [37]. The mixtures contained 1% (w/v)

pullulan, glycogen type IX, amylose, amylopectin or soluble starch

(Sigma) dissolved in PBS (pH 7.0), and appropriately diluted

enzyme in a total volume of 500 mL. After incubation at 37uC for

1 h, the reaction was stopped by addition of 1 mL of cold DNS

buffer, followed by boiling for 15 min. 330 mL of a 40% potassium

sodium tartrate (Rochelle salt) solution was added to each tubes to

stabilize the color. The release of reducing groups from a-glucans

was determined by reading the absorption at 575 nm of the

sample. The same sample without the enzyme was used to correct

for non-enzymatic release of reducing sugars.

Serum-mediated inhibition of GBS and GAS pullulanase
activity

GBS and GAS were grown at 37uC up to mid-late exponential

phase (OD600 0.6) in THB and THY, respectively. Bacteria were

then re-inoculated in CM containing 1% pullulan and grown to

log phase (OD600 0.4) to allow the expression of pullulanases on

bacterial surface. The cells were then harvested by centrifugation,

washed twice with PBS and resuspended in PBS. Bacteria

(,56108 CFU) were pre-incubated with sera dilutions at 37uC
for 15 min, then pullulan was added (1% final) and the incubation

prolonged for other 2 hours. Samples were centrifuged and

supernatants were used for the determination of reducing sugars

by DNS acid assay.
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