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Abstract

The half-maximal inhibitory concentration IC50 is an important pharmacodynamic index of drug effectiveness. To estimate
this value, the dose response relationship needs to be established, which is generally achieved by fitting monotonic
sigmoidal models. However, recent studies on Human Immunodeficiency Virus (HIV) mutants developing resistance to
antiviral drugs show that the dose response curve may not be monotonic. Traditional models can fail for nonmonotonic
data and ignore observations that may be of biologic significance. Therefore, we propose a nonparametric model to
describe the dose response relationship and fit the curve using local polynomial regression. The nonparametric approach is
shown to be promising especially for estimating the IC50 of some HIV inhibitory drugs, in which there is a dose-dependent
stimulation of response for mutant strains. This model strategy may be applicable to general pharmacologic, toxicologic, or
other biomedical data that exhibits a nonmonotonic dose response relationship for which traditional parametric models fail.
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Motivation

Drugs that inhibit the reverse transcriptase (RT) activity of

Human Immunodeficiency Virus (HIV) are widely used to treat

HIV infection. RT is an ideal target for antiviral HIV therapy

because it is the key required for HIV replication. Non-nucleoside

reverse transcriptase inhibitors (NNRTIs) inhibit RT activity by

selectively binding RT at a hydrophobic binding pocket adjacent

to the polymerase active site. Efavirenz (EFV) is an commonly

used NNRTI to treat HIV infection [1–3] but patients can develop

resistance to this drug because of the development of mutations in

the NNRTI binding cite which in turn inhibits NNRTI binding

[4] and can lead to resistance mutations such as K101E, K103N,

Y188C, G190S, G190A [5,6], and L100I [7].

Understanding the pharmacodynamic properties associated

with the development of NNRTI resistant mutations is vital for

devising treatment strategies for HIV. In pharmacodynamics, the

drug-target interaction can be modeled by:

DzT'D:T ,

where D denotes the drug and T the target (usually enzyme). Drug

efficiency is primarily determined by the drug target binding

affinity. In pharmacodynamic studies, the drug target affinity is

usually assessed by comparing dose response curves: the stronger

the drug binds target, the steeper the curve is.

Therefore, a critical index of the dose response curve, the half-

maximal inhibitory concentration (IC50), is commonly used to

compare the binding affinities of drugs to the same target. IC50

represents the concentration of a drug that is required for 50% of

maximal inhibition in vitro. IC25 and IC75 are the concentrations

corresponding to 25% and 75% inhibition, respectively. The dose

response curve usually has the steepest portion in the middle.

Thus, using IC50, rather than IC25 or IC75, minimizes the random

error for estimation, making IC50 the preferred measure of drug

affinity.

To estimate the IC50 value, several nonlinear functions have

been commonly used, for example,

Y~ 1{
1

1z x=IC50ð Þd

 !
|100%, ð1Þ

where x is the drug concentration, Y is the percentage of

inhibition at this concentration, and d is a shape parameter. Other

parametric models include the complementary log-log model for

asymmetric quantal response data, and the two-parameter Weibull

model for carcinogenic experiments [8].

An important feature of the function (1) is that as the value of x

increases from 0 to infinity, Y increases from 0 to 100%, reflecting

that a drug’s inhibitory potential changes from none to full

inhibition as the drug concentration increases (Fig. 1A). As per (1),

a steeper dose response curve corresponds to a smaller IC50; for a

given IC50, the curve shape is depicted by d (Fig. 1B). In addition,

this function curve has the steepest portion in the middle, which is

a characteristic of a sigmoidal dose response relationship.
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The advantages of this function are that (a) it is symmetrically

about the IC50; (b) it is monotonic, which equals that the target

protein has an inhibitory binding site only, and the drug has an

inhibitory effect only; and (c) IC50 and d can be easily estimated

under certain conditions. On the other hand, these advantages

become restrictive when some conditions fail, for instance, if

observations are not monotonic. As a consequence, the models can

produce remarkably biased estimates or not even fit the

observations. For example, Bliss’s beetle data show that symmetry

is not a required feature of a dose response curve [9]. Another

example is that a viral mutation occurs before the drug

concentration reaches a certain level, such as in the following

example.

A recent study on HIV mutations conferring resistance to NNRTI

found that the monotonicity relation does not always hold [10]. The

dose response was determined as proportion reduction in HIV

replication at a given NNRTI dose relative to viral replication in the

absence of drug. As seen in Fig. 2, the study shows that replication of

HIV mutation M230L was promoted when the concentration of

EFV is lower than 70 nM. Similarly, our data example shows that

increasing the concentration of EFV stimulates the replication of

HIV K101E+G190S mutant strain when EFV concentrations are

below 2000 nM (Fig. 2). It has also been reported that EFV

stimulation of the K101E+G190S double mutant strain can be

abolished by the presence of additional M41L+T215Y mutation

[11]. A potential explanation for this nonsigmoidal dose response

relationship is that dimerization is essential for a fully functional RT.

For the double mutant K101E+G190S strain, at low concentrations

EFV can enhance the dimerization of the two subunits of RT

without interfering with the binding of the incoming nucleotide

during DNA polymerization.

As the real dose response relationship is nonmonotonic in our

example, our preliminary analysis indicates that traditional

estimation methods for the sigmoidal model (1) fitting lead to

results that either do not converge or are remarkably biased, which

may reach an erroneous conclusion. Thus, appropriate estimation

of IC50 for this type of dose response relationship poses statistical

challenges. If we use model (1) to fit data when the dose response

pattern is nonmonotonic, the fit is poor, and the estimated IC50

values are not reliable because the fact that lower EFV

concentrations can enhance replication of an HIV mutant strain

is ignored.

Thus, to appropriately estimate the pattern of observations and

then estimate IC50, we developed a robust modeling strategy to

test whether: (i) our model fitting is comparable to monotonic

parametric models such as model (1) when the observed data are

monotonic; and (ii) our model fitting yields reasonable estimates

when the data pattern is nonmonotonic and monotonic paramet-

ric models, such as model (1), does not work.

The rest of this paper is organized as follows. Section 2 briefly

introduces monotonicity testing, our model, estimation, and test

methods. Section 3 gives simulation results, including p-values of

the monotonicity test. Section 4 presents extensive analysis of our

real data example, including estimated IC50s using the proposed

model and model (1) when it is appropriate.

Methods

We propose that the inhibition percentage Y and concentration

x are related in the form

Y~g(x)ze, ð2Þ

where e is the measurement error with mean zero and finite

variance, g :ð Þ is a mathematical function, but no restrictions are

applied on the form of g :ð Þ (i.e., no specified g :ð Þ as quadratic,

parametric, or increasing in x, etc.) Since the structure of the

model is not fixed, it is called a nonparametric method. Hence, we

perform an empirical analysis of the data to estimate g :ð Þ. We use

the observations (x1,y1),:::,(xn,yn) to estimate g :ð Þ, denoted as

ĝg :ð Þ, by appropriate statistical techniques. The IC50 may be

estimated as the point x� that satisfies ĝg x�ð Þ ~0:5. As noted

above, we first need to determine whether the function g :ð Þ is

monotonic.

Subsection 1 Monotonicity test
Testing the monotonicity of a dose response relationship is of

practical interest and has been studies previously. Several

parametric and nonparametric methods have been proposed in

the statistical literature. For example, Ramsay [12] studied the use

of monotone splines to model a dose response function. Bowman

et al. [13] developed a monotonicity test by using local linear

estimation of the curve, followed by a critical bandwidth test. Hall

and Heckman [14] proposed an alternative approach that focuses

on ‘‘ running gradient’’ estimation over very short intervals. The

method of Hall and Heckman is more effective in estimating the

flat part of the curve and is also more sensitive to small dips in the

curve.

Figure 1. Dose response curves for various IC50 (A) or shape parameters, d (B).
doi:10.1371/journal.pone.0069301.g001
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For our study, we adopt the method of Hall and Heckman,

which is based on the following principle. Let 0ƒrƒs{2ƒn{2
be integers and a,b be constants. For each pair of (r,s), define the

estimators of a and b by âa~âa(r,s) and b̂b~b̂b(r,s), as the arguments

of the following objective function:

argmin(a,b)

Xs

i~rz1

fYi{(azbxi)g2:

Define

Q2(r,s)~
Xs

i~rz1

fxi{(s{r){1
Xs

i~rz1

xi)g2:

Let Tm~maxf{b̂b(r,s)Q(r,s) : 0ƒrƒs{mƒn{mg, where m
satisfies 2ƒmƒn. Hall and Heckman [14] stated that a large Tm

indicates that the null hypothesis, g(x) being monotonic, should be

rejected. To obtain the tm on the basis of Tm, they suggested the

following procedure. First, data should be fit with the nonpara-

metric model Y~g(x)ze. An estimation of e should be obtained

by a consistent estimator of g(x), such as the local linear estimator.

Assuming that a constant function is the most difficult nonde-

creasing form to be tested, Hall and Heckman used Y~e to

obtain the tm. Specifically, using the estimated bee, they resampled

and obtained a new dataset Y~bee, by which they obtained tm.

Repeated sampling n times resulted in a set tm of size n. By taking

the 100(1{a)th ordered tms as the critical value for Tm, that is,

when Tm obtained from the real data is greater than this tm, we

claim that the function is nonmonotonic at the (1{a) level.

Subsection 2 Nonparametric fitting
We used local linear regression [15] to fit the dose response

curve. Assuming that g(x) has bounded, continuous second

partial derivatives, by Taylor expansion, g(x), in a neighborhood

of x0, can be approximated as: g(x)&g(x0)z

g0(x0)(x{x0) ¼D b0zb1(x{x0): The estimator of g(x) at x0 is

the solution of b0 by minimizingXn

i~1

fYi{b0{b1(Xi{x0)g2
Kh(Xi{x0) subject to (b0,b1), where

h is a bandwidth controlling the size of the local neighborhood,

Kh(:)~Kh(:=h)=h, with K being a kernel function assigning

weights to each data point.

Simulation

To investigate how the Hall and Heckman [14] test performed

for small and moderate sample sizes, we conducted a simulation

study. Let IC50~0:5 and d~0:2,0:5,1, or 2, f1(x)~1{1=

f1z(x=IC50)dg for x[0,2). Consider 2 cases: (a) g(x)~f1(x);
and (b) g(x)~f2(x)~f1(x){h(x), where h(x)~expf{250(x{

0:75)2g.
Case (a) reflects that X and Y have a monotonic relationship,

whereas case (b) indicates that the monotonicity is violated. Case

(b) is based on the relationship between the inhibition of HIV

mutant K101E+G190S strain and EFV concentration from our

real data example, and is meant to show the performance power of

the test. Figure 3 depicts the patterns of f1(x) and f2(x), with f2(x)
showing a pronounced dip around x~0:75.

The error e follows a normal distribution N(0,s2), with

s~0:1,0:5. Our data are generated from the model (2) with

g(x)~f1(x) or g(x)~f2(x), and xi~i=(nz1). For each case, we

considered 3 sample sizes n~20,50,100, and generated 200
independent datasets for each of the 3 error variances.

P-value was determined as the probability that Tm is greater

than tm. Table 1 shows the p-values of different simulation cases.

As f1(x) is a nondecreasing function, the p-values should be

greater than a, which was set at 0:05; in contrast, p-values for f2(x)
should be lower than a. All test results based on f1(x) gave p-values

greater than 0:05, although there was a slight trend of decreasing

p-values as s increases. Thus, on the basis of f1(x) simulations, the

monotonicity test method did not reject the null hypothesis at

a~0:05 and correctly concluded that the relationship is mono-

tonic. In contrast, when s~0:1, all test results based on f2(x)

Figure 2. Dose response curves for viral replication of various HIV mutations at different EFV concentrations. The HIV strain names are
the same as in previous publication [11]. Dose response was determined as proportion reduction in HIV replication at a given EFV dose relative to HIV
replication in the absence of EFV. Viral replication above 100% indicates that suboptimal doses of EFV potentiate the ability of the viral strain to
replicate compared to the absence of EFV. The data used to generate figures is available upon request.
doi:10.1371/journal.pone.0069301.g002

Figure 3. The patterns of functions f1(x), (A); and f2(x), (B); for different d values.
doi:10.1371/journal.pone.0069301.g003
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showed p-values lower than 10{3, indicating that the null

hypothesis (monotonicity) would be correctly rejected even when

the sample size is very small. When s was increased to 0:5 and the

sample size was as small as 20, smaller d values, i.e. higher dip

sizes (Fig. 3), still gave p-values lower than 0:05. However, greater

d values showed p-values slightly higher than 0.05. When the

sample size was increased to 50, all p-values were lower than 0.05.

When the sample size was further increased to 100, all p-values

were lower than 10{3. These results indicate that even with a high

noise level, the monotonicity test is still reliable, particularly for

large sample sizes. These results show that the monotonicity test is

reliable and robust.

Real Data Analysis

We performed a monotonicity test for all HIV mutation dose

response curves for percent viral replication compared to no drug

(Fig. 2). For each mutant strain, we repeated the monotonicity test

100 times and have reported the average p-value in Table 2.

The null hypothesis of monotonicity in HIV mutants

K101E+G190S, M230L, and K101E+G190S(D10) was rejected

with a~0:05 (Table 2). This result is consistent with the observed

shape of the dose response curves (Fig. 2). Surprisingly, the test

failed to reject (p~0:397) the monotonicity hypothesis for

M41L+K101E+G190S+T215Y(D10) data, probably because the

local polynomial fitting of this dataset still gives a non decreasing

curve.

We then used the traditional sigmoidal model to fit the data and

found that this method did not converge for HIV mutants

K101E+G190S, M230L, and K101E+G190S(D10) because of the

nonmonotonicity while the model did converge for datasets

G190S, K101E, L74V+K101E+G190S, M41L+K101E+G190-

S+T215Y, M41L+G190S+.

T215Y, M41L+K101E+G190S+T215Y(D10), and

M41L+G190S+T215Y(D10). We then fit all datasets again, using

the local polynomial regression method (Section 2). Figure 4 shows

the fitted curves for datasets K101E+G190S,

L74V+K101E+G190S, M230L, and M41L+K101E+G190S+.

T215Y. Fitted curves for datasets L74V+K101E+G190S and

M41L+K101E+G190S+T215Y showed that the parametric and

nonparametric methods gave comparable results.

As shown in Fig. 4, lower concentrations of EFV clearly

stimulate the replication of HIV K101E+G190S and M230L

compared to no EFV or at high EFV concentrations. However,

this property cannot be recognized by using the traditional

sigmoidal model fitting. To test the efficiency of our proposed

nonparametric method when the monotonicity property is

satisfied, we applied our method to the L74V+K101E+G190S

and M41L+K101E+G190S+T215Y datasets. The dose response

curves obtained by using the nonparametric model are very similar

to those by the sigmoidal model, which confirms the efficiency of

the nonparametric method. Table 3 compares the estimated IC50

values for all datasets obtained by using both methods. When the

sigmoidal model works well, as for HIV mutant strains G190S,

K101E, L74V+K101E+G190S, M41L+K101E+G190S+T215Y,

M41L+G190S+T215Y, M41L+K101E+G190S.

+T215Y(D10), and M41L+G190S+T215Y(D10) (these datasets

also satisfy the monotonicity property, as shown in Table 2), the

two estimated IC50 values for the same dataset are close (Table 3).

In contrast, because of the lack of monotonicity, the sigmoidal

model fails to fit the curves for HIV strains of K101E+G190S,

M230L and K101E+G190S(D10) (Table 2). For these datasets, the

nonparametric model becomes a better alternative for IC50

estimations (Table 3).

Discussion

When the dose response relationship and associated parameters

such as IC50 are studied, data observations, which make the

pattern nonmonotonic, are generally deleted in order to use the

model (1) or similar monotonic functions. However, by deleting

these ‘‘unusual’’ observations, some important information may be

lost. For example, in Fig. 2, the observation that a lower EFV

concentration stimulates HIV K101E+G190S replication can be

neglected if these data points are deleted. Removing the unusual

data points leaves only 2 observations in this dataset, making the

fitting procedure impossible.

In this paper, we proposed a nonparametric approach as an

alternative to the parametric sigmoidal model to fit the dose

response curve and estimate IC50, and suggested a monotonic

check of the dose response relationship at the first stage. If the

monotonicity is satisfied, either the traditional sigmoidal model

fitting or our local polynomial regression fitting can be applied. If

monotonicity is not satisfied, our model is more suited to estimate

the IC50. Using this new approach, important dose response

features will not be omitted. A similar approach has been used to

quantify protein lysate assays [16], although no monotonicity

needs to be satisfied in that case.

Our proposed method can also be used for other dose response

modeling scenarios, such as hormesis dose response curves. In

Table 1. The p{value (standard deviation) of the monotonicity tests for the simulation study.

g(x) = f1(x) g(x) = f2(x)

s d n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

0.1 0.2 0.195(0.349) 0.201(341) 0.303(0.401) * * *

0.5 0.373(0.447) 0.364(0.425) 0.440(0.452) * * *

1 0.541(0.474) 0.595(0.447) 0.633(0.428) * * *

2 0.723(0.414) 0.720(0.413) 0.787(0.382) * * *

0.5 0.2 0.119(0.287) 0.111(0.273) 0.095(0.249) 0.030(0.143) 0.001(0.016) *

0.5 0.091(0.255) 0.149(0.309) 0.179(0.337) 0.022(0.113) 0.006(0.072) *

1 0.225(0.384) 0.278(0.403) 0.229(0.367) 0.079(0.240) 0.026(0.141) *

2 0.298(0.411) 0.322(0.419) 0.397(0.429) 0.113(0.278) 0.034(0.164) *

*indicates that both p-value and its associated standard deviation are less than 10{3 .
doi:10.1371/journal.pone.0069301.t001
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toxicology, hormesis is a special dose response feature character-

ized by low dose stimulation and high dose inhibition [17–19],

giving a J-shape dose response curve. Our nonparametric model is

more suited than traditional monotonic models to fit this J-shaped

curve. Also, our method can be used to model other nonpara-

metric curves such as U-shaped dose response relationships

frequently observed in toxicology and epidemiology studies [20].

The human trefoil peptide (TFF1), a small cysteine-rich secreted

protein, stimulates cell migration by chemotaxis. The dose

response curve of TFF1 inducing breast cancer cell movement

shows a clear bell shape [21]. Similar curves are also seen in may

Table 2. The average p-values of the monotonicity test for the real data example.

HIV
strain G190S K101E K101E+G190S L74V+K101E+G190S M41L+K101E+G190S+T215Y

p-value 1 0.9438 0.007 0.712 1

HIV
strain M230L M41L+G190S+T215Y K101E+G190S(D10) M41L+G190S+T215Y(D10) M41L+K101E+G190S+T215Y(D10)

p-value ,1023 1 ,1023 0.984 0.397

doi:10.1371/journal.pone.0069301.t002

Figure 4. The fitted curves. Solid line indicates the nonparametric model and dashed line indicates the sigmoidal model if it is available.
doi:10.1371/journal.pone.0069301.g004
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other biomedical studies [22–27]. Our nonparametric model may

be more suitable than sigmoidal models to fit such dose response

curves and estimate the IC50.

Our approach for estimating IC50 can also be used to estimate

the half-maximal effective concentration, which is commonly used

when the drug enhances its target’s activity, and the lethal dose

50%, or the lethal concentration and time of a toxic substance or

radiation represents the dose needed to kill half the tested

population. Since the results we obtained are based on large

sample theory, a potential limitation of our proposed method is

that a moderate sample size may be needed, although a minimum

sample size is not determined.
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