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Abstract

At rest, spontaneous brain activity measured by fMRI is summarized by a number of distinct resting state networks (RSNs)
following similar temporal time courses. Such networks have been consistently identified across subjects using spatial ICA
(independent component analysis). Moreover, graph theory-based network analyses have also been applied to resting-state
fMRI data, identifying similar RSNs, although typically at a coarser spatial resolution. In this work, we examined resting-state
fMRI networks from 194 subjects at a voxel-level resolution, and examined the consistency of RSNs across subjects using
a metric called scaled inclusivity (SI), which summarizes consistency of modular partitions across networks. Our SI analyses
indicated that some RSNs are robust across subjects, comparable to the corresponding RSNs identified by ICA. We also
found that some commonly reported RSNs are less consistent across subjects. This is the first direct comparison of RSNs
between ICAs and graph-based network analyses at a comparable resolution.
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Introduction

In a typical fMRI data set acquired during resting-state, BOLD

(blood-oxygen level-dependent) signals often exhibit strong

correlations between distant brain areas despite a lack of external

stimuli or a cognitive engagement [1–3]. Such elevated correla-

tion, known as functional connectivity, has been identified in the

motor cortex [1], the dorsal and ventral pathways [3], and the

default mode network (DMN) [4], to name a few. One way to find

such networks following similar time courses is ICA (independent

component analysis). Without an explicit model, ICA is able to

separate time course data into a collection of independent signals,

or components, with each component representing a network

following a similar temporal pattern. For example, Damoiseaux

et al. [5] examined resting-state fMRI data using spatial tensor

PICA (probabilistic ICA) and discovered 10 components that

consistently occurred in multiple subjects. Similarly, De Luca et al.

[6] identified 5 distinct resting-state networks (RSNs) in BOLD

fMRI data as 5 ICA components. More recently, Doucet et al. [7]

examined the hierarchical structure of 23 components found by

ICA and identified 5 major clusters among those. Throughout the

text, such a network following a similar temporal pattern

discovered by ICA is referred as a ‘‘component.’’

Another approach to finding temporally correlated areas in

resting-fMRI data is a graph theory-based approach. In such an

approach, a functional connectivity network can be constructed

based on a strong temporal correlation between brain areas [8]. In

particular, various brain areas, represented as nodes, are considered

connected to each other if the correlation between them is strong.

These strong correlations among nodes are represented by edges

connecting the nodes. In the resulting graph representing the brain

network, some subsets of nodes may be highly interconnected

among themselves, effectively forming communities of nodes. Such

communities of nodes, also known as modules, have been identified

in a number of brain network studies of resting-state fMRI [9–13],

and although the number of nodes may substantially differ in these

studies, the number of modules seems fairly comparable. Such

modules represent areas of high temporal coherence in the brain,

and some of themodules coincidewith theRSNs discovered by ICA.

For example, a module corresponding to the default mode network

has been reported by multiple studies [9,11,13] whereas a module

covering the motor network was also found in some studies

[9,10,12,13]. However, comparing the network modules directly

toRSNs from ICA is challenging due to the difference in their spatial

resolutions. While RSNs from ICA have a voxel-level resolution,

most whole-brain networks are typically much coarser and consist of

only a few hundred nodes. It is worthy to note here that, recently,

a study combined the spatial ICA and graph theoretical analysis to

demonstrate topological properties of each RSN [14].

Even though both ICA and graph theory-based network

approach can find similar organization structure in the brain,

a network approach offers two advantages. First, a network

approach can be used to assess similarity or differences in overall

network structure quantitatively. Recent advances in network

science provide methods to examine how network modules change

over time [15,16]. Such techniques have been applied to fMRI

data to examine dynamic reconfiguration of brain network

organization [17]. Secondly, a network approach can examine
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how different modules are connected to and interact with each

other. Although network modules tend to form cliques of their

own, such modules are also connected to other modules, allowing

exchange of information and forming the network as a whole. This

is in contrast to ICA, in which each component is independent and

isolated from the other components. Therefore, when functional

brain networks are constructed at the voxel-level, a resolution

similar to ICA, a network based approach offers distinct

advantages over ICA in understanding the overall organization

of the brain network.

A major challenge in examining network module organization is

to summarize the consistency of modules across subjects. This is

particularly a concern since each subject’s network structure varies

slightly from other subjects even though the overall organization

appears similar. One possible solution is to generate a group

network summarizing the consistent network connectivity ob-

served in a large number of subjects. Examining the modular

organization of the resulting group network may enable evaluation

of consistent network modules. The notion of an ‘‘average’’

network sounds very appealing in such a scenario. In fact, several

functional brain network studies have generated a group network

by simply averaging the correlation coefficients between the same

set of nodes across subjects [10,12,13]. Another study has

examined whether or not the correlation coefficient between each

voxel pair significantly differs from zero [11]. Although averaging

correlation matrices across subjects can represent the connectivity

between two nodes as an element in the averaged matrix, such an

approach may not accurately summarize the consistent network

structure. In other words, such an approach may adequately

capture the connection strength between nodes A and B, but this

method does not consider how node A is connected to other nodes

in the network.

In this work, we attempt to examine modular organization of

the resting-state brain network and compare the results to that of

the RSNs identified by ICA. To do so, we constructed functional

brain networks with fMRI voxels as network nodes [18], and thus

the resulting network resolution is comparable to that of previous

ICA studies. We then examined network modules in these voxel-

based networks for consistency across subjects, and whether

consistent modules are comparable to the RSNs found by ICA

studies. To do so, we employed scaled inclusivity (SI), a metric

quantifying consistency of modules across multiple networks of

a similar type [16]. Our hypothesis is that, if RSNs are stable

across subjects, our approach should be able to identify such RSNs

as network modules associated with high SI. Since SI can be

calculated at the nodal level, the consistency of the resulting

modules can be assessed at the voxel-level. Moreover, this allows

us to compare the consistency of modules to the variability of the

corresponding RSNs observed in an ICA study [5].

Results

The data used in this work were part of the 1,000 Functional

Connectomes Project (http://fcon_1000.projects.nitrc.org/), a col-

lection of resting-state fMRI data sets from a number of

laboratories around the world. Of all the data sets available, 4

data sets from 4 different sites (Baltimore, Leipzig, Oulu, and St.

Louis), consisting of n = 194 subjects in total, were selected because

(i) these data sets consisted of young to middle-aged subjects (20–

42 years old) and (ii) these data sets were acquired while subjects’

eyes were open and fixated on a cross. The original resting-state

fMRI data were processed using the same preprocessing pipeline

available in our laboratory (see Materials and Methods). Networks

were formed by calculating a correlation coefficient for every voxel

pair then by thresholding the resulting correlation matrix to

identify strong correlations. The threshold was adjusted for each

subject in a way that the density of connections was comparable

across subjects (see Materials and Methods). Each voxel was

treated as a node in the resulting network. Each subject’s network

consisted of an average of 20,743 nodes. Modules in each subject’s

network were identified by the Qcut algorithm [19]. The

algorithm identified sets of nodes that were highly interconnected

among themselves and designated them as distinct modules. Each

node in the network can only be part of one module at a time.

After modules were identified in all the subjects, the consistency

of modules across subjects was assessed using SI. In brief, SI

summarizes the overlap of nodes in modules across different

subjects while penalizing any disjunction between modules (see

Materials and Methods). SI is calculated at each node, forming an

SI image summarizing across-subject consistency of the modular

structure. More specifically, each SI value measures how

consistently a particular node falls into a particular module. A

high SI value indicates that the voxel is located in the same module

across subjects, while a low SI value signifies that the voxel is likely

part of different modules in different subjects. Theoretically, SI

ranges from 0 to n–1 (n–1= 193 in this study) [16]. However, in

practice the SI values are considerably lower than the possible

maximum value of n–1 due to disjunction between modules across

subjects. Figure 1 shows the SI image generated from all the

subjects’ modular organization, thresholded at SI.15. This

threshold was maintained throughout the manuscript to facilitate

comparison between modular organizations. The areas of high SI

correspond to areas that were consistently part of the same

modules across subjects. These areas include the occipital lobe,

precuneus, posterior cingulate cortex, pre- and post-central gyri,

medial frontal gyri and the components of basal ganglia.

During the calculation of the global SI map shown in Figure 1,

we were able to determine which subject’s module was the most

representative at a particular node (see Materials and Methods)

[16]. This representative module resulted in the largest SI value at

that particular voxel location among all the subjects’ modules. To

further examine high SI areas, the most representative modules

Figure 1. Consistency of whole-brain functional modular
organization across subjects. Global scaled inclusivity (SI) shows
that several brain regions are consistently partitioned into the same
modules across individuals. These areas include portions of the
following cortices: visual, motor/sensory, precuneus/posterior cingulate,
basal ganglia, and frontal.
doi:10.1371/journal.pone.0044428.g001
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that correspond to the brain regions in Figure 1 were identified.

These representative modules were then used to summarize

consistency among subjects and SI was calculated with respect to

these modules. The resulting images are module-specific SI images

and summarize group consistency at a voxel-level. Module-specific

SI images are analogous to coefficient of variation (CV) images,

which are used in ICA analyses to summarize consistency of RSNs

at the voxel-level [5].

The visual module covers the entire span of visual cortex and

includes both primary and secondary cortices (Figure 2). This

module is comparable to ICA components like components A and

E in Damoiseaux et al. [5], RSN1 in De Luca et al. [6], and

module M2b in Doucet et al. [7]. The corresponding module has

also been reported in previous functional brain network analyses,

including Module II of He et al. [11], Module 4 of Rubinov and

Sporns [12], and the posterior module of Meunier et al. [10].

Thus, this module is highly consistent among individuals and

easily identifiable by both ICA and network methodologies.

Moreover, the secondary cortices of the occipital lobe exhibited

high SI values (Figure 2), which is comparable to the reduced

variability observed in visual components found by a previous ICA

study [5].

The sensory/motor module (Figure 2) is analogous to the motor

network identified by the seed-based correlation method [1]. The

most consistent regions within this module include the pre- and

post-central gyri. On the other hand, the supplementary

somatosensory area (S2), surrounding auditory cortex and portions

of the posterior insula show reduced consistency across subjects.

This module roughly corresponds to component F in Damoiseaux

et al. [5], RSN3 in De Luca et al. [6], and module M2a in Doucet

et al. [7]. Similar to the results reported by Damoiseaux et al. [5],

the consistency of this module was lower than that observed for

both default mode network (DMN) and visual modules (Figure 2).

Module I of He et al. [11] and Module 1 of Rubinov and Sporns

[12] demonstrate similarities with our sensory/motor module.

Interestingly, these previously reported modules also include

portions of the insula and auditory cortices. These findings are

not only consistent with ours but also to previous reports of the

ICA results.

The basal ganglia module (Figure 2) consisted of the caudate,

globus pallidus, putamen, and thalamus. It also extended into the

medial temporal lobe, temporal pole, parahippocampal gyrus,

hippocampus, amygdala and cerebellum. Interestingly, these brain

regions have not been consistently classified into one component

by ICA. While De Luca et al.’s RSN3 suggests some involvement

of the hippocampus and thalamus [6] within the motor

component, some ICA studies did not find a component similar

to this module [5,7]. However, another ICA study by Damoiseaux

et al. revealed a component consisting of the thalamus, putamen

and insula (component K) [20] which led to other ICA studies on

connectivity. In particular, the basal ganglia component has been

shown to include portions of the striatum, such as the caudate and

the globus pallidus [21–23]. Similarly, basal ganglia modules have

been previously reported in studies that have used network

methodologies. For example, Module V found by He et al. [11]

and Module 3 by Rubinov and Sporns [12] contain all the regions

of the basal ganglia. Variations of this have also been described in

the central module of Meunier et al. [10] and in the RSN3 of De

Luca et al. [6]. Though these findings contain similar regions as

our module, they extend further into the insular and motor

cortices. Functional connectivity of the cerebellum with the rest of

the basal ganglia proved unique in our results compared to

previous network module findings. Although global SI (Figure 1)

values did not indicate high modular consistency of the cerebellum

across subjects, the module-specific SI map shows that it is

consistently part of the basal ganglia module across subjects

(Figure 2).

The default mode network (DMN) [4,24] was also identified as

a consistent module across subjects (Figure 2). This module

included the precuneus (PCun), posterior cingulate cortex (PCC),

inferior parietal cortex, superior medial frontal cortex, and

anterior cingulate cortex (ACC). The PCC exhibited elevated SI

values and was found to be the most consistent brain region of the

DMN. In comparison, the SI values of the medial frontal gyri were

attenuated, indicating this region to be less consistently found in

the DMN module.

The intra-modular consistency of this module appeared

comparable to the reduced variability of the DMN component

found by an ICA [5]. While this module covers the brain areas

typically considered as part of the DMN, weaker SI in the frontal

portion also suggests that the anterior and posterior portion of the

DMN may not be as strongly coupled as the rest of the DMN. This

may be because the connectivity pattern is slightly different

between the anterior and the posterior portions of the DMN.

Research supporting this hypothesis includes that of Andrews-

Hanna et al. [25] using temporal correlation analysis. They

determined that the DMN was composed of multiple components,

including a medial core and a medial temporal lobe subsystem.

Using ICA, Damoiseaux et al. [20] described two RSN

components that together included the superior and middle

frontal gyrus, posterior cingulate, middle temporal gyrus and

superior parietal cortices. Finally, the work of Greicius et al. notes

some differences in the seed-based connectivity of the DMN when

the seed was placed in either the PCC or the ventral ACC [2].

Among the modules shown in Figure 2, there were more than

one choice for the most representative subject in the sensory/

motor module and the default mode module. This can be seen in

Figure 3 showing the image of the most representative subject by

voxel locations. Within the motor / sensory strip and the

precuneus, there were two subjects with the highest SI values.

Even though either of these subjects could serve as the

representative subject for these modules, the overall consistency

of the entire module was still captured, as the module specific SI

images appear strikingly similar even if different subjects were

chosen as the representative subject (Figure 3).

The number of modules in Figure 1 seems surprisingly few,

especially when compared to previous reports of ICA [5,7]. Our

results, however, do not indicate the absence of modules similar to

previously found ICA components. Instead, some were only found

to be less consistently organized across subjects (Figure 4). These

modules do not necessarily include similar sets of nodes across

subjects, and consequently do not exhibit high global SI values

(Figure 1). Two of such modules are the ventral (superior parietal

cortex as well as superior and medial frontal gyri) and dorsal

(superior parietal cortex, superior and dorsal lateral frontal, and

precentral gyri) attention networks identified by previous fMRI

analyses [3]. A previous ICA finding has combined these two

systems into the same component [6] while others have separated

them into separate components for the left and right hemispheres

[5,7]. Here we present two distinct modules corresponding to the

separate ventral and dorsal attention systems which have also been

found in previous network analyses [11,13]. It is interesting to note

that low SI values in our ventral and dorsal attention modules

(Figure 4) are in contrast to the stability of corresponding

components found using ICA [5].

In addition to the ventral and dorsal attention modules, we

present a module containing the cerebellum (Figure 4). Though

the cerebellum was found to be consistently connected to the basal

Consistency of Network Modules
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ganglia (Figure 2), many nodes within the cerebellum formed

a unique module by themselves. However, reduced module-

specific SI values indicate that this module demonstrates limited

consistency across subjects. Thus, while the cerebellum may

belong to the same module as the basal ganglia in some subjects, in

another group of individuals the cerebellum belong to an isolated

module as shown in Figure 4.

We used SI to assess the consistency of modules across subjects

rather than calculating the average network, which has been used

by some researchers to generate a ‘‘summary’’ network for a study

population [10–13]. An average network, which is produced by

averaging correlation matrices across subjects, does not properly

represent the characteristics of the individual networks [26].

Rather, it produces a network whose key modular structure is

altered from that of the individual networks. Figure 5 shows an

example of such an alteration. In particular, we generated an

average network by averaging the correlation matrices from all the

subjects (n = 194). This average correlation matrix was then

thresholded (see Materials and Methods) and modular organiza-

tion was then detected on the resulting adjacency matrix. The

modular organization of this average network is shown in

Figure 5a, with each color denoting a network module. The data

used in our analysis represent a subset of the subjects used by Zuo

et al. [27] and show that modular organization is very similar to

theirs. Most striking, however, is the modules associated with the

DMN. Using an average network, we found that two distinct

anterior (Figure 5b) and posterior (Figure 5c) modules exist. This is

in stark contrast to the DMN module-specific SI image, which

does not separate into anterior and posterior parts (Figure 5d). To

add further confidence in this finding, DMN modules of the

individuals of each data set were examined. We found that the

Figure 2. Module-specific SI of four most consistent modules across subjects. Row 1: Four functional modules were found to be highly
consistent across subjects. These modules include the visual (yellow), sensory/motor (orange) and basal ganglia (red) cortices as well as the default
mode network (precuneus/posterior cingulate, inferior parietal lobes, and medial frontal gyrus; maroon). Overlap among these modules was present
but minimal (white). Rows 2–5: Module-specific SI images for each of the four most consistent modules, namely the visual (row 2), sensory/motor (row
3), basal ganglia (row 4), and default mode (row 5) modules. Note that the visual, sensory/motor and basal ganglia all show higher consistency across
subjects than the default mode module. Among the default mode areas, the precuneus and posterior cingulate cortex show the greatest consistency
across subjects.
doi:10.1371/journal.pone.0044428.g002
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anterior and posterior portions of the DMN were indeed

commonly found as one module (Figure 5e).

A comparison between the other three SI modules shown in

Figure 2 and the two shown in Figure 4 with those from the

average network are presented in Figure 6. Here we show the

modules for the visual and motor/sensory cortices as well as the

basal ganglia from the average network. These three modules

comprise similar areas represented in the module specific SI

images of the corresponding modules in Figure 2. In addition to

previously mentioned differences (Figure 5b, c), we show that

average modules corresponding to the ventral and dorsal

attention brain regions are quite different than those found

using module specific SI in Figure 4. For instance, averaging

correlation matrices across individual subjects resulted in the

separation of the left from the right dorsal lateral prefrontal

cortex. Neither of these modules included the superior portions

of the parietal lobules. Instead, these brain areas were identified

as a separate module. Interestingly, this module included bilateral

secondary sensory cortices.

Averaging alters not only modular organization, but also other

network characteristics [26]. Figure 7 shows the distributions of

node degree, or the number of edges per node, for all n = 194

subjects (blue) as well as that of the average network (red). As it can

be seen in Figure 7, the average network has far more low degree

nodes than any of the subjects in the data set. However, the

average network lacks medium degree nodes and thus its degree

distribution drops faster than that of the other individual networks.

Various network metrics are also altered in the average network.

Figure 3. Multiple representative individuals produce similar module-specific SI maps. Of the four functional modules that were found to
be highly consistent across subjects, two (motor/sensory cortices and the default mode) had multiple representative subjects that could have been
chosen to calculate module-specific SI. Here we show that in each case the resulting module specific SI map is similar in the brain areas that are
included as part of the overall module. For instance, images of the most representative subject by voxel location (top panel) show that two individuals
are the most representative for the motor and sensory cortices, respectively. However, when each of these individuals was used to calculate module-
specific SI it was found that the resulting module included both cortices.
doi:10.1371/journal.pone.0044428.g003

Figure 4. Module-specific SI images of modules with limited consistency. Three resting state networks (RSNs) exhibited attenuated
consistency across subjects, relative to those shown in Figure 2. Module-specific SI images are shown for the ventral attention network (superior
parietal lobules, dorsal lateral prefrontal cortex and portions of the medial frontal gyrus, row 1), dorsal attention network (superior parietal lobules,
intraparietal sulci, precentral and superior frontal gyri, row 2), and the cerebellum module (row 3).
doi:10.1371/journal.pone.0044428.g004
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For example, the clustering coefficient and the path length,

describing tight local interconnections and efficient global

communication respectively [28], are significantly different

(p,0.0001, one-sample T-test) from that of the individual

networks (see Table 1). Taking all these observations together,

we can conclude that the average network does not accurately

represent characteristics of individual networks in the data.

Discussion

In this work, consistency of modules in resting-state functional

connectivity networks was examined at the voxel-level, a resolution

comparable to that of group ICA. Module consistency across

subjects (n = 194) was assessed and the results were compared to

ICA components and network modules previously reported by

other studies. Modular consistency was assessed using SI, which

quantifies inter-subject variability in modular organization. The

use of SI also allowed us to examine inter-subject consistency of

a particular module at the voxel-level. This showed what brain

regions within a module were consistent in an analogous fashion to

group ICA results [5]. Our global SI data show that only a handful

of brain areas were consistently organized in modules. These

modules alone, however, were not found to constitute the entire

network. Instead, we show that other network modules are less

consistent across subjects; multiple examples are presented to

convey this point.

Interestingly, despite the large number of nodes in our brain

network data, the number of major modules did not change

dramatically from the previously reported brain network modu-

larity [9–13,29]. Increasing the network resolution (the number of

nodes used to model the brain as a network) did not result in more

modules. Power et al. [13] also discovered a similar number of

modules despite differences in the network resolution. This is

particularly interesting because Power et al. [13] cautioned against

using network nodes that were not derived based on brain

functional anatomy. Based on our finding and Power et al.’s

finding, we conclude that modular structure is robust and can be

ascertained despite differences in the parcellation scheme of the

brain. However, a voxel-based network is advantageous since the

shape of each module can be determined at finer granularity. A

voxel-based network also enables examination of intra-modular

characteristics within a particular brain area.

Some RSNs, although reported in multiple studies, were not

found to be consistent in our analysis. This may falsely suggest that

there are only a handful of modules in the resting-state functional

brain network. Other modules, however, exist and are found when

modules from each subject’s network are examined carefully. A

few examples of such network modules are shown in Figure 4, with

somewhat attenuated SI values than the RSN modules reported in

Figure 2. Thus, the global SI image needs to be interpreted

carefully. It cannot be used to identify a ‘‘significant’’ module that

exceeds a certain threshold, an approach commonly used in

a typical fMRI analysis. It only enables assessment of modular

consistency across subjects and does not eliminate the need to

qualitatively evaluate network structure [30]. In fact, the extension

of the basal ganglia module into the cerebellum (Figure 2) could

not have been observed if this module were not carefully

examined.

The work of Kiviniemi et al. [23] serves as a prime example of

ICA of data similar in demographic characteristics and scanning

protocol to the data in our analysis. Their data, which were

collected at Oulu University — one of the sites for the data used in

our analysis — identified several components that are similar to

modules described in our study. Kiviniemi et al. used peri-Sylvian,

occipito-parietal, frontal and temporal signal sources to describe

42 RSN components [23]. These results do bear similarity with

our presented findings. For example, they described components

consistent with the functional association of major cortical areas,

including the visual, sensory and motor cortices. In addition to

this, they present a component similar to the dorsal attention

module presented in Fig. 4. However, modular analysis of

consistent functional neighborhoods in the brain does in fact

differ from the results of ICA. The most prominent dissimilarity is

the number of components in relation to the number of modules.

For instance, the visual module identified in our study corresponds

to seven separate components found in Kiviniemi et al. [23]. Also,

the ventral attention module described in our results comprised of

the DLPFC (dorsolateral prefrontal cortex) and the superior

parietal lobules. Using ICA, however, the DLFPC was found to be

an isolated component. Finally, Kiviniemi et al. showed that,

depending on the number of components, the anterior and

posterior portions of the DMN are separated into distinct

components [23].

When examining the consistency of modular organization

across a group of subjects, one may be tempted to generate an

average network and examine its modular organization. This

approach seems intuitive and reasonable especially for those

neuroimaging researchers who are accustomed to voxel-based

analyses of neuroimaging data. The notion of average images may

sound reasonable in fMRI analyses examining activation patterns

through the averaging of multiple individual activation maps,

hence one may believe that averaging connection strengths across

subjects may also result in a network that summarizes the overall

characteristics of the group. Although such an averaging process

may be able to summarize the correlation between two particular

nodes, it alters the characteristics of the network as a whole

tremendously. Such altered characteristics include the modular

organization (Figure 5), degree distribution (Figure 7), and network

metrics (Table 1). Moussa et al. also demonstrated that average

metrics do not imply regional consistency [31]. Since the average

network does not necessarily represent the characteristics of the

networks it aims to represent, an alternative approach should be

considered in summarizing a collection of networks. For the

modular organization in particular, selecting a representative

subject, based on the Jaccard index, is a simple solution [9,32].

The SI-based approach, as used in this paper, is a more

sophisticated way to examine consistency of modular organiza-

tions across subjects. Several network science methods have been

developed to compare the modular organization across multiple

networks [15,16], thus application of such methods in brain

network data is more appropriate than simply averaging

correlation matrices.

Our use of SI demonstrated consistency of the network modular

structure quantitatively. However, there are some limitations

associated with our approach. First, in the algorithm we used to

Figure 5. Themodular structure of the average network. a) The modular structure of the average network, with each color indicating a distinct
module. Note that the default mode network is split into two modules: b) anterior (medial frontal gyrus, green) and c) posterior (precuneus/posterior
cingulate & inferior parietal lobes, red) modules. d) On the other hand, both anterior and posterior default mode regions appear consistent across
subjects when analyzed using module-specific SI. e) Representative subjects from each of the four data sets confirm that both anterior and posterior
portions of the DMN constitute one module at the individual level.
doi:10.1371/journal.pone.0044428.g005

Consistency of Network Modules

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e44428



identify modules [19], each node can only be part of one module.

However, it is plausible that some parts of the brain, in particular

multi-modal areas, may be associated with multiple modules at

once. In recent years, a number of algorithms have been proposed

to analyze overlapping modules [33–35] in which some nodes are

assigned to multiple modules. Such an algorithm has been applied

Figure 6. Selected modules from the average network. Shown here are the modules from the average network that correspond to the
module-specific SI images shown in Figures 2 & 4. The modules from the average network that correspond to the motor/ sensory cortices, the basal
ganglia and the cerebellum were found to be similar with respect to their corresponding module-specific SI image. However, two distinctions were
found in addition to those demonstrated in Figure 5. First, the average visual module includes only the area of the primary visual cortex. This is in
contrast to the module-specific SI image for the visual cortex shown in Figure 2, which extends into secondary visual cortices. Second, the average
network segregates the anterior from the posterior portions of the ventral and dorsal attention systems. In this case, the anterior portion consists of
two modules, one for each of the bilateral dorsal lateral prefrontal cortices. Interestingly the posterior element of both ventral and dorsal attention
systems (superior parietal lobules) is not separated into bilateral portions. It does, however, include secondary sensory cortices S2.
doi:10.1371/journal.pone.0044428.g006
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to an analysis of a 90-node structural brain network and overlap

between modules has been outlined [29]. However, interpretation

of such overlapping modules is unclear. Moreover, since over-

lapping module algorithms tend to be computationally intensive,

applying such methods to brain networks at the voxel-level may

pose a significant challenge. However, the evaluation of modular

consistency across a group of individuals can identify multiple

modular structures that contain a single brain region. This was

observed with the cerebellum in our work. Another limitation of

our approach is that the algorithm to identify modules is

imprecise. Identifying the true modular structure of a network is

an NP-hard problem [36]. Most algorithms that find modular

organization, including Qcut [19], can yield only an approxima-

tion to the true solution and have some variability associated with

each approximated solution. To overcome this problem, we ran

Qcut 10 times for each subject’s network, and selected the most

representative modular partition as the best solution (see Materials

and Methods). Even then, the variability in the modular

organization cannot be completely eliminated. However, we

believe that, if the modular organization of the brain network is

truly robust across subjects, our global SI image can identify nodes

that belong to the same module despite some variability in

modular partitions. Finally, some issues remain as inherent

confounds. One example includes the effect of head movement

correction on our analyses and their functional interpretation. For

instance, the work of Van Dijk et al. [37] demonstrates the

difficulty of controlling for head movement even after extensive

correction. This confound has also been described in the work of

Power et al. [38] and Satterthwaite et al. [39].

In summary, we found that the functional brain network at

resting-state consisted of several modules that are highly consistent

across subjects. These modules were analogous to the RSNs found

in previous ICA and network analyses, even at the voxel-level

resolution. Consistency of these modules across multiple study

sites, with different MRI scanners and imaging protocols, indicates

robust yet consistent organization of the functional connectivity

network at rest. The methodology used in this work can be further

extended to examine alterations in the modular structure of the

brain network under various cognitive states or neurological

conditions.

Materials and Methods

Data
Data used in this work is publicly available as part of the 1,000

Functional Connectome Project (http://fcon_1000.projects.nitrc.

org/), a collection of resting-state fMRI data sets from a number of

laboratories around the world. From all the data sets available, 4

data sets from 4 different sites were chosen, all consisting of young

to middle aged subjects (ages 20–42 years old). Namely, Leipzig

data (n = 37, male/female = 16/21), Baltimore data (n = 23, m/

f = 8/15), Oulu data (n = 103, m/f = 37/66), and St. Louis data

(n = 31, m/f = 14/17). BOLD fMRI data in total of n = 194

subjects (m/f = 75/119) were included in our analysis, and all the

images were acquired during resting-state with eyes open with

a fixation cross.

Network Formation
The resting-state fMRI time series data from each subject was

realigned to the accompanying T1-weighted structural image and

spatially normalized to the MNI (Montréal Neurological Institute)

template by the FSL software package (FMRIB; Oxford, UK), and

any non-brain voxels were removed from the fMRI data. The

normalized fMRI data was masked so that only the gray matter

voxels corresponding to the areas specified by the AAL

(Automated Anatomical Labeling) atlas [40] were included in

the subsequent analyses. A band-pass filter (0.009–0.08 Hz) was

applied to the masked time series data to filter out any

physiological noises and low-frequency drift [18,41,42]. From

the filtered data, confounding signals were regressed out, including

6 rigid-body transformation parameters generated during the

realignment process and 3 global mean time courses (whole-brain,

white matter, and ventricles) [18,41,42]. Then a cross-correlation

matrix was calculated, correlating each voxel’s time course to all

other voxels in the data set. The resulting correlation matrix was

thresholded with a positive threshold, yielding a binary adjacency

matrix describing a network with each voxel as a node. In the

adjacency matrix, 0 or 1 indicated the absence or presence of an

edge between two nodes, respectively. The threshold was de-

termined in a way that the number of nodes N and the average

degree K followed the relationship N=K2.5. This thresholding

method was used in order to match the edge density across

Figure 7. Degree distributions of the average network and
individual networks. The distribution of the number of connections
at each node, or degree, is plotted for each of the 194 subjects (blue), as
well as for the average network (red). The Y-axis is the complimentary
cumulative distribution (i.e., 1 minus the cumulative distribution
function (CDF)). The average network has more low degree nodes
than any of the other individual networks. The degree distribution of
the average network, however, drops dramatically for degrees greater
than 10, suggesting that there are fewer medium degree nodes.
doi:10.1371/journal.pone.0044428.g007

Table 1. Comparison of network characteristics between the
average network and individual networks.

Clustering coefficient C Path length L

Average network 0.457 7.64

Mean (SD) of
individual networks

0.353 (0.031) 5.14 (0.52)

doi:10.1371/journal.pone.0044428.t001
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subjects [18]. The resulting network had the edge density

comparable to other types of self-organized networks of similar

sizes [43]. N and K varied among subjects; the averages of N and

K were 20,743 (range= 17,255–21,813) and 55.5 (range= 53.2–

65.5), respectively.

Module Identification
In a network, the modular organization of nodes can be

identified by finding densely connected groups of nodes that are

only sparsely connected to other groups of nodes [44]. Thus

a network can be partitioned into such groups of nodes, or

modules, based on connectivity patterns. There are a number of

community detection algorithms, calculating a metric known as

modularity Q, a quality function describing optimal modular

partition [44]. Finding the optimal community structure, or

maximizing Q, is an NP-hard problem [36]. Thus most algorithms

only find an approximate modular partition of a network, and

such algorithms often produce a different solution for each run. In

this work, we used an algorithm called Qcut [19] to find modular

organization in each subject’s brain network. Since Qcut is an

algorithm producing a different solution in each run, it was run 10

times for each subject’s network, and the solution producing the

highest Q was selected as the representative modular partition for

that subject. The number of modules varied across subjects, with

14.5 modules in each subject’s network on average (range= 6–29).

Global Scaled Inclusivity
Scaled inclusivity (SI) was developed as a metric to evaluate

consistency of the modular organization across multiple realiza-

tions of similar networks. It is calculated by measuring the overlap

of modules across multiple networks while penalizing for

disjunction of modules. For example, a node V is part of module

A in subject i and module B subject j. Then SI for node V, denoted

as SIV, is calculated as

SIV ~
DSA\SBD

DSAD
DSA\SBD

DSBD
ð1Þ

where SA and SB denote sets of nodes in modules A and B,

respectively, and |?| denotes the cardinality of a set [16]. Figure 8

shows a schematic of how SI can be calculated across different

subjects. Although the overall modular organization is similar

across subjects, modules slightly vary from subject to subject

(Figure 8a). To assess the similarity between two modules from two

different subjects, SI can be calculated based on (1) (see Figure 8b).

If the two modules A and B consist of the identical set of nodes,

then SIV = 1. As the overlap between SA and SB diminishes, the

numerator of (1) decreases, leading to SIV,1. Or, if either SA or

SB is larger than the other, then the denominator of (1) increases,

resulting in SIV,1.

SI can be calculated between all modules in a particular subject,

or the referent subject, against modules from all the other subjects

[16]. If there is any overlap between the referent subject’s module

and a module from another subject, then SI is calculated between

the modules and the overlapping nodes are identified (see

Figure 8c). This process results in maps of overlapping nodes

between the referent subject’s modules and the other subjects’

module, with the corresponding SI values (Figure 8c). A weighted

sum of these maps is calculated, using SI as the weight, and the

result is a subject-specific SI map. The subject-specific SI map

shows the consistency of the referent subject’s modules when

compared to the modular organization of all the other subjects

(Figure 8c). In the subject-specific SI map, each node’s SI value

reflects how consistently that particular node falls into the same

module across subjects. Although a subject specific SI map can

summarize the consistency of the modular organization across

subjects, it is highly influenced by the choice of the referent subject

[16], as can be seen in Figure 8d. In order to avoid a potential bias

caused by selection of a particular referent subject, subject-specific

SI maps from all the subjects are summarized as a weighted

average, with the Jaccard index for each subject as the weight. The

Jaccard index summarizes the similarity in modular partitions

between two subjects as a single number, ranging from 0 (dissim-

ilar) to 1 (identical) [19]. The Jaccard indices are calculated

between each subject against all the other subjects, and the

resulting indices are averaged. The average Jaccard index for each

subject describes how similar that subject’s modular partition is to

all the other subjects’. The average Jaccard indices are appropri-

ately scaled during the weighted averaging process. The resulting

weighted average map is the global SI map, demonstrating the

consistency of modules at each node (see Figure 8d).

The group SI image is scaled between 0 and n–1; if SI = n–1 at

a particular node, that means that node is in the same module with

exactly the same set of nodes in all the subjects. Needless to say,

such an occurrence is very rare in the brain network. Details on

the calculation of the global SI is found in Steen et al. [16]. In

order to calculate SI across subjects, it is imperative that all the

subjects’ networks have the same set of nodes. Since some subjects’

networks had fewer nodes than that of the others, artificial isolated

nodes were also included to match the number of nodes. These

artificial nodes were treated as a single dummy module during the

calculation of SI, and later eliminated from the group SI image.

Module-Specific Scaled Inclusivity
As described above, the global SI image is calculated based on

multiple subject-specific SI images (see Figure 8). Consequently, at

a particular node location, it is possible to determine the subject

yielding the highest SI value, referred as the representative subject

(Figure 9a). The highest SI value at that particular node location

indicates that the module from the representative subject is

considered most consistent across subjects. It is possible to visualize

which subject is most representative at different voxel locations, as

seen in Figure 3. It should be noted that representative subjects

represented in Figure 3 exhibit some spatially consistent pattern,

indicating that the most representative subject at one voxel

location is likely the most representative subject in the neighboring

voxels as well. Once the representative subject is identified, its

modular organization is examined and the module containing the

node of interest is identified (Figure 9a). That module is considered

as the representative module yielding the highest SI at that

particular node location.

Once the representative module is identified in the represen-

tative subject’s network, then it is possible to evaluate SI between

that particular module and modules from all the other subjects.

Modules with any overlap with the representative module are

recorded, along with the corresponding SI value (Figure 9b). All

nodes in the overlapping modules, not just overlapping nodes, are

recorded during this process; this is in contrast to the global SI

calculation (Figure 8d) in which only the overlapping nodes are

recorded. Finally a weighted sum of the modules is calculated, with

SI values as weights, resulting in the module-specific SI map

(Figure 9b). Such a module-specific SI map shows the consistency

of the representative module across subjects. This is because

a module-specific SI map summarizes any modules centered

around the representative module by summing them together.

Although nodes belonging to the representative module may have

high SI values, nodes outside the representative module can also
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have high SI values if those nodes are consistently part of the same

module across subjects [16]. A module-specific SI image has the

same range as the global SI image, from 0 to n–1. As in the global

SI image, SI = n–1 means all the subjects had exactly the same

module comprising exactly the same set of nodes.

Average Network
In brain network analyses involving networks from multiple

subjects, some researchers generate an average network in order to

summarize the common network characteristics present among

the study subjects [10,11,13,27]. However, it is not clear if such an

Figure 8. A schematic of global SI calculation. Although the modular organization appears similar across subjects, modules slightly vary from
subject to subject (a). Different colors denote nodes belonging to different modules. Among the subjects, one subject is chosen as the referent
subject, and any overlap between that subject’s modules and any other modules from the other subjects are determined (b). This process results in
maps of overlapping nodes between modules, along with SI values summarizing the fidelity of the overlaps. A weighted sum of the overlap maps,
with the SI values as the weights, is calculated, yielding a subject-specific SI map (c). A weighted average of the subject-specific SI maps, with the
Jaccard indices as weights, is then calculated, resulting in the global SI map summarizing the consistency of the modular organization across subjects
at the nodal level (d).
doi:10.1371/journal.pone.0044428.g008

Figure 9. A schematic of module-specific SI calculation. For a particular node of interest, the most representative subject with the highest SI is
determined from subject-specific SI maps (a). Then the modular organization of the representative subject’s network is examined, and the module
containing the node of interest is identified as the representative module. Next, modules with any overlap with the representative module are
identified, and the corresponding SI values are calculated (b). A weighted sum of the overlapping modules is calculated with the SI values as weights,
summing modules centered around the representative module. The resulting module-specific SI shows the consistency of the representative module
across subjects.
doi:10.1371/journal.pone.0044428.g009
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average network truly captures the characteristics of individual

networks it aims to represent. In particular, it is not clear whether

the modular organization of the network is preserved in an

average network. Thus, in order to examine whether an average

network has similar characteristics as individual networks, we

generated an average network for the data we used in this study.

This was done by averaging the correlation matrices from all the

subjects, element by element. Since the number of voxels differed

across subjects as described above, for each element in the

correlation matrix, some subjects may have a valid correlation

coefficient for the corresponding node-pair whereas the other

subjects may not have a valid correlation coefficient because either

node in the node-pair is missing. Thus, in the calculation of the

average correlation matrix, the denominator was adjusted for the

number of all valid correlation coefficients at each element of the

matrix. The resulting correlation matrix was thresholded in the

same way as described above, producing an adjacency matrix

based on the average correlation. The modular organization of

this average network was examined by the Qcut algorithm as

described above.
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