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Abstract

b-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins.
The formation of b-turns plays an important role in protein folding, protein stability and molecular recognition processes. In
this work we present the neural network method NetTurnP, for prediction of two-class b-turns and prediction of the individual
b-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a
commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported
performance on a two-class prediction of b-turn and not-b-turn. Furthermore NetTurnP shows improved performance on
some of the specific b-turn types. In the present work, neural network methods have been trained to predict b-turn or not and
individual b-turn types from the primary amino acid sequence. The individual b-turn types I, I’, II, II’, VIII, VIa1, VIa2, VIba and IV
have been predicted based on classifications by PROMOTIF, and the two-class prediction of b-turn or not is a superset
comprised of all b-turn types. The performance is evaluated using a golden set of non-homologous sequences known as
BT426. Our two-class prediction method achieves a performance of: MCC = 0.50, Qtotal = 82.1%, sensitivity = 75.6%, PPV
= 68.8% and AUC = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews
correlation coefficients in the range of 0.17 – 0.47. For the type specific b-turn predictions, only type I and II can be predicted
with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively.

Conclusion: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.
dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.
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Introduction

The secondary structure of a protein can be classified as local

structural elements of a-helices, b-strands and coil regions. The

latter is often thought of as unstructured regions, but do contain

ordered local structures such as a-turns, c-turns, d-turns, p-turns,

b-turns, bulges and random coil structures [1,2]. Turns are defined

by a distance that is less than 7 Å between Ca-atoms i, i+2 for c-

turns, i, i+3 for b-turns, i, i+4 for a-turns and i, i+5 for p-turns.

Within each turn class, a further classification can be made based

on the backbone dihedral angles phi and psi.

b-turn types are classified according to the dihedral angles (W
and y) between amino acid residues i+1 and i+2 [3,4]. The

standard nomenclature for the b-turn types are: I, I’, II, II’, VIII,

VIa1, VIa2, VIb and IV [5]. The dihedral angles for the 9 turn

types are shown in Table S1.

A b-turn thus involves four amino acid residues, where the two

central residues, i+1 and i+2, cannot be helical. Occasionally b-

turns are stabilized with a hydrogen bond between the N-H of

residue i and the C = O of residue i+3. In cases where no hydrogen

bond is found, the b-turn is referred to as an open b-turn [6].

b-turns are the most abundant type of turn structure found in

proteins. They play an important role in the formation of compact

shapes in proteins, and are often referred to as orienting structures

due to the fact that they have the ability to reverse the direction of

a protein chain. Approximately 25% of amino acids in protein

structures are located in a b-turn and about 58% of all b-turns are

composed of different overlapping b-turn types [5].

Prediction of b-turns started in the 1970s where the first b-turn

prediction methods relied on statistical information derived from

three-dimensional protein structures [1,5,7,8,9,10]. The method

implemented by Zhang and Chou [11] considered the pairing of

the first and the fourth residue, and of the second and the third

residue in a b-turn, and the predictive performance reached a

Matthews correlation coefficient of 0.17. The work by Fuchs and

Alix [6] used statistical methods combined with information

obtained from regular secondary structure prediction. Combined

with propensity scores and use of evolutionary information, they

achieved a Matthews correlation coefficient of 0.41.

The most accurate b-turn predictors today utilize machine-

learning methods, although the first approaches did not reach the

performance obtained by the best statistical methods. The first

method that predicted b-turns by use of neural networks was

implemented by McGregor et al. [12] achieving a Matthews

correlation coefficient of 0.20. Ten years later Shepherd et al. [13]

added secondary structure predictions and the use of a two-layered
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network architecture (BTPRED method) and obtained a Mat-

thews correlation coefficient of 0.35. Using a k-nearest-neighbor

approach, a method by Kim [14] reached a Matthews correlation

coefficient of 0.40. Kaur et al. [15,16] further enhanced the

performance of b-turn prediction by use of secondary structure

predictions and evolutionary information in form of position

specific scoring matrices as input to the neural networks

(BetaTPred2 method) [17]. Using a uniform dataset of 426 non-

homologues proteins (BT426) they obtained a Matthews correla-

tion coefficient of 0.43. Recently support vector machines have

become more widely used in the field of b-turn prediction, which is

seen by the work of Zhang et al. [18] and Liu et al. (E-SSpred

method) [19]. Using support vector machines with multiple

alignments and secondary structure predictions from PSIPRED

[20], Zhang et al. obtained a Matthews correlation coefficient of

0.45, which was slightly higher than the E-SSpred method. E-

SSpred reached a Matthews correlation coefficient of 0.44, but

they were the first to break the 80% accuracy (Qtotal) barrier and

achieved a Qtotal of 80.9%, compared to 77.3% by Zhang et al.

Zheng and Kurgan [21] applied support vector machines using

a feature space consisting of position specific scoring matrices and

secondary structure predictions from four different methods. After

feature reduction, using 90 features, they obtained a Matthews

correlation coefficient of 0.47. A similar performance was reached

by Hu and Li [22] with a method based on support vector

machines using features from position conservation scoring

functions. Their method obtained a Matthews correlation

coefficient of 0.47 using 7-fold cross-validation on the BT426

dataset.

b-turns are often accessible and generally hydrophilic, two

characteristics of antigenic regions [1]. For this reason they are

suitable candidates for being involved in molecular recognition

processes. Pellequer et. al. [23] found that 50% of the linear B-cell

epitopes in a small dataset of 11 proteins were located in turn

regions. Thus prediction of b-turns could improve the prediction

of epitopes. Krchnak et al. [24] found that the parts of a protein,

which can induce protein-reactive anti-peptide anti-bodies, mostly

reside in regions that have a high tendency to form b-turns. A

more recent article by the same authors showed that peptide

sequences including a b-turn conformation tended to induce

antibodies that were able to cross-react with the parent protein

[25]. b-turn and coil conformations has also previously been used

to predict linear epitopes [26]. Furthermore, b-turn types I and II,

are important for binding between phospho-peptides and SH2-

domains [27].

NetTurnP is a new method trained to predict b-turns and the

corresponding b-turn type using two layers of neural networks. An

improved performance is shown compared to other prediction

methods. It has been implemented as a webserver, which is freely

accessible at http://www.cbs.dtu.dk/services/NetTurnP/.

Results

Neural network setup
A schematic overview of the final NetTurnP method is shown in

Figure 1. The method consists of two artificial neural network

layers. Several second layer network setups were tested in order to

find the architecture with the highest cross-validated MCC value

based on training set sequences. These different setups can be seen

schematically in Table S1. The setups gave similar performances

as seen in Figure 2, however, we chose the best setup (M) for the

final NetTurnP method.

First layer networks
Classification artificial neural networks, b-turn-G, were trained

to predict whether or not an amino acid was located in a b-turn.

Figure 1. Graphical overview of the method used in training of the first and second layer networks. ‘PSSM’ is a Position-Specific Scoring
Matrix. ‘Sec. str + rsa’ is secondary structure and surface accessibility predictions obtained from NetSurfP [28]. Networks with the abbreviation ‘pos’
refer to networks that predict specific positions in a b-turn. First layer networks are all ensembles of artificial neural networks where output was used
for training in the second layer networks.
doi:10.1371/journal.pone.0015079.g001
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Input to the networks was sequence profiles in form of PSSM’s,

predicted secondary structure and surface accessibility. Using 10-

fold cross validation spanning a series of different network

architectures, an ensemble was constructed of the best 100

network architectures, determined by cross validation leave-out

tests (see methods). A cross-validated test performance of

Qtotal = 77.8%, PPV = 51.3%, Sens = 73.1%, MCC = 0.47 and

an AUC of 0.846 was obtained.

Furthermore, position specific networks, b-turn-P as described

in materials and methods, were also trained in order to increase

the predictive performance of the second level networks. Test

performances for these networks can be seen in Table S2.

Second layer networks
The output from the first layer networks was used as an input to

the second layer networks. The final method uses predictions from

the b-turn-P and b-turn-G networks, including secondary

structure and relative surface accessibility predictions from

NetSurfP [28]. An ensemble of 10 network architectures was

selected corresponding to the top ranking network architecture

within each of the subsets, based on the leave-out performance.

Further increasing the number of architectures in the ensemble did

not increase the performance (Figure S1). A cross-validated test per-

formance of Qtotal = 78.8%, PPV = 53.0%, sensitivity = 71.5%

and an MCC of 0.48 with an AUC of 0.849 was obtained. Results

for both the first and second layer network test performances are

shown in Table S3. All performances increased from the first to the

second layer networks, except for the sensitivity, which decreased

1.6 percentage points.

The neural network ensemble was also evaluated against the BT426

dataset. The performance values achieved were: Qtotal = 78.2%,

PPV = 54.4%, sensitivity = 75.6% and a MCC of 0.50 with an

AUC of 0.864. The ROC curve for the evaluation of the NetTurnP

is shown in Figure 3. A 7-fold cross validation performed on the

BT426 dataset showed that the result obtained is very comparable

to the general NetTurnP method as can be seen in Table 1.

The Qtotal measure can be optimized, but at the expense of a

lower MCC and sensitivity. We analyzed this relationship by

varying the cut-off for a positive prediction as seen in Figure 4. A

cut-off of 0.61 gave the highest Qtotal of 82.5% and MCC of 0.46

on the test set, whereas using our default cut-off (0.50) gave a Qtotal

of 78.8 and an MCC of 0.48.

Using this cut-off of 0.61 for the evaluation dataset resulted in a

Qtotal of 82.1% and an MCC of 0.48 as shown in Table 1.

Predicted and assigned b-turns are illustrated on the PDB

structure 2WNS:A in Figure 5. It is a transferase with 197 amino

acids where 31 amino acids were assigned by PROMOTIF as

being located in a b-turn. Prediction of b-turns was done using the

NetTurnP and NetTurnP-tweak methods to show the effect of a

tweaked Qtotal performance. The performance using NetTurnP on

2WNS:A gave Qtotal = 87.3%, PPV = 55.8%, sensitivity = 93.6%

with a MCC of 0.66 and an AUC of 0.955. Using NetTurnP-

tweak the protein chain was predicted to a precision of

Qtotal = 89.3%, PPV = 100%, sensitivity = 32.3% with a MCC

of 0.54. The AUC value was unchanged.

b-turn-S networks
Classification networks were trained to predict whether an

amino acid was located in one of the nine types of b-turn, as earlier

defined. Networks were trained using the same method as

described for b-turn-G i.e. an ensemble of 100 networks

architectures for the first layer and 10 architectures for the second

Figure 2. Test MCC performance on the Cull-2220 dataset, for different setups of the second level network. The performance is the
average from an ensemble of 10 network architectures for each setup. Abbreviations for the setups are as follows: b-turn-P = position specific first
layer predictions, b-turn-G = general b-turn/not-b-turn first layer predictions, sec-rsa = secondary structure and surface accessibility predictions from
NetSurfP [28], PSSM = Position Specific Scoring Matrices. The setups are composed as follows: A = PSSM + sec-rsa, B = PSSM + b-turn-G + sec-rsa, C =
PSSM + b-turn-G, D = PSSM + b-turn-P, E = b-turn-P, F = b-turn-G + sec-rsa, G = b-turn-G, H = PSSM + b-turn-P + sec-rsa, I = b-turn-P + sec-rsa, J =
PSSM + b-turn-P + b-turn-G + sec-rsa, K = PSSM + b-turn-P + b-turn-G, L = b-turn-P + b-turn-G, M = b-turn-P + b-turn-G + sec-rsa.
doi:10.1371/journal.pone.0015079.g002
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layer networks. Evaluation performances for the second layer b-

turn-S networks are summarized in Table 2, along with a

comparison against four other methods.

Evaluation of NetTurnP method against PLP datasets
Sequences for each of the three datasets PLP399, PLP364 and

PLP273 were submitted to the NetTurnP, NetTurnP-tweak and

the BetaTPred2 webservers. Evaluation performances are sum-

marized in Table 3.

Evaluating NetTurnP and NetTurnP-tweak showed that both

methods are very stable over all three datasets, with only 0.22%

difference in Qtotal for NetTurnP, and 0.15% for NetTurnP-tweak

within the datasets. The same trend of stable prediction is seen for

all other performance measures as well. NetTurnP and NetTurnP-

tweak have a small decrease of 0.03 in MCC compared to the

performance against BT426 (Table 1) whereas BetaTPred2 has an

even bigger decrease of 0.06 in MCC. This indicates that both of

the NetTurnP methods are still better than the BetaTPred2

method and now by an even bigger margin. Also, the slightly

reduced MCC values indicate that the new PLP datasets contain

more difficult targets compared to the original BT426 dataset,

Discussion

In the work presented in this paper a neural-network method

called NetTurnP was developed. It predicts b-turns in general and

the specific type of b-turn. This work represents one of the few

studies where an independent evaluation dataset was used in

addition to cross-validation. The evaluation set was non-

homologous to the training datasets used. NetTurnP reached a

Qtotal of 78.2% with a MCC of 0.50, using a two-layered network

structure, where the predictions from the first layer networks were

used as input for the second layer.

Figure 3. ROC curve for the evaluation of NetTurnP. The figure shows the ROC curve (True positive rate vs. False Positive Rate) for the
evaluation of the NetTurnP against the BT426 dataset.
doi:10.1371/journal.pone.0015079.g003

Table 1. Comparison of NetTurnP with other b-turn
prediction methods.

Prediction method Qtotal PPV Sens Spec MCC AUC

NetTurnP 78.2 54.4 75.6 79.1 0.50 0.864

NetTurnP-tweak 82.1 68.8 50.9 92.4 0.48 0.864

NetTurnP BT426 7-fold 78.1 54.4 74.2 79.5 0.49 0.853

DEBT 79.2 54.8 70.1 N/A 0.48 0.84

E-SSpred 80.9 63.6 49.2 N/A 0.44 0.84

BTNpred 80.9 62.7 55.6 N/A 0.47 N/A

SVM 79.8 55.6 68.9 N/A 0.47 0.87

MOLEBRNN 77.9 53.9 66.0 N/A 0.45 0.832

BTSVM 78.7 56.0 62.0 N/A 0.45 N/A

BetaTPred2 75.5 49.8 72.3 N/A 0.43 0.77

COUDES 75.5 49.8 66.6 N/A 0.41 N/A

KNN 75.0 46.5 66.7 N/A 0.40 N/A

BTPRED 74.9 55.3 48.0 N/A 0.35 N/A

1–4 and 2–3 correlation model 59.1 32.4 61.9 N/A 0.17 N/A

Results are based on the BT426 evaluation dataset. All performance measures
have been described in the methods section. NetTurnP is referring to the final
performance after the second layer networks, NetTurnP-tweak is the approach
that was tweaked for best Qtotal performance. NetTurnP BT426 7-fold is referring
to a 7-fold cross-validation performed on the BT426 dataset. The other methods
are as follows: DEBT [45], E-SSpred [19], BTNpred [21], SVM [22], MOLEBRNN
[46], BTSVM [47], BetaTPred2 [17], COUDES [6], KNN [14], BTPRED [13] and 1–4
and 2–3 correlation model [11].
doi:10.1371/journal.pone.0015079.t001
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b-turns tend to be located at solvent-exposed surfaces.

Analyzing our training dataset (Cull-2220), we found that the

most frequently observed amino acids in b-turns compared to the

amino acid at any position were: Gly (11.6%/7.2%), Asp (8.9%/

5.9%), Ser (7.1%/6.1%), Pro (7.0%/4.6%), Ala (6.4%/7.8%), Asn

(6.3%/4.2%) and Glu (6.3%/7.0%). These amino acid residues

are hydrophilic or small, where Pro is special due to its fixed and

rigid structure making it suitable to reverse the direction of a

protein chain. It is seen that Gly, Asp, Ser, Pro and Asn are

occurring more often in b-turns than in general, and that Ala and

Glu occur less frequently. A complete table of the frequencies for

all amino acids is shown in Table S4.

For the second layer networks different setups were tested in

order to find the highest test (MCC) performance. We found that it

was most optimal to use predictions from the networks b-turn-G

and b-turn-P and with inclusion of predicted secondary structure

and relative surface accessibility predictions.

The second layer networks were found to filter out the noise and

increase the AUC value from 0.846 to 0.849 in test performance.

This increase was found to be a significant increase corresponding

to a p-value ,, 0.001, using an unpaired test with two

independent samples [29]. For the evaluation dataset BT426 the

AUC increased from 0.860 to 0.864 after primary and second level

networks, respectively. (p-value ,, 0.001).

Because of the unbalanced dataset (25% b-turns), Qtotal is a

poor measure by itself, as it is possible to achieve a Qtotal of 75% if

all residues were predicted to be non-b-turns. Instead, NetTurnP

was trained to achieve the best MCC, which will also balance the

performance measured on sensitivity and specificity. The effect of

a tweaked Qtotal performance (NetTurnP-tweak) showed that we

could obtain a better Qtotal than any other method, but at the

expense that more false and true positives are removed as seen in

Table 1 and Figure 6. Therefore only the most confident

predictions remain, but the method becomes less sensitive.

NetTurnP, with tweaking Qtotal, achieves the best MCC

performance of 0.48 compared to other methods.

For the prediction of specific b-turn types NetTurnP showed

improved performance for four out of six b-turn types compared

to other methods as seen in Table 2. We do provide a prediction

via the webserver for the b-turn types VIb, VIa1 and Via2, even

though the performances are quite low with MCC values of 0.11,

0.07 and 0.03 respectively. It is most likely due to the scarce

number of these b-turn types.

Three new datasets were created with the purpose of evaluating

NetTurnP and NetTurnP-tweak against a more recent set of

sequences than the original dataset BT426. For the comparison

NetTurnP/NetTurnP-tweak, DEBT, MOLEBRNN and Be-

taTPred2 were chosen. Due to errors in the DEBT and

MOLEBRNN webservers, we were not able to obtain enough

results for a comparison. MOLEBRNN never completed any

calculations, and DEBT only succeeded to return a few results. All

sequences were successfully submitted to NetTurnP/NetTurnP-

tweak and BetaTpred2. Multiple sequences can be submitted to

the NetTurnP webserver, which is a functionality that none of the

other webservers provide.

For NetTurnP/NetTurnP-tweak the performance drops by 0.03

in terms of MCC compared to the performance obtained using the

BT426 dataset. BetaTPred2 had an even bigger decrease in MCC

of 0.06. This could indicate that the newer sequence data is a more

challenging dataset.

A dataset of 75 experimentally determined antigen-antibody

structures with predicted epitope residues was downloaded from

the supplementary section of DiscoTope [30] in order to analyze

the frequency of b-turns in discontinuous B-cell epitopes. We find

that there is an overrepresentation with a factor 2 (data not shown)

of b-turns in the discontinuous B-cell epitopes. We therefore

believe that prediction of b-turns in general, can further improve

immunological feature predictions.

Materials and Methods

Evaluation dataset, BT426
To evaluate the NetTurnP method, a dataset of 426 non-

homologous protein chains was used. The dataset, commonly

known as BT426, was created by Guruprasad and Rajkumar [31]

and consists of .94,800 amino acids. Several groups use it as a

golden set of sequences upon which performance values are

reported and compared. The dataset consists of protein chains

whose structure has been determined by X-ray crystallography at

a resolution of 2.0 Å or better. Each chain contains at least one b-

turn region. In total 23,580 amino acids, corresponding to 24.9%

of all amino acids, have been assigned to be located in b-turns.

Figure 4. MCC and Qtotal as function of the cut-off value. The figure shows MCC and Qtotal as function of the cut-off value. The values are
obtained by cross-validation of the Cull-2220 dataset. The X-axis is the threshold for a positive prediction of a b-turn. Y-axis to the left is the Matthews
correlation coefficient and to the right Qtotal values.
doi:10.1371/journal.pone.0015079.g004
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None of the sequences in the dataset share more than 25%

sequence identity. The BT426 dataset was downloaded from the

Raghava Group’s website: http://www.imtech.res.in/raghava/

bteval/dataset.html. Four sequences are obsolete from PDB and

superceded by newer sequence data. Therefore 1GDO.A was

replaced by 1XFF.A, 5ICB by 1IG5, 1ALO by 1VLB and 3B5C

by 1CYO. This dataset was solely used for the final evaluation of

our NetTurnP method.

Evaluation datasets, PLP399, PLP364 and PLP273
Three new datasets were constructed with the purpose of

evaluating the NetTurnP method against a more recent set of

protein sequences. Protein sequence data was extracted from the

RCSB (Research Collaboratory for Structural Bioinformatics)

Protein Data Bank (PDB) [32] using the protein culling server

PISCES [33]. An initial dataset was created using the following

criteria: Maximum sequence identify , = 25%, Resolution

, = 2.0 Å, R-factor , = 0.2, sequence in the range 25 -10,000

amino acids and including X-structures only. The resulting dataset

contained 3,572 PDB protein chains before homology reduction.

A Hobohm1 algorithm with a threshold as described previously

[34] was used to create the final homology reduced dataset

PLP399, containing 399 protein chains. No sequences in the

dataset share more than 25% sequence identity to a sequence

within the BT426 dataset, Cull-2220 dataset (described below) or

the datasets used for training and evaluation of the NetSurfP

method [28]. The PLP399 dataset was further subdivided into

PLP364 containing only sequences with deposition date from 2008

and newer and PLP273 containing sequences from 2009–2010. All

three datasets are solely used to evaluate the NetTurnP method,

and they are available for download at http://www.cbs.dtu.dk/

services/NetTurnP/suppl/plp.php.

Training dataset, Cull-2220
Protein sequence data was obtained from PDB using PISCES.

A dataset was constructed in two steps, first an initial selection of

potential sequences and later a more strict selection based on a

Hobohm1 [35] homology reduction algorithm. First PDB was

Figure 5. 1D projection of b-turn predictions for default and
Qtotal optimized cut-off plotted on 3D structure 2WNS chain A.
The figure shows the structure of a transferase, 2WNS chain A. The top
structure shows a prediction where default cut-off has been used
(NetTurnP) and the bottom structure shows the same structure where
cut-off tweak has been applied (NetTurnP-tweak). Assigned b-turns are
yellow, false positives are red, and the residues in green are where
assignments and predictions agree. Figures were made using the
PYMOL software [44].
doi:10.1371/journal.pone.0015079.g005

Table 2. Comparison of NetTurnP and other b-turn methods
for prediction of specific b-turn types.

b-turn type Method

MOLEBRNN COUDES BETATURNS DEBT NetTurnP

Type I 0.317 0.309 0.29 0.36 0.36

Type I’ 0.356 0.226 N/A N/A 0.23

Type II 0.339 0.302 0.29 0.29 0.31

Type II’ 0.137 0.106 N/A N/A 0.16

Type IV 0.236 0.109 0.23 0.27 0.27

Type VIII 0.109 0.071 0.02 0.14 0.16

The table shows a comparison of NetTurnP with other methods for prediction
of b-turn types using the BT426 dataset. Performance values are given as
Matthews correlation coefficients and the best are highlighted in bold. The
methods are: MOLEBRNN [46], COUDES [6], BETATURNS [16] and DEBT [45] have
all used seven-fold cross validation. We choose to completely exclude those
data from the NetTurnP test and training and thus report evaluation
performances against the BT426 dataset. The b-turn types VIII, V1a1 and VIa2
can only be predicted with correlations coefficients below or close to 0.1.
doi:10.1371/journal.pone.0015079.t002

Table 3. Evaluation of b-turn prediction on new PLP datasets.

Prediction
Method Dataset Qtotal PPV Sens Spec MCC AUC

NetTurnP PLP399 78.73 52.16 69.82 81.33 0.47 0.845

PLP364 78.83 52.07 70.23 81.32 0.47 0.847

PLP273 78.95 51.91 70.03 81.49 0.47 0.846

NetTurnP-tweak PLP399 82.59 67.10 44.86 93.59 0.45 0.845

PLP364 82.66 66.67 45.32 93.45 0.45 0.847

PLP273 82.74 66.40 45.04 93.50 0.45 0.846

Betatpred2 PLP399 74.90 45.91 62.98 78.37 0.37 N/A

PLP364 75.01 45.84 63.20 78.42 0.38 N/A

PLP273 75.17 45.67 62.52 78.78 0.37 N/A

The table shows a comparison of NetTurnP, NetTurnP-tweak and the
Betatpred2 method [17]. The datasets PLP364 and PLP273 are subsets of
PLP399, where PLP364 contain sequences deposited in PDB from 2008–2010
and PLP273 only contain sequences deposited from 2009–2010.
doi:10.1371/journal.pone.0015079.t003
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culled using the following criteria: Maximum sequence percentage

identity , = 40%, Resolution , = 3.0 Å, R-factor , = 0.2,

sequence length in the range 40–10,000 amino acids and including

X-ray structures only. The resulting dataset contained 5,648 PDB

protein chains before homology reduction. An empiric sorting

function (1) was applied to rank the protein chains such that high-

resolution structures with the most experimentally determined

amino acids were preferred instead of the shorter low-resolution

homologous protein sequence. A Hobohm1 algorithm with a

threshold as described previously [34] was used to create the final

homology reduced dataset (Cull-2220). No sequences in the

dataset share more than 25% sequence identity to a sequence

within the BT426 dataset.

score~
resolution2x sequence length

pdb length
ð1Þ

Equation 1 – Ranking of experimentally determined protein

sequences. The best rank is assigned to the protein sequence with

the lowest score. ‘‘resolution’’ is the resolution in Ångstroms

according to PDB, ‘‘sequence_length’’ is referring to the actual

length of the sequence which may include amino acids for which

there are no available coordinates in the PDB-file. ‘‘pdb_length’’ is

the length of the sequence for which there are coordinates for the

amino acids.

b-turn assignment
The program PROMOTIF [36] was used for assignment of b-

turns and for the Cull-2200 dataset where 98,624 out of 451,812

amino acids were assigned to be inside a b-turn (21.8%) region.

According to restraints on phi(W) and psi(y) dihedral angles

between residues i+1 and i+2, nine b-turn type specific datasets

were created. The W, y restrains for each of the types (I, I’, II, II’,

IV, VIII, VIb, VIa1 and VIab) are shown in Table S5. These

angles are allowed to deviate 630u from the defined angles, with

the addition that one dihedral angle is allowed to deviate as much

as 640u. Type VIa1 and VIa2 also require a cis-proline at position

i+2.

For the general prediction of b-turns, the positive set includes

the amino acid residues that belong to any of the 9 b-turn types

and the negative set include all other residues. For the type specific

b-turn predictions, the positive sets were reduced to include only

b-turns of one specific type whereas everything else comprised a

negative dataset. The number and percentage of amino acids

(positive sets) in each of the type specific datasets are: type I

40,482/9.0%, type I’ 4,812/1.1%, type II 14,375/3.2%, type II’

3,124/0.7%, type IV 38,445/8.5%, type VIII 11,192/2.5%, type

VIb 1,120/0.3%, type VIa1 736/0.2% and type VIa2 214/0.1%.

Position Specific Scoring Matrices
Sequence profiles i.e. Position-Specific Scoring Matrices (PSSM)

were generated for all protein chains, using the iterative PsiBLAST

program [37]. Query sequences were blasted for four iterations

against a local copy of the National Center for Biotechnology

Information (NCBI) non-redundant (nr) sequence database, which

for speed purposes had been homology-reduced using CDHIT

[38] to less than 70% sequence identity. An E-value cut-off of

1610-5 was used.

Secondary structure and surface accessibility
Secondary structure and surface accessibility predictions were

generated for all protein chains, using the NetSurfP program [28].

Neural Networks
A standard feed-forward procedure was utilized to train the

neural networks [39], and a gradient descent method was used to

back-propagate the errors where-after weights were updated [40].

A sliding window of amino acids was presented to the neural

network and predictions were made for the central position. The

neural networks were trained using window sizes of 5, 7, 9, 11 and

13, the following number of hidden units: 50, 75, 100 and 125,

and two output neurons. Altogether we used 20 different neural

network architectures. A 10-fold cross-validation procedure was

used, thus a total of 200 neural networks. Synapse weights were

stored for the epoch where the best test set Matthews correlation

coefficient was obtained.

Amino acids were encoded both using PSSM values, three

neurons for predicted helix, strand and coil and one extra neuron

for the relative surface accessibility, thus a total of 25 neurons were

used to describe an amino acid.

Optimized Networks
Three different types of artificial neural networks have been

trained:

N b-turn-G

N b-turn-S

Figure 6. Assignment scheme used to train the b-turn-P method. Figure 6 is illustrating the assignment scheme used to train the b-turn-P
method for an example protein sequence with PDB-identifier 2BEM.A. A b-turn with a length of five shown as T’s, is composed of two overlapping b-
turn types, here indicated with F (Type VIII) and G (Type VIa2). In this situation, one b-turn residue can be assigned as being both at position 1 and at
position 2. Another b-turn residue can be assigned as being both at position 3 and at position 4.
doi:10.1371/journal.pone.0015079.g006

NetTurnP - Neural Network Prediction of Beta-turns

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e15079



N b-turn-P

The b-turn-G (G for general) method predicts if an amino acid

is located in a b-turn region or not.

The b-turn-S (S for specific) method was trained to predict if an

amino acid belongs to any of the nine b-turn classes: I, I’, II, II’,

IV, VIII, VIb, VIa1 and VIab.

The method b-turn-P (P for position) is a combination of four

sub-methods that have been trained to predict if an amino acid is

located at position 1, position 2, position 3 or position 4 in a b-

turn. Some amino acids can be assigned to multiple positions

within a b-turn as shown in Figure 1. However, within each of the

four sub-methods only one position was considered.

We found that the performance of the methods b-turn-G and b-

turn-S could be improved by use of a second layer of neural

networks where information from the b-turn-P method was

included as input. A second layer is often used as some of false

predictions can be corrected [28,41] and is due to the fact that new

or enriched input data is provided for the second layer neural

networks.

Performance measures
The quality of the predictions was evaluated using six measures;

Matthews correlation coefficient [42] (MCC), QTotal, Predicted

Positive Value (PPV), sensitivity, specificity and Area under the

Receiver Operating Curve [43] (AUC). FP = False Positive, FN

= False Negative, TP = True Positive, TN = True Negative.

MCC~
TP|TN{FP|FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ| TNzFPð Þ| TPzFPð Þ| TNzFNð Þ

p ð2Þ

Matthews correlation coefficient can be in the range of 21 to 1,

where 1 is a perfect correlation and -1 is the perfect anti-

correlation. A value of 0 indicates no correlation.

QTotal~
TPzTN

TPzTNzFPzFN
ð3Þ

Qtotal is the percentage of correctly classified residues, also called

the prediction accuracy.

PPV~
TP

TPzFP
|100 ð4Þ

PPV is the Predicted Positive Value, also called the precision or

Qpred.

Sensitivity~
TP

TPzFN
|100 ð5Þ

Sensitivity is also called recall or QObs, and is the fraction of the

total positive examples that are correctly predicted.

Specificity~
TN

TNzFP
|100 ð6Þ

Specificity is the fraction of total negative examples that are

correctly predicted.

The above-mentioned performance measures are all threshold

dependent and in this work a threshold of 0.5 was used, unless

otherwise stated.

AUC is a threshold independent measure, and was calculated

from the ROC curve which is a plot of the sensitivity against the

False Positive rate = FP/(FP + TN). An AUC value above 0.7 is

an indication of a useful prediction and a good prediction method

achieves a value .0.85 [40].
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relative solvent accessibility predictions [28]. b-turn-G = b-turn/

non-b-turn predictions, b-turn-P = predictions from the position

specific networks.
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quencies for amino acids in b-turns and the Cull-2220 training set.

The first part of the table ‘b-turn statistics’ shows the amount of

residues, which have been assigned as b-turns and their percentage

of the total amount of b-turn assigned residues in the Cull-2220 set.

The second part of the table ‘Amino acid statistics’ shows the amount

of residues and the percentage of the total Cull-2220 set.
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PROMOTIF Dihedral angles for the b-turn types between

residues two (i+1) and three (i+2) as used by PROMOTIF [39].
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angles, with the addition that one dihedral angle is allowed to

deviate as much as 640u. Type IV is used for all b-turns, which do

not fall within the dihedral angle ranges for the eight defined types.

Type VIa1, VIa2 also require a cis-proline at position i+2.
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Figure S1 Matthews correlation using different setups
and an increasing number of trained network architec-
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tures. The figure shows test performances in Matthews’s

correlation coefficient when including an increasing number of

trained networks architectures, named Top ranked network architec-

tures, based on test set performance using different setups.

Abbreviations for the setups are as follows: b-turn-P = position

specific first layer predictions, b-turn-G = general b-turn/not-b-

turn first layer predictions, sec-rsa = secondary structure and

surface accessibility predictions from NetSurfP [28], PSSM =

Position Specific Scoring Matrices. The setups are composed as

follows: A = PSSM + sec-rsa, B = PSSM + b-turn-G+ sec-rsa, C =

PSSM + b-turn-G, D = PSSM + b-turn-P, E = b-turn-P, F = b-

turn-G + sec-rsa, G = b-turn-G, H = PSSM + b-turn-P + sec-rsa,

I = b-turn-P + sec-rsa, J = PSSM + b-turn-P + b-turn-G + sec-

rsa, K = PSSM + b-turn-P + b-turn-G, L = b-turn-P + b-turn-G,

M = b-turn-P + b-turn-G + sec-rsa.

(TIFF)
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