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Abstract

Background: Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle
tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma
membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external
sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify
proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular
smooth muscle, with protein serotonylation having physiological function.

Methodology/Principal Findings: The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis
demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a
cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was
incorporated into a -actin, b-actin, c-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry.
Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation
of smooth muscle a–actin. Importantly, the a-actin-dependent process of arterial isometric contraction to 5-HT was reduced
by cystamine.

Conclusions: 5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new
mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines.
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Introduction

The primary amine 5-hydroxytryptamine (5-HT, serotonin) is a

hormone which exerts multiple effects in the vasculature, including

vasoconstriction, vasodilation, endothelial and smooth muscle cell

mitogenesis, and potentiation of contractile and mitogenic effects

of vasoactive hormones [1,2]. Multiple 5-HT receptor families (5-

HT1–5-HT7) and subtypes exist, and it is through stimulation of

these receptors to which the biological actions of 5-HT have been

attributed [3]. Recent evidence suggests that the role of 5-HT in

the vasculature is more complex than previously appreciated.

We recently discovered that a serotonergic system exists in

systemic arteries [4]. Systemic arteries, including the superior

mesenteric artery and thoracic aorta, can synthesize 5-HT,

metabolize 5-HT to 5-hydroxyindole acetic acid (5-HIAA), take

up and release 5-HT. Thus, there are at least two mechanisms by

which 5-HT can be placed inside a cell, the first through synthesis

and the second through uptake of circulating 5-HT by the

serotonin transporter [5]. The existence of intracellular 5-HT

raises the question as to the function of 5-HT inside the cell.

Serotonin was recently shown to covalently modify small GTPases

in the platelet [6]. In this paper, the enzyme transglutaminase

(TG) placed 5-HT on glutamine residues of small GTPases to form

a glutamyl-amide bond (serotonylation), resulting in activation of

the G protein. The platelet, however, is a cell that is enriched in 5-

HT (mM concentration), leading to the question as to whether

serotonylation was relevant to a cell in which 5-HT was not highly

concentrated. More recently, serotonylation of Rho in the

pulmonary artery was demonstrated, but this again is a tissue

exposed to and which clears significant concentrations of 5-HT

[7,8].

We hypothesized that 5-HT would covalently modify systemic

arterial proteins by acting as a substrate for TG, and that this

process was physiologically relevant. Our model was the aorta of

the rat as this blood vessel contracts to 5-HT, possesses a complete

serotonergic system and the receptor mechanisms of contraction

are known [5-HT2A receptor-mediated contraction; 9]. Important

to these experiments was synthesis of a biotin-conjugated 5-HT

that allowed us to identify and track proteins that were

serotonylated. We discovered serotonylation of proteins important

to contraction and cell shape, and that this may have physiological

significance.

Materials and Methods

Animal use/Ethics Statement
Male Sprague-Dawley rats (250–300 g; Charles River Labora-

tories, Inc., Portage, MI, USA) were used. Rats were anesthetized
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with pentobarbital (60 mg kg21, i.p.) prior to removal of tissues.

Procedures that involved animals were performed in accordance

with the guidelines of Michigan State University, and approved by the

Institutional Animal Use and Care Committee.

Immunohistochemistry
Paraffin-embedded tissue sections were dewaxed, unmasked and

taken through a protocol as previously described [4]. Primary

antibodies used were: transglutaminase II (TGII; mouse mono-

clonal TG100, LabVision, Fremont CA, USA), N-epsilon gamma

glutamyl lysine (mouse monoclonal, ab424, Abcam, Cambridge,

MA, USA). In some experiments, primary antibodies were left out

of the experiment, and tissues developed only in the presence of

secondary antibody.

Western analysis
Protein isolation and western blotting procedures were per-

formed as previously described [4] using standard SDS-PAGE

conditions and blotting proteins to nitrocellulose. Primary

antibodies used were TGII (LabVision, Fremont CA, USA),

smooth muscle cell a-actin (mouse monoclonal, Ab-2, EMD

Biosciences, La Jolla, CA, USA) and 5-HT (AbD Serotec, Raleigh

NC, USA). Films were scanned and placed within the figure

without gamma modifications using Adobe Photoshop.

Transglutaminase activity
Protein homogenate (50 mg) was placed in transglutaminase

reaction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM

phenylmethylsulfonyl fluoride, 2 mg/ml aprotinin and leupeptin,

1 mM sodium orthovanadate, 5 mM calcium chloride) containing

pentylamine biotin (BAP; 8 mM) or biotinylated amine (IBL,

Hamburg, Germany). For biotinylation of 5-HT, 5-HT hydro-

chloride (Sigma Germany) and EZ-Link Sulfo-NHS-LC-LC-

Biotin (Pierce) were used. Equimolar amounts of serotonin and

NHS-LC-LC-Biotin were used with pyridine as solvent. After a

period of several hours on a roller mixer, the turbid solution was

stored over night. On next morning, solvent was evaporated in a

vacuum centrifuge and the residue re-suspended in dimethylfor-

mamide (DMF). The coupling of the indole amine to biotin was

checked through 5-HT enzyme immunoassay (ELISA) by running

the ELISA according to manufacturer instructions (IBL Interna-

tional GmbH, Hamburg, Germany Serotonin ELISA cat.

No. RE59121). Instead of Biotin required in the Instructions for

Use included in the kit, freshly synthesized biotinylated serotonin in

different dilutions was used. The purity was checked greater than

90%. Stock concentration was 1.59 mM.

Amines were incubated in the presence of vehicle or the TGII

inhibitor cystamine (0.001–10 mM) at 37uC for one hour. An equal

volume of 26SDS sample buffer was added to stop the reaction and

the samples were boiled for 10 minutes. Samples were separated on

10% polyacrylamide gels (Bio Rad CA, USA), and transferred to

nitrocellulose. Samples were blocked overnight at 4uC in 4% chick

egg ovalbulmin [TBS-0.1% Tween+0.025% NaN3,], washed in

TBS-Tween for 20 minutes, and incubated with streptavidin-linked,

horseradish peroxidase-conjugated secondary antibody (1:2000,

1 hr, 4uC GE Healthcare, Piscataway NJ, USA). ECLH reagents

(GE Healthcare, Piscataway NJ USA) were used to visualize bands.

Films were scanned and placed within the figure without gamma

modifications using Adobe Photoshop.

5-HT measurement
At room temperature, dissected and cleaned aorta were placed

in 100 mL physiological salt solution [PSS: 103 mM NaCl;

4.7 mM KCl; 1.18 mM KH2PO4; 1.17 mM MgSO4-7H2O;

1.6 mM CaCl2-2H2O; 14.9 mM NaHCO3; 5.5 mM dextrose,

and 0.03 mM CaNa2 EDTA]. Tissues were briefly dipped in fresh

PSS and placed in tissue buffer (0.05 mM sodium phosphate and

0.03 mM citric acid buffer (pH 2.5) containing 15% methanol].

Tissue samples were frozen in 280uC until assay. Samples were

thawed, sonicated for 3 seconds and centrifuged for 30 seconds

(10,000 g). Supernatant was collected and transferred to new

tubes. Tissue pellets were dissolved in 1.0 M NaOH and assayed

for protein (Lowry assay). Concentrations of 5-HIAA and 5-HT in

tissue supernatants were determined by isocratic high pressure

liquid chromatography (HPLC/ESA; described below).

Cell culture and 5-HT uptake
Aortic cells were derived from explants of thoracic aorta. Cells

were fed with DMEM supplemented with 10% fetal bovine serum

and 1% penicillin/streptomycin. Cells were plated to P-60 dishes

or coverslips for Western and immunocytochemical experiments,

respectively. Cells used were between passages 2 and 9 and all

explants stained positive for smooth muscle cell a-actin (EMD

Biosciences, La Jolla, CA, USA). Cells were starved of serum

24 hours prior to experimentation because serum contains 5-HT

(determined by HPLC). Cells were incubated for 1 hour in PSS

and (+/210 mM pargyline, a monoamine oxidase A inhibitor)

with vehicle (0.01% DMSO) or fluoxetine (1 mM) prior to addition

of 5-HT (1028–1025 M) or 5-HT-biotin (0–12.7 mM). Cells were

placed on ice, washed with PSS, scraped in tissue (HPLC analyses)

or lysis buffer (Western analyses), and centrifuged (14, 000 rpm,

10 minutes). The supernatant was removed for HPLC or Westerns

(described above). Protein concentration of supernatant and pellet

were measured using the Lowry assay.

HPLC measurement
Samples were thawed, sonicated for 3 seconds and centrifuged

for 30 seconds (10,000 g). Supernatant was collected and trans-

ferred to new tubes. Tissue pellets were dissolved in 1.0 M NaOH

and assayed for protein. Concentrations of 5-HIAA, 5-HTP and 5-

HT in tissue supernatants were determined by isocratic high

pressure liquid chromatography (HPLC/ESA Systems) using

electrochemical detection. An ESA MD-150 C18 column was

used at 0.4 V and 0.6–9 ml/min flow rate (mobile phase: 90 mM

NaH2PO4, 50 mM citric acid, 1.7 mM 1-octanesulfonic acid,

50 mM EDTA, 10% acetonitrile) as compared to standards run

daily. Data are reported as ng amine/ mg protein.

Immunocytochemistry
Cells adherent to cover slips were equilibrated in PSS

30 minutes (+10 mM pargyline) prior to a one hour incubation

with 5-HT-biotin (12.7 mM) or 5-HT (10 mM) and vehicle or

cystamine (10 mM). Cells were rinsed and fixed in 1 mL acetone

(1 minute). Primary antibody used was anti-a-actin, smooth

muscle specific (mouse monoclonal, Ab-2, EMD Biosciences, La

Jolla CA, USA 1:100 in PBS) or anti-5-HT (rabbit polyclonal,

8250-0004, AbD Serotec, Raleigh NC, USA). Secondary

antibodies used were: DyLightTM 488 streptavidin (1:2000,

Rockland Inc, Gilbertsville, PA, USA) and Cy3-conjugated Affini

Pure donkey anti-mouse (1:1000; IgG, Jackson, West Grove PA,

USA) or Cy3-conjugated Affini Pure donkey anti-rabbit (1:1000;

IgG, Jackson, West Grove PA, USA) in PBS. Following rinsing,

cover slips were blotted dry and mounted on slides using Prolong

Gold medium with DAPI (Invitrogen, Carlsbad, CA, USA). Slides

were viewed and photographed on a Nikon TE2000 microscope

using MetaMorph H software (Molecular Devices, Sunnyvale CA,

USA; all at 20uC). The light source was an X-Cite 120
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fluorescence illumination system (EXFO, Mississauga Ontario,

Canada), the camera a cool nap ES monochrome digital camera

(Roper Scientific Photometrics, Pleasanton CA, USA). Slides were

viewed under a 606 Nikon Plan Apo oil-immersion objective

(Nikon Corporation, Toyko, Japan) using non-drying immersion

oil, type a, formula code 1248 (Cargille, Cedar Grove, NJ, USA).

At this magnification, 1 pixel is equivalent to 0.22 microns. Three

Nikon filters were used: UV-2E/C96310M (lot number: C48793),

Cy3 HYQ 96323 (lot number: C71280), and B-2E/C96311 (lot

number: C57657). Excitation ranges were: UV-2E/C 340–

380 nm, Cy5 HYQ 530–560 nm and B-2E/C465–495. Emission

ranges were UV-2E/C435–C485, Cy3 HYA 573–648, and B-2E/

C515–555 nM. Photograph bit depth was 12 nm. No neutral

density filters or dichromic beamsplitters were utilized. The LUT

was linear and covered the full range of data. Gamma values were

equal to 1. Resolution of the photographs was 6966520 pixels

(28.3 pixels/cm). There was no deconvolution, reconstruction,

rendering or projection. Images were unaltered when combined

into the overlay image.

Cell Viability
Confluent petri dishes of rat aortic smooth muscle cells were

rinsed of growth medium and equilibrated in physiological salt

solution (PSS) for 30 minutes at 37uC and 5% CO2. Cells were

incubated for 1 hour in 10 mM cystamine (Sigma-Aldrich, St.

Louis, MO, USA) in PSS at 37uC and 5% CO2. The cystamine

solution was gently removed but not rinsed from the dishes. Cells

were incubated for 5 minutes with 0.05% trypsin-EDTA (Gibco,

Invitrogen, Carlsbad, CA, USA). The cell/trypsin mixture was

transferred to a conical tube and neutralized with 1.5 mL DMEM

(Gibco, Invitrogen, Carlsbad, CA, USA) per 1 mL trypsin. This

was centrifuged at 1400 RPM for 6 minutes. The supernatant was

removed and the cell pellet was resuspended in 1 mL DMEM.

Equal parts cell suspension and 0.4% trypan blue (Sigma-Aldrich,

St. Louis, MO, USA) were mixed immediately before cell viability

was ascertained using a Bright Line hemocytometer (Reichert,

Buffalo, NY, USA) and Nikon TMS phase-contrast microscope

(Nikon, Tokyo, Japan). Cells that took up the blue dye were

deemed dead and percent viability was calculated by dividing the

number of living cells (non-dye containing) by the total number of

cells per square centimeter.

Tandem Mass Spectrometry
Tissue homogenates were taken through a transglutaminase

activity assay with and without 5-HT-biotin (12.7 mM). Samples

incubated with streptavidin-coated magnetic beads (25 mL,

Invitrogen, Carlsbad CA, USA) for 1 hour at room temperature,

with tumbling. Samples were magnetized to pull down biotin-

labelled proteins and supernatant discarded. The magnetic beads

were boiled in 26 SDS loading buffer, and separated on

polyacrylamide gels (10%). Bands were excised and taken through

tandem mass spectrometry by the proteomics core at Michigan State

University. Those bands reported are those that only appeared in 5-

HT-biotin-labelled samples.

Immunoprecipitation
Immunoprecipitation was carried out as previously described

[9], using primary antibody against smooth muscle cell a-actin

[(1 mg/200 mg protein) EMD Biosciences, La Jolla, CA, USA] in a

phosphate-buffered saline based buffer. Samples were incubated

overnight with protein A/G beads (25 ml/sample, Santa Cruz

Biotechnologies, Santa Cruz, CA, USA), washed 36 with a

protease-inhibitor rich phosphate buffered saline and then beads

spun down. Captured beads were incubated in 26 SDS sample

buffer, boiled for 10 minutes, centrifuged and the supernatant

loaded onto standard SDS-PAGE gels (10%), at which point

standard western protocol was used.

Isometric contraction
Helical strips of endothelial cell-intact strips were mounted in

tissue baths for isometric tension recordings using Grass

transducers and PowerLab data Acquisitions (Colorado Springs,

CO, USA). Strips were placed under optimum resting tension

(1500 milligrams) and equilibrated for one hour, with washing,

before exposure to compounds. Tissue baths contained warmed

(37uC), aerated (95% O2/CO2) PSS. Administration of an initial

concentration of 10 mM phenylephrine (PE) was used to test

arterial strip viability. All tissues had an intact endothelial cell

layer, evidenced by a robust (.50%) relaxation to acetylcholine

(1 mM) in tissues contracted with a half-maximum concentration

of PE. Tissues were incubated for one hour with vehicle (water) or

cystamine (0.1–1 mM) for one hour prior to cumulative addition

of 5-HT (1029–1025 M) or the non-receptor mediated agonist

potassium chloride (KCl, 6–100 mM). Data are reported as the

percentage of the initial contraction to PE [9].

Materials
All compounds were purchased from Sigma Chemical Compa-

ny (St. Louis, MO, USA) unless otherwise noted.

Statistical analyses
All values are reported as means6standard error of the mean

for the number of animals or explants (N) indicated. Data were

analyzed by ANOVA with repeated test where more than two

groups were compared (Graph Pad Prism), or two-tailed t test

when two groups were compared. P values smaller than 0.05 were

considered significant.

Results

Transglutaminase is present and functional in
aortic tissue

Figure 1A shows immunohistochemical localization of TG II

to the smooth muscle layers of the media in the aorta (lying

between elastin/collagen cables), and, to a lesser extent,

localization of the classical protein product of TG, N(e)-(c-

glutamyl) lysine bonds. Using the same TG antibody, a robust

band of the appropriate molecular weight (,70 kDa) was

identified in aortic homogenate (figure 1B). It is unclear whether

the bands smaller in size but recognized by the TG antibody are

degradative products. Figure 1C demonstrates that the TG

present in aortic homogenates is functionally active as proteins

readily incorporate the biotin-linked amine donor pentylamine

biotin (+BAP), compared to samples that had no amine donor

(2BAP). Protein modification was significantly reduced by

incubating samples with the TG inhibitor cystamine, observed as

a decrease in intensity of bands. Cystamine concentration (1–

10 mM) was chosen, as in preliminary experiments a concentra-

tion response curve showed 0.001 mM–10 mM to have concen-

tration-dependent inhibition of protein amination, with 1–10 mM

cystamine causing maximal inhibition (data not shown).

Endogenous 5-HT is present in arterial tissue and protein
serotonylation is carried out by TGII

Figure 2A (left) demonstrates measurable amounts of 5-HT in

freshly dissected rat aorta as detected by HPLC. The monoamine

oxidase metabolite of 5-HT, 5-HIAA, was also present. The

Protein Serotonylation
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Figure 1. TG protein and activity are observed in rat aorta. A. Immunohistochemical localization of TG II and the classical protein product
containing an N(e)-(c-glutamy)-lysine in band in normal rat thoracic aorta. Arrows point to positive staining that is present in samples incubated with
primary antibody (primary) but is lost when the primary antibody is removed from the reaction (no primary). Representative of four (4) separate
animals. L = lumen. B. Western analysis demonstrating the presence of TGII in homogenate of the rat aorta (arrow). Each lane represents a different
animal. Positive control is the rat liver. C. TG activity assay in homogenate from rat thoracic aorta. Samples were incubated in normal TG buffer (in the
absence and presence of the TG substrate BAP (2BAP, +BAP respectively), or TG inhibitor cystamine (10 mM). Representative of N.18.
doi:10.1371/journal.pone.0005682.g001
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Figure 2. Endogenous 5-HT and TGII activity exists in rat aorta. A. Left: HPLC measurement of endogenous 5-HT and 5-HIAA in rat thoracic
aorta for the number of animals indicated in parentheses. Bars and vertical lines represent means6SEM. Right: Recognition of proteins by an anti-5-
HT antibody in normal rat aortic homogenate not exposed to the monoamine oxidase inhibitor pargyline or exogenous 5-HT. Each lane represents a
separate animal, and this represents an N = 8. B. Left: TG activity assay using 5-HT-biotin as substrate in homogenates of rat thoracic aorta. Samples
were incubated with or without the TG inhibitor cystamine (10 mM), as well as in the presence of cystamine in zero calcium TG buffer. Representative
of N.30 different samples. Right: Lack of biotinylated proteins when biotin alone was used as a substrate in the absence or presence of cystamine.
Each lane represents a different animal, representative of N = 8.
doi:10.1371/journal.pone.0005682.g002
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possibility of endogenous protein being serotonylated is supported

by the protein bands recognized by an anti-5-HT antibody in

homogenates of normal rat aorta not exposed to pargyline or

exogenous 5-HT (figure 2A, right). Figure 2B (left) demon-

strates that when 5-HT, in its biotinylated form, was incubated

with arterial homogenates, a significant number of proteins were

labelled (i.e. serotonylated) in a cystamine (10 mM)-dependent

fashion. Removal of calcium from the buffer (cystamine +0 Ca2+)

did not further reduce protein serotonylation. When biotin alone

was used at an equivalent concentration (12.7 mM), no incorpo-

ration of biotin into proteins could be observed (figure 2B,
right). A narrow doublet at ,90 kDa was observed, but this was

not cystamine-inhibitable, indicating that this likely represents

endogenous biotin.

Protein serotonylation is time- and concentration-
dependent, 5-HT2A receptor-independent

Serotonylation of proteins was detected as early as 1 minute

after addition of 5-HT-biotin (12.7 mM), with 5 bands (,250–280,

220, 110, 70 and 40 kDa) being serotonylated rapidly and the

process maximized by 30 minutes (figure 3A, compared to BAP

as a substrate, 8 mM). Protein serotonylation was saturable, and

serotonylation of proteins occurred at 5-HT concentrations that

circulate in normal conditions (1 hour incubation, figure 3B).

Serotonylation of proteins was inhibited by adding an excess of 5-

HT (weight/weight) to the reaction mixture (figure 3C, left).
The right panel of figure 3C shows densitometry for the 40–

42 kDa band in the left figure (arrow) in the absence (control, 0) or

presence of excess 5-HT. Serotonylation of any protein was not

antagonized by the 5-HT2A receptor antagonist ketanserin

(100 nM, not shown).

Serotonylation occurs in whole cells and is important to
tissue function

Intact cells were capable of taking up 5-HT, and utilizing 5-HT

in TG reactions. Figure 4A shows the results of 5-HT uptake

studies in which cultured aortic smooth muscle cells were first

incubated with the monoamine oxidase inhibitor pargyline

(10 mM) to reduce 5-HT metabolism; 5-HIAA concentrations

were near zero (open symbol). Cells were then exposed to

increasing concentrations of 5-HT in the absence and presence of

the serotonin transporter inhibitor fluoxetine (1 mM). Exogenous

5-HT was highly concentrated by the cells in a transporter-

dependent manner. 5-HT-biotin was also taken up by the cells,

with resultant concentration-dependent serotonylation of proteins

(figure 4B). Serotonylation of some proteins was reduced (using

the 3.2 mM 5-HT-biotin concentration, 75 and 40–42 kDa

proteins (arrows) by ,28% as ascertained through densitometry;

also compare general density of 6.4 mM concentration+/2fluox-

etine) but not abolished by the serotonin transporter inhibitor

fluoxetine.

Tandem mass spectrometry identifies a-actin as a
serotonylated protein

Tandem mass spectrometry was used to identify the major

proteins serotonylated. For these experiments, TG reactions were

carried out normally in samples with and without 5-HT-biotin and

then processed as described for tandem mass spectrometry

(Materials and Methods). Five proteins were identified in every

run of three different experiments, and those reported were only

identified in reactions incubated with 5-HT-biotin. Smooth muscle

a-actin (,42 kDa), b-actin (,41 kDa), c-actin (,41 kDa), myosin

heavy chain (,223 kDa) and the actin-binding protein filamin A

(,281 kDa) were identified as the major serotonylated proteins.

The next experiments focused on a-actin.

Use of a streptavidin-linked HRP conjugated secondary

antibody in blots of samples immunoprecipitated with smooth

muscle a-actin validated that 5-HT-biotin was incorporated into

a–actin, a process that was abolished by the TG inhibitor

cystamine (figure 5A). Smooth muscle a-actin was present in all

samples. The physiological relevance of serotonylation is support-

ed by the abolishment of 5-HT-induced aortic contraction by

cystamine in a concentration-dependent manner (figure 5B,
top). By contrast, KCl-induced contraction was not abolished but

was modestly reduced by cystamine (figure 5B, bottom; % PE

contraction: vehicle = 85.864.00%; cystamine = 61.964.41%,

p,0.05). In these same tissues, maximal contraction to PE

(10 mM) was reduced by ,80%.

Two other lines of evidence support protein serotonylation.

Figure 6A demonstrates that when cultured aortic smooth muscle

cells are exposed to either 5-HT (left) or 5-HT-biotin (right)

exogenously, the molecule is incorporated into the cell and

colocalizes with smooth muscle a-actin. Presence of the TG

inhibitor cystamine reduced the incorporation of 5-HT-biotin into

actin, and disrupted a-actin filamentation (observed as loss of

straight fibers, Figure 6B). The highest concentration of

cystamine used (10 mM, 1 hour incubation in PSS) modestly but

significantly reduced the viability of cells as assessed by trypan blue

exclusion assay (69.063.2%, 2 explants, in duplicate), compared

to cells treated with PSS without cystamine (9262.5%).

Serotonylation occurs in non-vascular tissues
The final experiments tested whether serotonylation was unique

to vascular tissue. We compared incorporation of the same

concentration of 5-HT biotin (12.7 mM) into equivalent amounts

of total protein isolated from aorta, stomach fundus (non-vascular

smooth muscle), intestine (non-vascular smooth muscle and 5-HT

synthesizing tissue) and cerebral cortex (non-muscular). Figure 7
demonstrates that all tissues actively incorporated 5-HT-biotin

into proteins in a TG-dependent fashion, as cystamine inhibited

serotonylation. The proteins serotonylated were not, however,

identical, though the actin proteins at ,40 kDa were clearly

present in all smooth muscle-based tissues.

Discussion

The biological effects of 5-HT are diverse and numerous, with

5-HT exerting an effect in every physiological system. The present

work reveals a receptor-independent mechanism utilized by 5-HT

to modify vascular function, namely uptake of 5-HT and covalent

modification of proteins that are involved in contraction. This

work is important because of the implication of 5-HT in vascular

diseases that include hypertension [systemic and pulmonary;

10,11] and atherosclerosis [12].

Serotonylated proteins
Confirming other reports, TG was present and functional in

arterial tissue, both in homogenates and in aortic smooth muscle

cells [13,14]. Multiple proteins were serotonylated upon incuba-

tion with 5-HT-biotin, and this process was independent of 5-HT

receptor interaction as inhibition of the receptor primarily

expressed and active in the aorta, the 5-HT2A receptor, did not

modify protein serotonylation. While other 5-HT receptors are

expressed in the aorta, they play a minimal role in contraction,

and we have made the assumption that they would also play a

minimal role in serotonylation. The proteins identified through

mass spectrometry as being serotonylated share the common
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Figure 3. Protein serotonylation is time- and concentration-dependent in aortic homogenates and can be competed against by
excess 5-HT. A. Time course of protein modification for 5-HT-biotin and BAP as substrates. Representative of N = 3 separate experiments. B.
Concentration-response curve for aortic protein serotonylation. Representative of N = 5 separate experiments. C. Left: Ability of weight/weight excess
of 5-HT to compete off 5-HT-biotin (12. 7 mM) in a TG reaction. Lower blot demonstrates that protein was loaded equally into all lanes as observed
through equal a-actin expression. Right panel shows densitometry for the band at 40–42 kDa protein. Representative of N = 6 separate experiments.
doi:10.1371/journal.pone.0005682.g003
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function of being involved, directly or indirectly, in contractility. It

is reasonable to argue that these particular proteins—the actins,

filamin A and myosin heavy chain– are serotonylated because they

are among the most abundant in a smooth muscle-rich tissue.

Chowdhury has demonstrated the association of TG with cellular

stress fibers [15], placing all the elements for serotonylation close

together. This idea is supported by the comparative blots in the

smooth muscle-rich stomach fundus and intestine, in which the

pattern of protein serotonylation is generally similar. This

contrasts with the cortex. While cytoskeletal proteins such as b
and c actin are likely vital to many cellular functions in cortical

tissue, smooth muscle a-actin is not heavily expressed. Other

proteins are serotonylated in the cortex, evidenced by the different

banding pattern of the TG reaction (figure 7). These findings

suggest protein serotonylation is not specific to vascular smooth

muscle.

For serotonylation to occur, intracellular 5-HT must exist.

Arterial smooth muscle has two sources of 5-HT. First, arteries

Figure 4. Aortic smooth muscle cells take up 5-HT and 5-HT-biotin; 5-HT-biotin is incorporated into cellular proteins. A. 5-HT uptake
of rat aortic smooth muscle cells in the presence of the serotonin transporter inhibitor fluoxetine (1 mM). 5-HIAA levels were nearly zero, and are thus
not visible but are marked on the graph. Data are from N = 6 separate aortic explants. Bars and vertical lines represent means6SEM. B. Serotonylation
of cytosolic proteins upon incubation of 5-HT-biotin with rat aortic vascular smooth muscle cells in the presence and absence of the serotonin
transporter inhibitor fluoxetine (1 mM); lower blot is a-actin loading control. Representative of cells from 6 different aortic explants.
doi:10.1371/journal.pone.0005682.g004
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possess the serotonin transporter (SERT) and are able to take

up exogenous 5-HT when it is released from 5-HT rich

platelets [5]. Importantly, we presently demonstrated the

ability of aortic smooth muscle cells to take up and concentrate

5-HT in a SERT-dependent fashion (figure 4). SERT is

important for arterial tissue to take up exogenous 5-HT, but

SERT is not solely responsible for uptake of 5-HT into tissues

and cells. Arteries from SERT knockout rats continue to take

up 5-HT, though in a diminished capacity [16]. Alternative

means of 5-HT uptake is also one explanation for the inability

of fluoxetine to abolish protein serotonylation in aortic smooth

muscle cells (figure 4). Uptake, through multiple sources, is

thus one way intracellular 5-HT can be enriched. Second,

arteries have the ability to synthesize 5-HT [4]. Thus, both

exogenous and endogenous 5-HT could potentially be used in

serotonylation.

Figure 5. a-actin is serotonylated in aortic smooth muscle cells and inhibition of TG activity reduces aortic contraction to 5-HT. A.
Immunoprecipitation of smooth muscle a-actin from rat aortic homogenates exposed to 5-HT-biotin in a standard transglutaminase reaction. Blots
were developed using a streptavidin secondary (top), or exposed to a primary antibody against a-actin (bottom) and developed using standard
horseradish peroxidase secondary antibody. Representative of N = 6 different experiments. B. Effect of vehicle (filled symbol) and cystamine (0.1–
1 mM; open symbol) on 5-HT (top) and KCl (bottom)-induced contraction in isolated rat aorta. * indicates statistical difference from vehicle-incubated
values. Points and vertical lines represent means6SEM for number of animals in parentheses.
doi:10.1371/journal.pone.0005682.g005
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The presence of protein bands recognized by an antibody

against 5-HT in samples that had not been exposed to either

pargyline or exogenous 5-HT is important, because it suggests

serotonylation of protein occurs in arterial smooth muscle exposed

to endogenous 5-HT (internally synthesized or taken up). This is

further supported by observations made in cultured smooth

muscle. Normal serum, necessary to cellular growth, contains 5-

HT (,100 nM, estimated by HPLC). We routinely observe basal

levels of endogenous serotonylation of proteins, and even serum-

starving cells for 48 hours does not completely remove all

serotonylated protein. Thus, one limitation of our cell experiments

is that the anti-5-HT antibody we use cannot distinguish between

5-HT incorporated by incubation with media or our exogenously

added 5-HT. One can speculate that because serotonylation may

be irreversible, as are other TGII-dependent processes, serotony-

lation may be a signal for modifying the longevity of a protein in a

cell. This idea will have to be investigated further. The important

finding here is the ability of living cells to take up 5-HT actively

and incorporate this 5-HT into proteins. Previous reports

described 5-HT-derivatized proteins in 5-HT-rich platelets

[17,18], and our work demonstrates that serotonylation of proteins

can occur in tissues relatively poor in 5-HT.

Focus on a-actin and TG
The ability of 5-HT to associate with actin filaments has been

known for over twenty years [19,20], but this work is the first

report to demonstrate direct modification of cytoskeletal/contrac-

tile proteins by 5-HT. Several lines of evidence support the

association of 5-HT with a-actin, including incorporation of both

5-HT and 5-HT-biotin into a-actin protein, colocalization of 5-

HT and 5-HT-biotin with a-actin in living smooth muscle cells

and inhibition of 5-HT biotin placement on actin by the TG

inhibitor cystamine. Isometric contraction in general and that

elicited by 5-HT are a-actin-dependent processes [9]. 5-HT-

induced isometric contraction was abolished by cystamine while

contraction to KCl was modestly reduced. KCl was used in these

experiments as a non-receptor dependent contraction, the

mechanism of which is supported by L-type calcium channel

activation and Rho Kinase [21,22]. It was important to

demonstrate that cells are functional in the presence of cystamine,

Figure 6. 5-HT and 5-HT-biotin localize to a-actin and are incorporated into proteins. A. Immunocytochemistry of aortic smooth muscle
cells incubated with exogenous 5-HT (12.7 mM; left) or 5-HT biotin (12.7 mM; right) and a-actin for 1 hour prior to fixation and visualization using an
antirabbit fluorescent secondary (for 5-HT) or streptavidin-conjugated secondary (for 5-HT biotin). Representative of four different aortic explants. B.
Effect of cystamine (10 mM) on 5-HT-biotin localization in aortic smooth muscle cells. Representative of four different aortic explants.
doi:10.1371/journal.pone.0005682.g006
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and they are as evidenced by continued contraction to KCl. The

inhibition of 5-HT-induced contraction by cystamine suggests that

transglutaminase activity is crucial to 5-HT-induced contraction,

perhaps by influencing serotonylation of proteins critical to

contraction. However, given the effects of cystamine on KCl-

induced contraction and contraction to a maximal concentration

of phenylephrine, cystamine is likely influencing the function of

contractile elements independent of the process of serotonylation.

For example, TGII can also function as a G protein, named Gh,

and thus can serve contractility in a more global manner [23]. We

have not been able to obtain TG2 knockout mice to separate out

the role of TG in mediating 5-HT vs general agonist-stimulated

arterial contractility. TG2 knockout mice are viable, and are

suggested to be so by increased activity of TG1.

It is a goal to examine other TG inhibitors in contractility

assays, but ones examined other than cystamine have questionable

selectivity, and thus results from these experiments are difficult to

interpret. Cystamine is not without problems, as trypan blue

exclusion experiments suggested that high concentrations (10 mM)

reduced cell viability by approximately 24%. Thus, it would be

ideal to have additional inhibitors. We have tested dansylcada-

verine (also a substrate for TG) as a TG inhibitor, and it abolishes

both 5-HT and KCl-induced maximum contraction (data not

shown). Dansylcadaverine has been published as a substance that

can modify receptor internalization as well as inhibit TG activity

[24]. Because of these many potential activities, it is difficult to

interpret the results from experiments in which dansylcadaverine is

used. High levels of guanosine triphosphate (GTP) have been

reported to inhibit TG activity, but high GTP would activate any

number of other signalling processes [25]. Small molecular

inhibitors of TG are being developed but are not readily available

[26,27]. Thus, tools to continue this work should become available

in the near future and will be valuable in addressing many of the

important issues addressed here.

TG II, the isoform we observed to be expressed in arteries, is

ubiquitous and calcium-dependent [23,28,29]. To be fair, we did

not test for any of the other isoforms of TG reported [23]. TG, in

general, has been implicated in the important vascular events of

remodelling and Rho activation [30–35]. Cystamine exerts a

largely irreversible inhibition against TG [36]. The functions of

TG are themselves considered irreversible and mechanisms that

reverse the effects of TG are unknown. Thus, it is presently

unclear how the process of serotonylation, as carried out by TG, is

regulated. Is serotonylation a terminal event for a protein, or can

this be undone? Importantly, mechanisms of regulation for TG

activity and expression are known, including the ability of nitric

oxide and guanine nucleotides to modify TG function [37–39].

Thus, acute regulation of the serotonylating enzyme are

recognized.

Perspectives and Limitations
There are a number of limitations to this study that need to be

recognized. First, we used a conduit artery for a majority of this

work. We cannot directly apply our findings to how 5-HT, through

TG-dependent mechanisms, plays a role in control of total

peripheral resistance, an event largely supported by the smaller

resistance arteries. Second, it has been difficult to demonstrate acute

effects of 5-HT-biotin/5-HT on actin filamentation, structure or

Figure 7. Serotonylation occurs in multiple tissues, smooth muscular and non-smooth muscular. Serotonylation of proteins from
homogenates of rat thoracic aorta, rat stomach fundus, rat small intestine and rat cerebral cortex. The right half of the blot shows inhibition of
serotonylation by the TG inhibitor cystamine. Representative of three separate experiments, each using 2 samples from different animals.
doi:10.1371/journal.pone.0005682.g007

Protein Serotonylation

PLoS ONE | www.plosone.org 11 May 2009 | Volume 4 | Issue 5 | e5682



dynamics in the culture system given the synthetic nature of the cells.

We have also been unable to completely remove endogenous 5-HT

in these cells and whole tissues (synthesized). Third, identification of

the glutamine residues modified by 5-HT biotin/5-HT would be

helpful in ultimately allowing for determination of how serotonyla-

tion changes protein function. All proteins that were serotonylated

contain a significant number of glutamine residues (actins: ,20/700

residues; filamin A = 65/2647 residues, myosin heavy chain = 129/

1938; rat sequences from NCBI), and thus the different sites and

combinations thereof that could be serotonylated are numerous. In a

similar vein, there are other 5-HT mediated functions, in addition to

directly stimulated contraction, that have yet to be addressed in

terms of the role of TG-catalyzed protein serotonylation. These

include the ability of 5-HT to act as a mitogen and to potentiate the

contractile (and mitogenic) effects of other vasoactive substances.

The latter is a particularly important function, as the mechanisms

behind contractile potentiation/synergy stimulated by 5-HT are not

well understood [40]. There is support for an intracellular process

utilizing 5-HT to be important for vascular smooth muscle cell

mitogenesis, as pulmonary arterial smooth muscle cells depend on

the function of the serotonin transporter for 5-HT-stimulated

mitogenesis [41,42]. Finally, we have focused on a-actin modifica-

tion by 5-HT, as understanding vascular smooth muscle function is

central to our laboratory. We have yet to investigate the effects of

serotonylation on the cytoskeletal proteins filamin A, b or c actin.

Filamin A is a large protein (281 kDa) that serves as an anchor for

proteins like b and c actin [43]. The significant serotonylation of

these proteins suggests that 5-HT exerts a concerted effect on

proteins involved in contraction and the cytoskeleton. Another

potential avenue of interest for future work is how 5-HT modifies

proteins that can modify 5-HT’s biological effects and concentration.

These include 5-HT receptors, SERT, and enzymes critical to the

synthesis of 5-HT such as tryptophan hydroxylase. An understand-

ing of whether and how 5-HT potentially feeds back to elements

necessary to 5-HT signal transduction may provide new insight into

the regulation of serotonergic systems.

In summary, these studies present the novel findings of

serotonylation of contractile proteins in vascular smooth muscle

by the enzyme TG. In particular, the covalent modification of

smooth muscle a-actin by 5-HT supports that 5-HT influences

arterial contractility in a receptor-independent manner. These

findings suggest that primary amines like 5-HT may carry out

biological effects in receptor-independent manners, and thus this

work potentially extends to numerous other avenues of research.
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