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Abstract

Cilengitide is a high-affinity cyclic pentapeptdic aV integrin antagonist previously reported to suppress angiogenesis by
inducing anoikis of endothelial cells adhering through aVb3/aVb5 integrins. Angiogenic endothelial cells express multiple
integrins, in particular those of the b1 family, and little is known on the effect of cilengitide on endothelial cells expressing
aVb3 but adhering through b1 integrins. Through morphological, biochemical, pharmacological and functional approaches
we investigated the effect of cilengitide on aVb3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the
b1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface aVb3, stimulated phosphorylation of
FAK (Y397 and Y576/577), Src (S418) and VE-cadherin (Y658 and Y731), redistributed aVb3 at the cell periphery, caused
disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached
HUVEC adhering on low-density b1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented
cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of aVb3 and VE-cadherin and partially
prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together,
these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit
signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability.
These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.
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Introduction

Endothelial cell - matrix interactions mediated by integrin

adhesion receptors play a critical role in vascular development,

angiogenesis and vascular homeostasis [1]. Integrins are heterodi-

meric cell surface complexes formed by non-covalently associated a
and b subunits, consisting of large extracellular domains, single

transmembrane spanning domains and short cytoplasmic tails. A

particular feature of integrins is their tight regulation of ligand

binding activity. Transition from a low to a high affinity state

(‘‘affinity maturation’’) can be induced by intracellular signaling

events (‘‘inside-out’’ signaling) or by high-affinity ligands [2]. Ligand

binding induces allosteric changes in the receptor conformation,

leading to the activation of intracellular signaling pathways,

including the Ras-MAPK, PI3K-PKB-mTOR and small GTPases

(e.g. Rho, Rac) pathways (‘‘outside-in’’ signaling) [2]. Since integrins

do not possess intrinsic enzymatic activities they require interaction

with cytoplasmic adaptor molecules and kinases, including FAK

and Src-family kinases, to transduce signaling events. Integrin-

mediated signaling is critical for the stabilization of cell adhesion

and the promotion of cell migration, proliferation and survival [2].

Integrin aVb3 is expressed at low levels on quiescent endothelial

cells, while it is strongly induced on angiogenic endothelial cells

present in granulation tissue and cancer, and is considered as an

attractive therapeutic target to inhibit pathological angiogenesis

[3]. Pharmacological inhibition of aVb3 suppresses angiogenesis

in many experimental models and aVb3 antagonists (i.e.

antibodies, peptides and peptidomimetics) are being developed

as antiangiogenic drugs [4]. Cilengitide [5] (EMD121974) is a

cyclic Arg-Gly-Asp (RGD)-derived peptide binding with high

affinity to aVb3 (IC50 of 0.6 nM) and inhibiting aVb3 and aVb5-

dependent adhesion [6]. Cilengitide displays antiangiogenic effects

in vitro [7] and in vivo [8–10]. It exerts antitumor effects against

experimental melanoma and brain tumors [8,9,11,12], it sensitizes

endothelial cells to TNF cytotoxicity in vitro [13] and enhances

antitumor effects of chemotherapy [14] and radiotherapy [15] in

vivo. Cilengitide is in clinical development as anticancer drug. As a

single agent it is well-tolerated [16] and shows evidence of durable

responses in patients with recurrent gliomas [17,18]. In combina-

tion with chemotherapy it showed evidence of activity in pancreas

cancers [19] and in highly vascularized head and neck tumors

[20]. Cilengitide is now in phase III clinical testing in glioblastoma

in combination with radio- and chemotherapy [21].

It is generally assumed that the antiangiogenic activity of

cilengitide is due to the inhibition of sprouting and differentiation

and the induction of anoikis of angiogenic endothelial cells
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relaying on aVb3/aVb5 for adhesion and survival [7,22].

However, in addition to aV integrins, angiogenic endothelial cells

express multiple integrins, including a1b1, a2b1, a4b1, a5b1,

a6b1, and a6b4, which are not targeted by cilengitide [3].

Adhesion through these integrins might compromise the anti-

angiogenic activity of cilengitide. Little is known on the effect of

cilengitide on endothelial cells expressing aVb3/aVb5 but

adhering mostly through other integrins, in particular those of

the b1 family.

To address this question, we examined the effect of cilengitide

on HUVEC, which express aVb3, under condition of b1 integrin-

mediated adhesion. Here we demonstrate that HUVEC exposure

to cilengitide results in the phosphorylation of Src, FAK and VE-

cadherin, the accumulation of aVb3 at the cell edge, the

disappearance of VE-cadherin from cell-cell contacts and the

increase in HUVEC monolayer permeability.

Results

Cilengitide causes disappearance of aVb3 from focal
adhesions and promotes its accumulation at the cell
periphery

Cilengitide efficiently inhibits aVb3-mediated cell adhesion and

induces detachment of endothelial cells cultured on aVb3 ligands,

such as vitronectin or gelatin [13]. To test the effect of cilengitide

on endothelial cells expressing aVb3 but mostly using b1 integrins

for their adhesion, we seeded HUVEC on fibronectin and collagen

I. HUVEC use predominantly a5b1 to adhere to fibronectin (with

minor contribution of aVb3) and a1b1/a2b1 to adhere to

collagen I [23]. Subsequently we exposed adherent HUVEC to

cilengitide at a clinically-relevant concentration (i.e. 10 mM, [17])

or EMD135981, an Arg-Ala-Asp (RAD)-based inactive cyclopep-

tide. First we monitored the effect of cilengitide on aVb3

localization. In HUVEC plated on fibronectin, aVb3 was present

at focal adhesions while b1 integrins clustered at fibrillar

adhesions, as previously observed [24]. Cilengitide, but not

EMD135981, caused loss of aVb3 from paxillin-positive focal

adhesions and promoted the appearance of thin, aVb3-positive

and paxillin negative linings at the cell edge (Figure 1, arrows).

The localization of b1 integrins at fibrillar adhesions was not

perturbed by cilengitide. HUVEC cultured on collagen I showed

fewer focal adhesions while had well-developed fibrillar adhesions.

Cilengitide treatment induced aVb3 accumulation at the cell

border without affecting b1 integrin localization (Figure 1).

Cilengitide causes VE-cadherin disappearance from
cellular junctions

VE-cadherin is a major endothelial cell junctional molecule

mediating cell–cell adhesion [25]. It has been previously reported

that integrin ligation through multivalent fibronectin-coated beads

disrupted VE-cadherin-containing adherens junctions in bovine

aortic endothelial cells [26]. We therefore tested, whether aVb3

ligation by monovalent cilengitide affected VE-cadherin localiza-

tion. In confluent monolayers of HUVEC cultured for 18 hours

on fibronectin or collagen I, VE-cadherin was localized at cell-cell

contacts (Figure 2a and data not shown). Addition of cilengitide

markedly disrupted VE-cadherin localization at cellular junctions,

while the EMD135981 peptide was ineffective. Stimulation with

VEGF also caused VE-cadherin disappearance from cellular

junctions (Figure 2a), consistent with previous reports [27].

Next, we performed aVb3 and VE-cadherin co-staining

experiments to monitor the spatial relationship between the

appearance of aVb3 at the cell periphery and loss of VE cadherin

from cell-cell junctions. In confluent HUVEC cultures VE-

cadherin and aVb3 were localized at different locations (cell-cell

contacts and focal adhesions, respectively) (Figure 2b, control).

Upon stimulation with cilengitide, VE-cadherin staining became

discontinuous and aVb3 appeared at cell borders, typically at sites

where VE-cadherin disappeared from cellular contacts (Figure 2b,

time course). Paralleling loss of VE-cadherin from cell-cell

junctions, ‘gaps’ appeared in the monolayer (Figure 2b, asterisks),

consistent with diminished cell-cell adhesion and cell retraction.

Concomitant presence of VE-cadherin and aVb3 at cell-cell

contacts was very rarely observed (Figure 2c, arrowheads),

suggesting that co-localization of aVb3 and VE-cadherin is a

rather mutually exclusive event.

Taken together, these results indicate that exposure of confluent

HUVEC to cilengitide while cultured on fibronectin or collagen I,

resulted in the redistribution of aVb3 from focal adhesions to the

cell periphery and the concomitant disappearance of VE-cadherin

from cellular junctions.

Cilengitide activates cell surface aVb3 integrin
The disappearance of VE-cadherin from cell-cell contacts

suggested that cilengitide-bound integrin aVb3 might initiate

intracellular signaling events by activating aVb3. To test this

hypothesis we monitored the capacity of cilengitide to induce

affinity maturation of aVb3 on endothelial cells using antibodies

(i.e. LIBS-1 and CRC54) recognizing ligand-induced binding sites

(LIBS) on b3 integrins [28,29]. Cilengitide, but not EMD135981,

induced LIBS-1 and CRC54 epitope expression on HUVEC in

suspension, without altering total cell surface levels of aVb3 as

detected by LM609 mAb (Figure 3a). Addition of MnCl2, a known

integrin activator, also induced LIBS-1 and CRC54 epitope

expression (data not shown) as previously reported [24]. Cilengi-

tide had no effect on b1 LIBS expression as detected by mAb

HUTS-21 (data not shown). To test whether cilengitide-induced

affinity maturation also occurred on adherent HUVEC, we

exposed fibronectin-adherent HUVEC to cilengitide,

EMD135981 or MnCl2 and stained them with CRC54 (LIBS-1

mAb does not work on fixed cells) and LM609. In unstimulated

HUVEC, focal adhesions were positive for CRC54, consistent

with the ligated/active state of aVb3 (Figure 3b). Upon cilengitide

stimulation we observed CRC54-positive patches at the cell

periphery, consistent with a cilengitide-ligated (activated) state

(Figure 3b, arrows). In comparison, MnCl2 treatment enhanced

aVb3 clustering and expression of the CRC54 epitope at focal

adhesions as already reported [24].

Cilengitide induces Src and FAK phosphorylation
Next we sought after evidence for cilengitide-induced intracel-

lular signaling events. Src-dependent phosphorylation of focal

adhesion kinase (FAK) is one of the first signaling events initiated

by integrin activation [2,3]. Src, like other Src family kinases, is

negatively regulated though the phosphorylation of a carboxyl-

terminal tyrosine residue (Y529 in human Src). This phosphory-

lation forces the Src C-terminal domain to interact with the SH2

and SH3 domains, thus forming a loop that masks the Src kinase

domain [30]. Disruption of this loop, achieved through protein

tyrosine phosphatases (i.e. PTPa, PTPIB, Shp2) –mediated

dephosphorylation of Y529, or via integrin clustering in the

absence of Y529 dephosphorylation [31], allows Src to interact with

its substrates via SH2 and SH3 domains. Cilengitide treatment of

confluent HUVEC, increased Src phosphorylation of tyrosine

residue Y419 without decreasing phosphorylation of Y529

(Figure 4a), consistent with integrin-mediated Src activation, and

promoted FAK phosphorylation at tyrosine residues Y576 and

Y577, two well-characterized phosphoacceptor sites of Src [32],

aVb3 Modulates VE-Cadherin
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relative to non-treated or EMD135981-treated cells (Figure 4b).

The Src kinase inhibitor CGP77675 [33] suppressed Y419 Src and

Y576 FAK phosphorylation (Figure 4a and 4b).

Cilengitide induces VE-cadherin phosphorylation at
residues Y658 and Y731

Src was shown to phosphorylate the VE-cadherin cytoplasmic

domain in response to VEGF stimulation [34]. We therefore tested

whether cilengitide induced Src activation resulted in the

phosphorylation of the VE-cadherin cytoplasmic domain. Cilengi-

tide treatment induced VE-cadherin phosphorylation at Y658 and

Y731, which correspond to the binding sites for p120 catenin and

b-catenin, respectively [35]. Addition of CGP77675 (2.5 mM)

strongly reduced basal and cilengitide-induced phosphorylation of

both residues (Figure 5a). As reported, VEGF stimulation induced

Y658 phosphorylation and to a lesser extent Y731 phosphorylation,

which were also inhibited by CGP77675. In contrast to VEGF,

however, cilengitide did not induce phosphorylation of MEK 1/2,

Akt, and Ik-B, (Figure 5b and data not shown). Next we tested the

effect of inhibition of Src kinase activity on the recruitment of

aVb3 to the cell periphery and the disappearance of VE-cadherin

from cell junctions. Indeed, CGP77675 prevented the formation of

aVb3 patches at the cell edge in HUVEC plated on fibronectin or

collagen I at both sub-confluent and confluent conditions, and

attenuated the disappearance of VE-cadherin from cell-cell

contacts induced by cilengitide (Figure 6).

Taken together these results establish that cilengitide induces

aVb3 affinity maturation, and initiates signaling events in

endothelial cells leading to phosphorylation of Src, FAK and

VE-cadherin. These phosphorylation events, recruitment of aVb3

at the cell periphery and disappearance of VE-cadherin from

cellular contacts requires Src kinase activity.

Cilengitide enhances HUVEC monolayer permeability
VE-cadherin-mediated cell-cell adhesion and integrin-mediated

cell-matrix adhesion are essential for maintaining endothelial cell

monolayer tightness [36,37]. Based on the above observations, we

set up to test whether cilengitide treatment increased permeability

of confluent HUVEC. Addition of cilengitide (10 mM) to HUVEC

cultured on fibronectin or collagen-coated filter inserts, resulted in

a time-dependent increase in transendothelial permeability

(Figure 7a). Microscopic examination of the filters at the end of

Figure 1. Cilengitide causes loss of aVb3 from focal adhesions and promotes appearance of aVb3 patches at the cell edge. HUVEC
were plated on coverslips coated with fibronectin or collagen I and were treated with 10 mM of cilengitide for 20 minutes. The localization of the
aVb3 or b1 integrin (green) and paxillin (red) were monitored by immunofluorescence staining. In HUVEC plated on fibronectin aVb3 was present at
focal adhesions, while b1 was present at fibrillar adhesions. Cilengitide, but not EMD 135981, caused loss of aVb3 from focal adhesions and
appearance of aVb3-positive thin patches at the cell edge (arrows). b1 localization was not altered by cilengitide. A similar effect on aVb3 (arrows)
was observed on cells plated on collagen I, with the difference that focal adhesions were less abundant on this matrix. Optical magnification: 4006;
Bar: 10 mm. (n = 5).
doi:10.1371/journal.pone.0004449.g001
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the assay (240 minutes) revealed that cilengitide induced morpho-

logical changes to the cultures, in particular the appearance of

dark (dense) dendritic-like cells, consistent with cells that retracted

or detached from the substrate (Figure 7b, arrows). CGP77675

(2.5 mM) partially abolished cilengitide-induced increased perme-

ability but was ineffective in preventing the appearance of

retracted cells (Figure 7a and 7b). As expected treatment of

HUVEC cultured on vitronectin-coated filters resulted in massive

cell detachment and increased permeability, consistent with

aVb3/aVb5-mediated adhesion to this substrate (data not shown).

Cilengitide interferes with b1 integrin-dependent HUVEC
attachment on low-density ligands

The appearance of retracted HUVEC in cilengitide-treated

filter inserts during the permeability assays on fibronectin and

collagen I, suggested the possibility that cilengitide might interfere

with adhesion on fibronectin or collagen I. Activation of one

individual integrin was previously shown to interfere with the

function of other integrins though a transdominant negative effect

[38]. To test whether cilengitide-induced aVb3 activation might

interfere with b1 integrin-mediated adhesion, we first performed

Figure 2. Cilengitide induces VE-cadherin loss form cellular junctions. (a) Confluent HUVEC plated on fibronectin, were exposed to
cilengitide or EMD135981 (10 mM each) or VEGF (100 ng/ml) for 20 minutes and stained for VE-cadherin. Cilengitide and VEGF treatments disrupted
VE-cadherin localization at cellular junctions, while EMD135981 showed no effect (n = 3). Optical magnification: 4006; Bar: 10 mm. (b) Confluent
HUVEC plated on fibronectin or collagen I were exposed to cilengitide (10 mM each) for the indicated time and double stained for VE-cadherin and b3
integrin. Cilengitide disrupted VE-cadherin staining and promoted appearance of b3 at VE-cadherin-depleted cell-cell borders (arrows). Paralleling
loss of VE-cadherin from cell-cell junctions, ‘gaps’ appeared in the monolayer (asterisks). (n = 4). Optical magnification: 4006; Bar: 10 mm. (c) Higher
magnification (26 zooming in) of HUVEC cultures of the experiment shown in panel b to demonstrate rare co-localization of VE-cadherin and b3
integrin at cellular junctions upon cilengitide stimulation (arrowheads). (n = 4). Bars: 10 mm.
doi:10.1371/journal.pone.0004449.g002
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short-term adhesion assays on vitronectin (as aVb3 ligand),

fibronectin (as mixed a5b1.aVb3 ligand) or collagen I (as b1

ligand). Since the transdominant negative effect is based on the

competition for intracellular adaptor and signaling molecules

among unclasped cytoplasmic b tails of active integrins [39], and

the stoechiometry of active (i.e. aVb3) vs target (i.e. b1) integrins is

critical, we tested the effect of cilengitide on HUVEC engaging

decreasing levels of b1 integrins by coating decreasing concentra-

tions of ligands. Cilengitide prevented aVb3-mediated HUVEC

adhesion to vitronectin at any coating concentrations, consistent

with a direct inhibition of aVb3 ligand binding activity (Figure 8a).

Cilengitide showed no effect on b1-mediated HUVEC adhesion on

fibronectin and collagen I coated at high concentrations, while it

interfered with HUVEC adhesion to low ligand concentrations

(Figure 8a). To test the effects of cilengitide on cells already

attached, we added cilengitide to HUVEC cultured for 18 hours in

wells coated with graded amounts of vitronectin, fibronectin or

collagen I. Cilengitide induced detachment of HUVEC cultured on

vitronectin regardless of the coating concentration, while it

detached HUVEC from fibronectin and collagen I only in wells

coated with low protein concentrations (Figure 8b). Addition of

CGP77675 did not abolish the anti-adhesive effect of cilengitide on

HUVEC plated on low-density fibronectin or collagen I in a short-

term adhesion assay (Figure 8c). Sub G1 DNA content analysis of

control and treated cultures revealed an increased frequency of Sub

G1 DNA containing-cells in wells coated with fibronectin or

collagen I at low densities and exposed to cilengitide, consistent with

detachment-induced death (Table 1) [40].

Taken together, these results demonstrate that cilengitide

interferes with b1-mediated adhesion under conditions of limited

b1-substrate concentration and limited b1 engagement. This effect

is independent of Src activity and is consistent with a b3 to b1

transdominant negative effect.

Discussion

The antiangiogenic activity of cilengitide is largely attributed to

its ability to directly interfere with aVb3/aVb5-mediated adhesion

of angiogenic endothelial cells, thereby inducing cell detachment-

mediated death (anoikis) of cells relying on these integrins for

adhesion and survival [5,40]. Angiogenic endothelial cells, however,

in addition to aVb3 and aVb5, express other integrins, in particular

a1b1, a2b1, a4b1, a5b1, a6b1, and a6b4, which are not targeted

by cilengitide [3]. Based on the current model of action of

cilengitide, endothelial cells expressing and using these integrins

would be insensitive to cilengitide effects. The present work was

initiated to test whether endothelial cells expressing aVb3, but

predominantly using b1 integrins for adhesion, are insensitive to

cilengitide, or whether they may indeed show some effects. Here we

report five effects of cilengitide under such conditions: i) affinity

maturation of aVb3 and its accumulation to the cell periphery; ii)

phosphorylation of Src (Y419), FAK (Y397 and Y576/577) and VE-

cadherin (Y658 and Y731); iii) disappearance of VE-cadherin from

cell-cell contacts; iv) detachment of HUVEC cultured on low-

density b1 substrates; v) increased HUVEC monolayer permeabil-

ity. These findings unravel a more complex picture of the

mechanistic effects of cilengitide on endothelial cells and, more

generally, highlight the role of integrins and integrin-induced

signaling events in the regulation of endothelial cell functions (See

Figure 9 for a working model).

There is structural evidence that high affinity RGD-based

cyclopeptides, including cilengitide, can induce large-scale con-

formational changes of soluble truncated integrins consistent with

ligand-induced activation [41,42]. RGD-based soluble ligands

were shown to induce some signaling events, such as intracellular

calcium mobilization in neurons, smooth muscle cells and T

lymphocytes [43,44], or protein kinase C activation in oocytes

[45]. Our work extends these findings by demonstrating that a

monomeric, high-affinity RGD-based ligand induces affinity

maturation (e.g. activation) of cell surface aVb3 leading to Src,

FAK and VE-cadherin phosphorylation. The mechanism by

which cilengitide elicits these signaling events remain to be

determined. Current knowledge implies integrin clustering in-

duced by immobilized or soluble-multivalent ligands as an

essential step to recruit adaptor proteins or kinases and initiate

signaling events. Our results demonstrate that a monovalent high-

affinity ligand is nevertheless sufficient to elicit some signaling

events. A plausible explanation is that since Src is constitutively

associated with the cytoplasmic domain of the b3 subunit,

cilengitide-induced aVb3 ‘outside-in’ activation and unclasping

of the aVb3 cytoplasmic domains is sufficient to activate Src.

Active Src can then complex with FAK resulting in mutual Src-

FAK phosphorylation promoting lateral association of cilengitide-

occupied aVb3 through its SH3 domain, resulting in patches

formation at the cell periphery [46]. aVb3 activation by

cilengitide, however, appears insufficient to fully activate down-

stream signaling pathways, such as ERK1/2, NF- kB or PI3K/Akt

probably due to the lack of additional adaptor and signaling

proteins normally present at focal adhesions [3]. The mutually

exclusive localization of aVb3 and VE-cadherin at cellular

junctions in confluent HUVEC suggests that a causal link between

cilengitide-induced aVb3 and Src activation and the disappear-

ance of VE-cadherin from cell-cell contacts. In our model

activated aVb3 recruiting at cell-cell junctions brings active Src

to VE-cadherin-catenin complexes, thereby promoting VE-

cadherin phosphorylation at residues Y658 and Y731, dissociation

from b- and p120 catenins and disappearance from cell-cell

contacts, consistent with published results [26,35].

The observed increased permeability induced by cilengitide is

consistent with phosphorylation of VE-cadherin and disappear-

ance from cell-cell contacts. However, in contrast to phosphory-

lation and displacement of VE-cadherin, which could be

effectively prevented by pharmacological inhibition of Src,

cilengitide-induced permeability was only partially prevented by

Src inhibition. This partial effect of CGP77675 is likely due to the

fact that cilengitide-ligated and activated aVb3 exerts a transdo-

minant negative on b1 integrins insensitive to Src inhibition. On

low matrix densities the transdominant negative effect results in

decreased cell adhesion and increased cell detachment. On high-

matrix densities the same effect is insufficient to detach cells, but

Figure 3. Cilengitide activates aVb3 on HUVEC. (a) HUVEC in suspension were exposed to 10 mM of cilengitide or EMD135981 for 10 minutes,
stained by immunofluorescence for b3 LIBS and total aVb3 expression (with LIBS-1 and LM609 mAbs, respectively) and analyzed by flow cytometry.
Cilengitide, but not EMD135981, induced LIBS expression (left histograms, thick lines), without affecting total aVb3 expression (right histograms, thick
lines). Dotted lines: cellular fluorescence in the absence of primary antibody. (n = 3). (b) Fibronectin-adherent HUVEC were exposed to 10 mM
cilengitide, EMD135981, or 1 mM MnCl2 for 10 minutes, stained for b3 LIBS and total aVb3 expression (with CRC54 or LM609 mAbs, respectively) and
analyzed by immunofluorescence microscopy. Total aVb3 and b3 LIBS were present at focal adhesions in unstimulated HUVEC and at tiny patches at
the cell edge in cilengitide-exposed HUVEC, thus confirming that aVb3-positive patches contain active aVb3. MnCl2 stimulated recruitment and
activation of aVb3 at focal adhesions. (n = 2). Optical magnification: 4006; Bars: 10 mm.
doi:10.1371/journal.pone.0004449.g003
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might cause cellular retraction as observed at early time points (5–

30 minutes after addition of cilengitide) in HUVEC cultured on

plastic wells or partial cell detachment as observed for HUVEC

cultured on filters at the end of the permeability assays. Although a

role for integrins in controlling vascular permeability has been

proposed before [47,48], the molecular mechanisms involved

remained elusive. Of interest, in a recent report the extracellular

matrix protein big-h3/TGFBI was shown to increase vascular

permeability in a Src-dependent manner by binding to aVb5 and

causing dissociation of VE-cadherin from endothelial junctions

[49]. Taken together our report extends these observations, by

demonstrating cilengitide-induced increased vascular permeability

of HUVEC monolayers though combined Src-dependent disrup-

tion of VE-cadherin localization at cell-cell contacts, and Src-

independent cell retraction consistent with a transdominant

negative effect on b1 integrins.

These observations raise a number of questions that need to be

addressed in future studies. One question relates to the potential role

of aVb5 (the second integrin targeted by cilengitide) in these effects.

On HUVEC, aVb5 is likely not to play a significant role since it is

Figure 4. Cilengitide induces Src and FAK phosphorylation. (a) Western blotting analysis of Src phosphorylation at Y529 and Y419 and total Src
in HUVEC grown on fibronectin and exposed for 10 minutes to EMD135981, cilengitide (10 mM each) and CGP77675 (2.5 mM) as indicated. Cilengitide
increased Src phosphorylation at Y419 but did not alter Y529 phosphorylation. CGP77675 prevented Y419 phosphorylation. (b) Western blotting
analysis of the same cells as in panel a, but for phosphorylation of FAK at Y397 and Y576 and total FAK. Cilengitide increased FAK phosphorylation at
both tyrosine residues and this was inhibited by CGP77675. EMD135981 had no effect on Src or FAK phosphorylation. Actin was detected to
demonstrate equal loading of the lanes. The bar graph represents the relative level of phospho Src/FAK over total Src/FAK as determined by band
density analysis. (n = 3).
doi:10.1371/journal.pone.0004449.g004

Figure 5. Cilengitide induces Src-dependent phosphorylation of VE-cadherin cytoplasmic domain. (a) Western blotting analysis of VE-
cadherin phosphorylation at tyrosine residues Y658 and Y731 and total VE-cadherin in HUVEC grown on fibronectin or collagen I and stimulated for
10 minutes with cilengitide (10 mM) or VEGF (100 ng/ml) in the presence or absence of CGP77675. Cilengitide treatment increased VE-cadherin
phosphorylation at Y658 and Y731, while VEGF enhanced Y658 phosphorylation only. The bar graph represents the relative level of phospho VE-
cadherin over total VE-cadherin as determined by band density analysis. (b) Western blotting analysis of phospho and total ERK 1/2 of the same
cultures as in panel a. VEGF activated ERK 1/2, while cilengitide did not. Actin was detected to demonstrate equal loading of the lanes. (n = 3).
doi:10.1371/journal.pone.0004449.g005
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Figure 6. Src inhibition prevents cilengitide-induced relocalization of aVb3 at the cell edge and disappearance of VE-cadherin from
cellular junctions. (a) Subconfluent and confluent HUVEC cultured on fibronectin or collagen I were exposed for 20 minutes to cilengitide (10 mM)
in the presence of absence of CGP77675 (2.5 mM) and stained for aVb3. Cilengitide-induced recruitment of aVb3 to the cell edge (arrows) and this
was prevented by CGP77675. (b) Confluent HUVEC cultured on fibronectin were treated for 20 minutes with cilengitide in the presence or absence of
CGP77675. CGP77675 prevented cilengitide-induced VE-cadherin loss from cell-cell contacts. The bar graph gives the quantification of VE-cadherin
staining at cell borders. The white and gray segments of the bars represent absent/disrupted vs. strong/continuous VE-cadherin staining, respectively
(see material and methods for details). (n = 3). Optical magnification: 4006; Bars: 10 mM.
doi:10.1371/journal.pone.0004449.g006
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expressed at much lower levels compared to aVb3 [37] (and data not

shown). In vivo, however, the situation might be different as aVb5 is

also highly expressed on angiogenic endothelia and its ligation was

shown to promote increased vascular permeability in response to

angiogenic growth factors [50]. A second question relates to the

mechanism of Src activation by cilengitide-bound aVb3, and the

contribution of the a and b subunit cytoplasmic domains since both

domains can bind Src [3]. Another question relates to the role that

soluble high-affinity ligands binding to non matrix-ligated integrins

might exert on endothelial cell functions. In this perspective, this

work extends previous observations demonstrating that soluble

integrins ligand can induce COX-2 mRNA and protein expression

[23]. This is of particular interest, since many circulating plasma

proteins are natural integrin ligands (e.g. fibronectin, vitronectin,

fibrinogen) and their binding to luminal integrins (i.e. not engaged in

cell-matrix adhesion) may elicit important, yet largely uncharacter-

ized, regulatory signals. A last important question is whether the

permeability-promoting effect of cilengitide observed in this study

may have therapeutic implications. Cilengitide is currently in clinical

development in oncology. Phase I and II clinical studies have

demonstrated that it is well tolerated (no dose-limiting toxicities were

observed) and provided initial evidence of activity. Phase III studies

in combination with chemotherapy and radiotherapy are underway

in glioblastoma multiforme [21]. Cilengitide might be a particularly

well-suited drug to combine with chemotherapeutic agents with the

purpose to improve chemotherapy delivery to tumors, which is one

of the limiting events in cancer therapies.

Materials and Methods

Cells and culture media, antibodies and reagents
Cells and culture media: HUVEC cells were prepared and cultured

as described previously [37] and were used between passage 3 and

5. Antibodies: anti-FAK, anti-pY576/577FAK, anti-Src, anti-ERK1/

2 and anti-phospho ERK1/2 antibodies were from Cell Signaling

Technology, Inc. (Danvers, MA); anti-pY419Src, anti- pY529Src

were from Sigma Aldrich (St. Louis, MO); anti-VE-cadherin mAb

was from BD Transduction LaboratoriesTM (Franklin Lakes, NJ),

anti-pY658VE-cadherin and anti-pY731VE-cadherin antibodies

were from Biosource International, Inc. (Camarillo, CA), anti-b3

Figure 7. Cilengitide augments the permeability of HUVEC monolayers. (a). HUVEC were grown on fibronectin- or collagen I-coated PET
filter inserts for 20 hours to ensure confluence and treated with cilengitide (10 mM), CGP77675 (2.5 mM) or a combination thereof. Permeability was
measured using the tracer molecule FITC-dextran. Cilengitide increased HUVEC monolayer permeability on both matrices and CGP77675 only
partially prevented this increase. Results represent the increase in permeability of treated cultures relative to untreated controls at t = 0 and is given in
arbitrary fluorescence units (AU). (b) Crystal violet staining of control and treated filters at the end of the assay (240 minutes) revealed that cilengitide
did not cause extensive detachment of HUVEC but induced the appearance of retraced, dendritic-like cells (arrows). (Triplicate filters/condition, n = 3).
doi:10.1371/journal.pone.0004449.g007
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clone Ab1932, anti-aVb3 (mAb, clone LM609) and anti-total-b1

were from Chemicon (Temecula, CA, USA). The anti-b3 mAb

clone AP-3 was obtained from Dr. T.J. Kunicki, the Scripps

Research Institute (La Jolla, CA). The anti-b3 ligand-induced

binding site mAbs were kindly provided by Dr. M. Ginsberg

(LIBS-1), University of California San Diego (La Jolla, CA) or

purchased from Abcam Inc. (CRC54), Cambridge (MA USA).

Anti-b1 LIBS (HUTS-21) was from BD Biosciences Pharmingen

(San Diego, CA), Reagents: BSA, fibronectin, collagen I, vitronectin

and Cristal Violet were from Sigma-Aldrich, Buchs, Switzerland.

Collagen I (PureColH) was from Nutacon BV, Leimuiden, The

Netherlands. The EMD121974 (the inner salt form of cyclic-(Arg-

Gly-Asp-[D-Phe]-[N-Me-Val]) and EMD135981 (the inner salt

form of cyclic-(Arg-[ß-Ala]-Asp-[D-Phe]-Val) cyclopeptides were

synthesized by Dr A. Jonczyk, Merck KGaA, Darmstadt,

Germany. The Src inhibitor CGP77675 was provided by Dr. D.

Fabbro, Novartis AG (Basel, Switzerland), VEGF was purchased

from R&D Systems (Abingdon, UK).

FACS analysis
HUVEC were collected by trypsinization, washed twice in PBS/

5% FCS and incubated with relevant primary antibodies for

30 minutes at 4uC. After washing in cold PBS, cells were incubated

with a secondary PE-labeled antibody for 30 minutes at 4uC. Cells

were washed and analyzed with a FACScan IIH and Cell QuestH
software (Becton Dickinson, Mountain View, California).

Immunofluorescence microscopy
HUVEC cells were cultured subconfluent or at confluency on

glass coverslips pre-coated with fibronectin (3 mg/ml) or collagen I

(1 mg/ml) placed in 12 well plates in complete M199 medium.

After 16 hours, cultures were stimulated with cilengitide or

EMD135981 (10 mM each) or VEGF (100 ng/ml) for 20 minutes,

or otherwise at the indicated times. To inhibit Src, CGP77675

(2.5 mM) was added 15 minutes before addition of cilengitide.

Cultures were then immediately fixed in 4% PFA for 10 minutes

at room temperature, permeabilized with 0.1% Triton X-100,

blocked with 1% BSA and incubated for 1 hour with the relevant

primary antibodies (5 mg/ml). After washing, cells were incubated

with a Cy5 or FITC-conjugated secondary antibody. DAPI was

used to counterstain nuclei. Stained cells were mounted in Prolong

Antifade medium (Molecular Probes, Invitrogen) and viewed by

epifluorescence microscopy (Axioplan with objective EC Plan

Neofluar 406/1.3 oil ph 3, Carl Zeiss AG, Zürich). Images were

acquired with an Axiocam camera (Carl Zeiss AG) and the

Axiovision program (release 4.7, Carl Zeiss AG) and processed

(zooming, gamma and contrast adjustments) with Adobe Photo-

shop CS3 (Adobe Systems Inc. San Jose, CA)

Quantification of VE-cadherin immunostaining
Quantification of fluorescence of VE-cadherin staining was

performed with the program Metamorph 7.5 (Molecular Devices,

Downingtown, PA). Briefly, a program script was defined to draw

a line region along the plasma membrane of each cell on the

images (magnification 406). Then, segment regions (i.e. squares of

2.4 mm66.4 mm - length6width) were created along the line and,

in each segment region, the fluorescence was measured according

to a threshold defined from a negative control. The measured

fluorescence average intensities were then normalized within each

segment by multiplying the fluorescence average intensity by the

ratio of the threshold area divided by the total area. These

normalized intensities (NI) were then arbitrarily divided in two

groups: group 0 for NI,5; group 1 for 5,NI, corresponding to

absent or faint vs intense labeling, respectively. On each image

Figure 8. Cilengitide interferes with HUVEC adhesion on low-density b1 integrin substrates. (a) HUVEC short-term adhesion assays
performed on vitronectin (aVb3 ligand), fibronectin (a5b1.aVb3 ligand) and collagen I (a1b1/a2b1 ligand) coated at the indicated concentrations, in
medium only (black bars) or in the presence of EMD135981 (gray bars) or cilengitide (white bars). On vitronectin, cilengitide inhibited adhesion at all
coating concentrations while on fibronectin and collagen I it blocked adhesion only at low coating concentrations. (n = 5). (b) HUVEC detachment
assays. HUVEC were cultured for 18 hours on vitronectin, fibronectin or collagen I coated at the indicated concentrations, to allow for full attachment,
before exposure for 4 hours to medium only (black bars), EMD135981 (gray bars) or cilengitide (white bars). Cilengitide detached HUVEC cultured on
vitronectin at all coating concentrations, while it induced HUVEC detachment from fibronectin and collagen only at low coating concentrations
(Triplicate wells/condition, n = 3). (c) HUVEC short-term adhesion assays performed on fibronectin and collagen I coated at the indicated
concentrations, in medium only (black bars), in the presence of CGP77675 (white bars), cilengitide (gray bars), cilengitide+CGP77675 (hatched bars).
Src inhibition did not prevent cilengitide-induced inhibition of cell adhesion on low matrix concentrations. (Triplicate wells/condition, n = 2). Attached
cells were quantified by Crystal Violet staining and OD determination at 540 nm wavelength. Asterisks indicate statistical significant differences of the
values relative to untreated controls (p,0.05).
doi:10.1371/journal.pone.0004449.g008

Table 1. Relative cell death of HUVEC cultures exposed to cilengitide or EMD135981.

Matrix protein coated Matrix protein coating concentration Treatment

EMD135981 Cilengitide

Vitronectin High (1 mg/ml) ,1% 59%

Vitronectin Low (0.1 mg/ml) ,1% 58%

Fibronectin High (3 mg/ml) ,1% ,1%

Fibronectin Low (0.1 mg/ml) ,1% 16%

Collagen I High (1 mg/ml) ,1% ,1%

Collagen I Low (0.01 mg/ml) 7% 41%

HUVEC were cultured for 18 hours on vitronectin (aVb3 ligand), fibronectin (a5b1.aVb3 ligand) and collagen I (a1b1 and a2b1 ligand) before they were exposed for
4 hours to EMD135981 or cilengitide. Cells were collected and Sub-G1 DNA content determined by propidium iodide staining and flow cytometry analysis. Results are
expressed as percent increase of cell death relative to untreated conditions. Cilengitide increased HUVEC cell death on vitronectin at high and low protein coating
concentrations, while on fibronectin and collagen it only did it at low protein coating concentrations. (n = 3).
doi:10.1371/journal.pone.0004449.t001
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these groups were counted and plotted as shown in the Figure 6b.

Quantification was performed on 30 cells per conditions.

SDS-PAGE and Western blotting
HUVEC cells were treated with the different compounds as

described in the text or figure legends. Total cell lysates (20 ml per

lane) were resolved by 7.5% SDS-PAGE and blotted onto

Immobilon-P membranes (Millipore, Volketswil, Switzerland).

Membranes were blocked with 5% BSA prepared in 16TBS-T.

Primary antibodies were prepared as 1:2000 dilutions in 16TBS-

T with 3% BSA and added to the membrane overnight at 4uC.

Phosphoproteins were always detected first prior stripping the

membranes to detect total proteins. Membranes were then washed

and processed for HRP-coupled secondary antibody according to

standard laboratory protocols and the ECL system was used for

detection (Amersham-Pharmacia Biotech, Dübendorf, Switzer-

land). Membranes were reprobed for actin to assess equal loading

of the samples. To compare expression levels of the different

proteins, revealed Western blots were scanned and band

pixelization for total and phosphorylated proteins were analyzed

with the AIDA bioimaging software (raytest Isotopenmessgeraete

GmbH, Straubenhardt, Germany). The number of pixels of each

individual phosphoprotein bands was normalized to the corre-

sponding total protein band pixel numbers.

Adhesion and detachment assays
HUVEC were seeded in triplicate in 96-well plates (26104 cells/

well) pre-coated with graded amounts of vitronectin (1–0.1 mg/ml),

fibronectin (3–0.1 mg/ml), collagen I (1–0.01 mg/ml). After coating,

the wells were saturated with 1% BSA. For short-term adhesion

assays, cells were seeded in serum-free medium in the absence or

presence of 10 mM cilengitide or EMD135981 and adhesion

quantified after 2 hours. For survival assays, the cells were seeded in

complete media and left to adhere for 16 hours followed by a

3 hours starvation in serum-free medium before addition of 10 mM

cilengitide or EMD135981 for another 2 hours. To inhibit Src,

CGP77675 (2.5 mM) was added 15 minutes before addition of

cilengitide. At the end of the assay period, cultures were rinsed with

two gentle washes with PBS (with Ca/Mg), fixed for 15 minutes

with 4% paraformaldehyde and stained for 15 minutes with 0.5%

Crystal Violet. Stained wells were washed and CV was extracted

with 100 ml CV distain solution (29.4 g/l Na3-citrate in 50%

ethanol) and absorbance measured at 540 nm wavelength.

Cell viability assay
Sub-G1 DNA content assay was performed as described [51].

Briefly, HUVEC were collected as above, resuspended in 70% ice

cold ethanol under vortex and incubated for 2 hours at 220uC.

Cells were recovered by centrifugation and resuspended in PBS.

50 mg/ml RNase A (Roche, Basel) was added and samples were

incubated at room temperature for 5 minutes before staining with

propidium iodide (PI, 50 mg/ml) for 30 minutes at 37uC. Stained

cells were analyzed with a FACScan IIH and Cell QuestH software

(Becton Dickinson, Mountain View, CA).

In vitro permeability assay
The assay was adapted from [52]. Briefly, HUVEC were seeded, in

triplicate, at a density of 406103 cells on polystyrene filter inserts

(3 mm pore size, BD Biosciences, Basel, Switzerland, catalogue

number 353096) pre-coated with fibronectin (3 mg/ml) or collagen I

(1 mg/ml) or vitronectin (1 mg/ml), in 12-well plates in a total volume

of 200 ml and 1 ml of complete M199 for the upper and lower

chambers, respectively. After 20 hours, the medium in the upper

chamber was gently exchanged with fresh one containing the

paracellular permeability tracer molecule FITC-dextran [53] (av.

Mr 406103, Sigma-Aldrich, Basel, Switzerland, catalogue number

FD40S, 0.5 mg/ml final concentration) and either nothing else

(control), CGP77675 (final concentration 2.5 mM), cilengitide (final

concentration 10 mM) or both compounds. CGP77675 (2.5 mM) was

added 15 minutes before addition of cilengitide. At given time points,

50 ml aliquots from the lower chamber were removed for measure-

ment and replaced with 50 ml of fresh medium in order to maintain

the hydrostatic equilibrium. The fluorescence of each sample diluted

(1:20) in PBS, was measured at 485/530 nm excitation/emission

wavelengths. The zero time point (t = 0) was defined by diluting 50 ml

(1:20) in PBS. After the last time point, wells were fixed with 100 ml

4% PFA, stained by Crystal Violet and photographed (Axiovert 40

CFL, Carl Zeiss AG, Zürich, Switzerland).

Statistical analysis
Results are expressed as mean6s.d.. Data were analyzed by

Student’s t-test for. P values,0.05 were considered significant.

Acknowledgments

We thank Drs A. Jonczyk, T.J. Kunicki, D. Fabbro and M. Ginsberg for

providing reagents. Dr. S.L. Goodman is acknowledged for helpful

discussion. We thank J-C. Sarria, BioImaging and Optics platform (BIOp),

Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne

(EPFL), Switzerland, for help with the VE-cadherin quantitation. We thank

Drs A. Mariotti and G. Lorusso for discussion and critical reading of the

manuscript and R. Driscoll for editorial assistance.

Author Contributions

Conceived and designed the experiments: GCA CR. Performed the

experiments: GCA LP. Analyzed the data: GCA LP CR. Wrote the paper:

GCA CR.

Figure 9. Proposed model of cilengitide effects on endothelial
cells. Cilengitide acts on aVb3-expressing endothelial cells in three
ways: 1, it suppresses aVb3-dependent adhesion by directly inhibiting
aVb3-ligand-binding function; 2, it interferes with b1 integrin-mediated
cell adhesion through a transdominant negative effect induced by
activated aVb3; 3, it stimulates phosphorylation of VE-cadherin
cytoplasmic domain and disrupts VE-cadherin localization at cell-cell
contacts through activation of aVb3 and Src-dependent signaling.
Abbreviations: ECM, extracellular matrix; RGDfV, cilengitide; TDNE,
transdominant negative effect; pp, phosphorylation.
doi:10.1371/journal.pone.0004449.g009
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