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Abstract

Background: Transforming growth factor beta 1 (TGFb1) plays a major role in many lung diseases including lung cancer,
pulmonary hypertension, and pulmonary fibrosis. TGFb1 activates a signal transduction cascade that results in the
transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The
objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and
networks affected by the TGFb1/SMAD3 signaling in lung epithelial cells.

Methodology: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip)
along with gene expression microarrays to study global transcriptional regulation of the TGFb1/SMAD3 pathway in human
A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFb1/SMAD3 signaling were
identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to
promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human
primary lung epithelial cells.

Results and Conclusions: Known TGFb1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in
both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3
binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip
and gene expression microarray revealed multiple target molecular pathways affected by the TGFb1/SMAD3 signaling.
Identification of global targets and molecular pathways and networks associated with TGFb1/SMAD3 signaling allow for a
better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as
does the discovery of the direct effect of TGFb1 on FOXA2.
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Introduction

Transforming Growth Factor b1 (TGFb1) is a key pro-fibrotic

cytokine involved in many cell signaling and cellular processes.

These include cell proliferation, differentiation, cell adhesion

and migration, extracellular matrix deposition, apoptosis,

embryonic development, and immune response [1,2,3,4,5,6,7].

Dysregulated or aberrant TGFb1 signaling is implicated in

numerous pathological conditions including cancer, pulmonary

hypertension, and a wide variety of organ-specific fibrotic

diseases, including renal and idiopathic pulmonary fibrosis (IPF)

[7,8,9,10].

TGFb family of proteins is also highly conserved across

mammalian species [4,11]. Ubiquitous expression of both TGFb
and its receptors are detected in nearly all cell types, although the

effects on each type of cell are varied and specific to a particular

cell type [1,3,12,13,14]. TGFb1 exerts its effects through the

TGFb1/SMAD3 signal transduction pathway operating between

cell surface receptors for TGFb1 and the gene regulatory

machinery in the nucleus [15,16]. In humans, there are eight

members of the SMAD family of transcription factors. Of these,

five are receptor-regulated SMADs, or R-SMADs: SMAD1,

SMAD2, SMAD3, SMAD5 and SMAD9. SMAD4 is referred to

as a common-mediator SMAD, or co-SMAD. SMAD6 and

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e20319



SMAD7 are antagonistic or inhibitory SMADs and are therefore

referred to as I-SMADs [12].

In most cell types, TGFb1 inhibits cell proliferation [17].

TGFb1 stimulation of epithelial cells, however, either (a) inhibits

cell proliferation, (b) causes cells to undergo apoptosis, or (c)

induces epithelial-mesenchymal transition or EMT [18,19,20,21]. The

mesenchymal cells that result from EMT closely resemble

fibroblasts in morphology and behavior, sometimes with addition-

al motile and contractile abilities characteristic of muscle cells (and

hence referred to as myofibroblasts) [17,22]. Prolonged TGFb1

stimulation induces these mesenchymal cells to secrete collagens

such as Collagen 7A1 (COL7A1), decrease protease production,

and increase the secretion of protease inhibitors such as TIMPs

and SERPINE1, also known as plasminogen activator inhibitor 1

(PAI-1) [4,5,23,24]. Eventually, the cells may begin expressing

alpha-smooth muscle actin (aSMA) and transition into motile

myofibroblasts that aggressively infiltrate and deposit ECM

proteins, particularly collagens [6,9,18,19,20,22,23,25,26,27].

While EMT is expected to occur during certain phases of normal

embryonic development, in adults it is characteristic of fibrotic

diseases as well as neoplastic invasions and metastasis [9,22,27].

The TGFb1/SMAD3 signal transduction pathway is directly

implicated in inducing EMT [10,28].

Although many genes are known to be regulated through TGFb
signaling pathway, a comprehensive list of genes directly targeted

by SMAD3 binding is unavailable. In this study, using a

combination of genome-wide technology and computational

approaches, we identified SMAD3 target genes and molecular

pathways in a human lung alveolar epithelial carcinoma cell line.

A novel TGFb1/SMAD3 target gene, Forkhead Box A2 (FOXA2,

also known as HNF3B), was identified as a direct SMAD3 target.

Direct binding of SMAD3 to FOXA2 was demonstrated in this

study. Genome-wide identification of targets and molecular

pathways associated with TGFb1/SMAD3 pathway will provide

insights to its function and lead to better understanding of its

important roles in multiple cellular processes.

Materials and Methods

Cell Cultures
Human lung alveolar epithelial carcinoma A549 cells (CCL-

185, ATCC, Manassas, VA) were grown in F12-K culture

medium supplemented with 10% fetal bovine serum (ATCC)

and subcultured at 80-90% confluency. Prior to all experiments,

cells were serum-starved for 18–24 h. Human primary Small

Airway Epithelial Cells (SAEC) were obtained from Lonza, Inc.

and cultured in serum-free Small Airway Medium with supplied

supplements (Lonza, Walkersville, MD).

Chromatin Immunoprecipitation
The ChIP procedure was performed according to the protocol

of Weinmann et al [29] with the following modifications: 16107

A549 cells were treated with TGFb1 (2 ng/ml) for up to 2 h. Cells

were cross-linked with 1% formaldehyde for 12 min at RT, after

which glycine (125 mM) was added to quench the formaldehyde.

The cells were washed twice with ice-cold PBS and lysed in 500 ml

cell lysis buffer [50 mM Tris-HCl, pH 8.0; 1% Triton X-100;

10 mM KCl; supplemented with complete protease inhibitor

cocktail (Roche Diagnostics, Basel, Switzerland)]. Nuclei were

pelleted at 2,8006.g for 5 min at 4uC, and resuspended in 400 ml

of nuclear lysis buffer (50 mM Tris-HCl, pH 8.0; 10 mM EDTA;

0.1% SDS; supplemented with complete protease inhibitor

cocktail). The samples were sonicated 3610 s to yield sheared

DNA fragments between 200 and 700 bp, and lysates were

clarified by centrifugation (18,0006. g. 10 min, 4uC). Samples

were then incubated with 25 mg of anti-Smad3 antibody or control

IgG (anti-flag, Upstate/Millipore, Billerica, MA) for 1 h at 4uC.

To reduce nonspecific association, 30 mg of sonicated salmon

sperm DNA and 50 mg of BSA (Promega, Madison, WI) were

added to each sample. Immunoprecipitation (IP) was carried out

using 50 ml of 50% (v/v) Protein A/G PLUS-Agarose beads (Santa

Cruz, Santa Cruz, CA) at 4uC overnight. The immune complexes

were washed as follows: three times with low-salt wash buffer

(10 mM Tris-HCl, pH 8.0; 0.1% SDS; 0.1% sodium deoxycho-

late; 1% Triton X-100; 1 mM EDTA; 140 mM NaCl), 3 times

with high-salt buffer (same as low-salt wash buffer, but with

500 mM NaCl), 2 times with LiCl wash buffer (10 mM Tris-HCl,

pH 8.0; 250 mM LiCl; 1% Nonidet P-40; 1% sodium deoxycho-

late; 1 mM EDTA), and 2 times with TE buffer (20 mM Tris-

HCl, pH 8.0; 1 mM EDTA). Elution was performed twice at

65uC for 15 min, first with 200 ml of 1.5% SDS solution, and then

with 250 ml of 0.5% SDS solution. Immunoprecipitated DNA-

protein complexes were then reverse cross-linked at 65uC
overnight and purified by phenol-chloroform extraction and

ethanol precipitation with 30 mg glycogen (Roche Diagnostics).

The resultant purified DNA was dissolved in 20 ml of water.

Promoter Microarrays
Purified nucleic acid of ChIP reactions was blunt-ended using T4

DNA polymerase and ligated to linkers (sense strand: 59-

GCGGTGACCCGGGAGATCTGAATTC-39; anti-sense strand:

59-GAATTCAGATC-39) using T4 DNA ligase. Ligation products

were amplified using a two-stage (15 cycles followed by dilution and

input to a 25 cycle reaction) Taq polymerase-based PCR and

purified using PCR reaction purification kit (Qiagen, Valencia, CA).

Purified PCR products of SMAD3 IP and Mock IP were labeled

with cyanine-5 (Cy5) and cyanine-3 (Cy3) florescent dyes (Perki-

nElmer, Boston, MA), respectively, using the BioPrimeH Array

CGH Genomic Labeling kit (Invitrogen, Carlsbad, CA). Dye

incorporation was verified by Nanodrop spectrophotometer

measurement (Nanodrop, Wilmington, DE). Labeled amplified

DNA (Cy5 and Cy3) was combined and hybridized to Agilent 44K

two-array whole genome promoter sets (Agilent, Santa Clara, CA)

for 40 h at 65uC. Arrays were then washed in a series of sodium

chloride-sodium citrate (SSC) buffers and acetonitrile, and treated

with Agilent stabilization and drying solution for 30 seconds. Arrays

were then immediately scanned on a GenePix 4000B scanner in

two-color array mode (Cy5/Cy3) yielding an intensity ratio of Cy5

(IP) to Cy3 (mock IP) for each probe.

ChIP-on-chip Promoter Microarray Analysis
Agilent 44K whole genome promoter arrays contain probes that

cover 2000 base pair upstream to 800 base pair downstream of the

transcriptional start site for 44,000 published RefSeq genes. The

probed areas contain on average four to six separate 60-mer

sequences spaced at approximately 300 base pair intervals.

Human genome assembly UCSC hg17 which was built based

on human genome assembly NCBI35 was used for all genomic

analyses (http://genome.ucsc.edu/).

For Agilent promoter microarray analysis, we used a model-

based algorithm developed by Capaldi et. al [30]. Briefly, the

algorithm uses the length distribution of DNA fragments (after

sonication) to estimate the shape of a single binding event, as

measured by a series of 60-mer probes in each promoter sequence

on the array. Once the shape of a binding event at the ChIP-on-

chip data is modeled, the method then identifies regions of high

occupancy and optimizes the peak position and height (relative

enrichment) by fitting the peak shape to the measured data. For
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each peak, the algorithm enumerates and selects the most

probable values for center position and peak height (enrichment)

and computes the statistical significance of this peak. The statistical

significance of a binding event is estimating by computing an

empirical log-likelihood ratio (LLR) p-value. In this study, a

binding event was defined by a p-value less than 0.01 and an

estimated peak height (enrichment over control background)

greater than 1.5. The peak height was a measurement of

enrichment of specific SMAD3 binding to target sequences.

We analyzed SMAD3 ChIP-on-chip data for peaks with and

without TGFb1 stimulation. Each peak was assigned an

enrichment value and a p-value (the statistical significance of

seeing such a peak at random). To differentiate the true target

genes of SMAD3 with and without TGFb1 stimulation, we

analyzed the ChIP-on-chip data, and identified genes whose

promoter was bound by SMAD3 in at least two of the three array

replicates. For this, we used a p-value threshold of 0.01 in each of

the two replicates. For all peak regions, 6100bp surrounding the

peak position were extracted for further analysis. Computational

scanning for SMAD3 binding sites was performed using existing

SMAD3 matrix from TRANSFAC (release 2010.1, matrix

identifier V$SMAD3_Q6) and UniPROBE [31,32] (UniPROBE

Accession number UP00000) as shown in Figure S1. Bound

regions were scanned for matrix hits for each of the matrices

using a type I cutoff calculated at a p-value of 0.05 [33] where the

background score distribution was approximated by sampling

10000 instances of the motif length from the uniform distribution

and scoring using the motif matrix. The ChIP-on-chip micro-

array data was deposited to the GEO database under the

accession number GSE28346 (http://www.ncbi.nlm.nih.gov/

geo/).

Gene-Specific PCR Verification
A portion of the ligation-mediated PCR amplified immunopre-

cipitation product was used for gene-specific PCR reactions (25

cycles) to verify enrichment of promoter regions of the known

TGFb1-responsive genes SERPINE1 and SMAD7 as well as the

FOXA2 promoter sequence. PCR was performed using Taq DNA

polymerase (Invitrogen) in 15 ml reactions according to the

manufacturer’s protocol.

Gene Expression Microarrays
For gene expression measurements we used Agilent 4644K

whole human genome microarray kits (Agilent, Santa Clara, CA)

according to the manufacturer’s instructions. Briefly, 500 ng of

total RNA was amplified using an Agilent Low Input Linear

Amplification and Labeling kit and resultant cRNA was labeled

with Cy3 (10 mM; PerkinElmer, Boston, MA). Cy-3 labeled

probes were purified using Qiagen RNeasy Mini kit (Qiagen)

according to the manufacturer’s protocol. The yield and dye

incorporation were confirmed using a Nanodrop spectrophotom-

eter (Nanodrop, Wilmington, DE). Arrays were hybridized for

17 h at 60uC under continuous rotation at ,20 RPM. The gasket

slide coverslips were removed and the slides were sequentially

washed with Agilent Wash Buffer 1, Agilent Wash Buffer 2, and

acetonitrile for 1 min each and stabilized for 30 seconds in Agilent

Stabilization and Drying solution. Arrays were scanned using the

Agilent DNA microarray scanner.

DNA microarray feature intensities were measured using

Agilent Feature Extraction software 9.5.2. There were three

replicates each of four time points (0, 2, 12, and 24 h) of TGFb1

stimulation, each for vehicle-only control (DMSO) and for SIS3

treatment.

SIS3 Inhibition of SMAD3 Activity
Specific Inhibitor of SMAD3 (SIS3, EMD Chemicals, Inc., San

Diego, CA) is a potent, specific inhibitor of TGFb1/ALK-5

phosphorylation of SMAD3 while having no effect on SMAD2,

p38 MAPK, ERK, or PI 3-K signaling [34]. Cultured A549 cells

at 30-50% confluence were treated with 10 uM SIS3 in dimethyl

sulfoxide (DMSO), or DMSO (vehicle-only) 30 min prior to

TGFb1 treatment. Cells were treated with 2 ng/mL recombinant

TGFb1 (R&D Systems, Minneapolis, MN) for 0, 2, 12, and 24 h.

Total mRNA was extracted using Trizol (Invitrogen) according to

the supplier’s protocol.

Expression Microarray Data Analysis and Statistics
Background-subtracted signal intensities of arrays were log-base

2 transformed and then normalized across arrays by cyclic loess in

the R statistical package (R-2.6.0). Briefly, cyclic loess normaliza-

tion as used here involves randomly selecting a subset of 5000

probes for the cyclical fitting of local linear smoothers (loess from

the stats package) to MA plots from pairs of arrays, with response

variable M (log2-transformed intensity ratio) and independent

variable A (log2 of geometric mean intensity), then adjusting the

intensity values of all probes on both arrays in the pair using

predicted values from the loess fit. Each iteration is a complete

cycle over all pairs of arrays in the data set, and iteration stops

once the maximum observed change is less than a specified

epsilon, usually only two or three iterations. Since array data often

contains multiple (and variable numbers of) probes per gene, the

probe intensities were averaged and combined into individual gene

intensity values. Individual gene intensities across arrays (i.e., row)

were geometric mean normalized to the first time point (0 h

control) [35,36,37,38,39,40].

The data were analyzed using three separate software packages:

first, by permutation test between separate time points in the R

statistical programming environment (www.r-project.org/); next

by the Significance Analysis of Microarrays (SAM) package from

Stanford (www-stat.stanford.edu/,tibs/SAM/) [41]; and finally

in the Short Time-series Expression Miner (STEM) package

[42,43]. The STEM program uses a permutation test to quantify

the expected number of genes that would have been assigned to

each model if the data were random. Thus, a gene expression

profile deemed as significant would generate an established pattern

similar to other genes in its group and distinctly different from

random deviation. The resultant p-values are then Bonferroni

corrected [42,43]. The gene expression microarray data was

deposited to the GEO database under the accession number

GSE26858 (http://www.ncbi.nlm.nih.gov/geo/).

Electrophoretic Mobility Shift Assay (EMSA)
Cultured A549 at 60–70% confluence were treated with 2 ng/

ml recombinant human TGFb1 (R&D Systems, Minneapolis,

MN) for 60 min. Nuclear proteins were isolated as described

previously [44]. Nuclear proteins were flash-frozen in liquid

nitrogen and stored at 280uC.

Nuclear extracts at 1:10 dilution and recombinant full length

SMAD3 protein (Santa Cruz, Santa Cruz, CA) were incubated

with 59-end Cy5 labeled probe and/or non-labeled competitor

oligonucleotide for 20 min at room temperature in a binding

buffer consisting of 20% glycerol, 5 mM MgCl2, 2.5 mM EDTA,

25 mM DTT, 200 mM NaCl, 50 mM Tris HCl pH 7.6, and

0.25 mg/mL poly(dI-dC). The oligonucleotides (59-Cy5-GAT-

TGCTGGTCGTTTGTTGTGGCT-39, 59-AGCCACAACAA-

ACGACCAGCAATC- 39) consisted of nucleotide -42 to -19

relative to the translation start site of FOXA2 promoter were

synthesized (IDT, Coralville, IA). Supershift assay was performed

Direct Targets of TGFb1/SMAD3
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by additionally incubating nuclear extract with 0.4 mg rabbit

polyclonal antibody to SMAD3 (Abcam, Cambridge, MA) prior to

incubating with oligonucleotide. The protein/DNA complexes

were run on a 6% native polyacrylamide gel and visualized on a

Typhoon 9400 imaging and documentation system using Cy5dye

excitation and fluorescence settings.

Quantitative Real-Time PCR
A549 cells and human Small Airway Epithelial Cells were

grown to 80–90% confluence and treated with 2 ng/mL

recombinant TGFb1 for 0 (control), 2, 12, and 24 h. Total

mRNA was extracted using Trizol (Invitrogen) according to the

manufacturer’s instruction. Total mRNA was normalized to

600 ng and reverse-transcribed using random hexamer priming

with a SuperScript kit (Invitrogen). Quantitative PCR was

performed using TaqMan Gene Expression Assays specific for

FOXA2 (Hs00232764_m1) and SERPINE1 (Hs01126604_m1) on

an ABI Prism 7900HT (Applied Biosystems, Foster City, CA). To

evaluate relative mRNA expression of FOXA2 and SERPINE1, we

used GAPDH as a reference gene. Relative changes in transcript

levels of FOXA2 and SERPINE1 as compared to controls are

expressed as DDCt values (DDCt = DCttreated – DCtcontrol)

using ABI Sequence Detection Software v2.2.2.

Functional Analysis
Network Generation. A data set of significantly bound

(ChIP) or up/down-regulated (expression) genes containing gene

identifiers and corresponding binding/expression values was

uploaded into Ingenuity. Each gene identifier was mapped to

its corresponding gene object in the Ingenuity Pathways

Knowledge Base [45]. These genes, called focus genes, were

overlaid onto a global molecular network developed from

information contained in the Ingenuity Pathways Knowledge

Base. Networks of these focus genes were then algorithmically

generated by Ingenuity Pathways Analysis based on their

connectivity.

Functional Analysis of a Network. The Functional Analysis

of a network identified the biological functions that were most

significant to the genes in the network. The network genes

associated with biological functions and/or diseases in the

Ingenuity Pathways Knowledge Base were considered for the

analysis. Fisher’s exact test was used to calculate a p-value

determining the probability that each biological function assigned

to that network is due to chance alone.

Canonical Pathway Analysis. Canonical pathways analysis

identified the pathways from the Ingenuity Pathways Analysis

library of canonical pathways that were most significant to the

data set. A data set of significantly bound (ChIP) or up/down-

regulated (expression) genes containing gene identifiers and

corresponding binding/expression values was uploaded into in

the application and associated with a canonical pathway in the

Ingenuity Pathways Knowledge Base. The significance of the

association between the data set and the canonical pathway was

measured in two ways: 1) A ratio of the number of genes from the

data set that map to the pathway divided by the total number of

genes that map to the canonical pathway is displayed. 2) Fisher’s

exact test was used to calculate a p-value determining the

probability that the association between the genes in the dataset

and the canonical pathway is explained by chance alone.

Analyses were also done using MetaCore GeneGo systems

biology tools and default parameters of the software. The

detailed methods are described at GeneGo (http://www.

genego.com/metacore.php) and elsewhere [46,47].

Results

Identification of SMAD3 Target Genes by ChIP-on-chip
To ensure the success of SMAD3-specific ChIP-on-chip

analysis, we first confirmed the sensitivity and specificity of

SMAD3-specific ChIP assay. Gene-specific amplifications of two

well known direct targets of SMAD3, SMAD7 and SERPINE1

were performed using PCR and the SMAD3-specific ChIP

products of human A549 cells (Figure 1A). SMAD7 and

SERPINE1 were detected in the products of two independent

ChIP assays with different antibodies specific for SMAD3. As

expected, TGFb1 enhanced SMAD3 binding to both promoters.

For the ChIP-on-chip analysis, binding peaks were identified by

the model-based method of Capaldi et. al [30] and significant

binding was defined as any peak height of at least 1.5. A total of

350 and 469 genes met the binding criteria at the basal level and

after 30 min TGFb1 stimulation, respectively (Table S1 and S2).

The promoter with most abundant binding of SMAD3 after

TGFb1 stimulation was SERPINE1 with a relative peak height of

3.47 and 10.40 for basal condition and TGFb1 stimulation,

respectively, Similarly, the binding intensities were increased by

TGFb1 stimulation for additional known TGFb1-responsive

genes including COL7A1, a component of extracellular matrix,

SMAD6 and SMAD7, inhibitory SMAD proteins involved in

inhibiting intracellular effects of TGFb signaling, TGFb1, and

Latent Transforming Growth Factor Binding Protein 3 (LTBP3),

TGFb1 binding protein (Figure 1b). In addition, enhanced

binding of SMAD3 by TGFb1 to transgelin (TAGLN), a

previously reported TGFb1/SMAD3 target and marker of

EMT and cell mobility, was also detected [48]. Impressively,

scanning for matches to known SMAD3 matrices revealed that

70% of the sequences bound by SMAD3 only after TGFb1

induction had the Smad3 canonical motif (for the TRANSFAC

matrix (Figure S1); 57% for the primary SMAD3 matrix from

UniPROBE), while 80% had the previously reported alternative

Smad3 GC-rich binding motif [49] (for the secondary SMAD3

matrix from UniPROBE).

Correlation of Promoter Binding by SMAD3 and Altered
Gene Expression by TGFb1

In addition to SMAD3 specific ChIP-on-chip, global gene

expression was also analyzed using A549 with or without

TGFb1 stimulation. Gene expression microarray results were

consistent with many of the known TGFb1/SMAD3-responsive

elements (Figure 2, left panel). As shown in these heat maps,

SERPINE1, SMAD6, SMAD7, TGFb1, SMAD specific E3

ubiquitin-protein ligase 1 (SMURF1), a ubiquitin ligase that is

specific for receptor-regulated SMAD proteins in the bone

morphogenetic protein (BMP) pathway, and Connective Tissue

Growth Factor (CTGF) were highly upregulated after TGFb1

simulation. To determine whether these TGFb1 effects were a

direct result of SMAD3 function, we used SIS3, a specific

inhibitor of TGFb1 induced SMAD3 phosphorylation (Figure 2,

right panel). Addition of SIS3 reversed the effects of TGFb1 on

these target genes and the degrees of these inhibitory effects

were gene specific.

To correlate SMAD3-bound target genes identified by ChIP-

on-chip and gene expression analysis, we have analyzed the top

57 genes with the highest changes in the ChIP binding values

and their corresponding gene expression at 0, 2, 12, and 24 h

TGFb1 treatment (Figure 3). Generally, the expression levels of

the genes with the highest binding index on ChIP-on-chip were

changed on the gene expression microarray. Although the

expression levels of most target genes were up-regulated by

Direct Targets of TGFb1/SMAD3
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TGFb1, down regulation of target gene expressions were

observed in FOXA2, fibrinogen beta chain (FGB), epidermal

growth factor receptor pathway substrate 8 (EPS8), and

phosphodiesterase 7B (PDE7B). FOXA2 is a known transcrip-

tion factor in lung development. The repression of FOXA2

expression was observed at 2 h post treatment and persisted

throughout the induction. Addition of SIS3 abolished most

of the stimulatory/inhibitory effects of exogenous TGFb1

administration.

Signal Pathways of the SMAD3-bound Target Genes
We have performed Ingenuity Pathways Analysis to identify

signal pathways associated with the SMAD3-bound target genes of

TGFb1 stimulated human A549 cells (Figure 4A). The most

Figure 1. Enhanced SMAD3 binding to known target genes through TGFb1 stimulation. A: SMAD7 and SERPINE1 promoters were
amplified using the ligation-mediated PCR amplified immunoprecipitation product and gene specific primers. (1) Mock IP (anti-flag Ab); (2) anti-
SMAD3 Ab (Upstate Biosciences); (3) anti-SMAD2,3 Ab (BD Biosciences). B-G: Enhanced SMAD3 binding to target promoters through exogenous
TGFb1 stimulation. The left panel illustrates baseline promoter binding of SMAD3 and the right panel shows promoter binding after 30 min 2 ng/mL
TGFb1 stimulation. The known SMAD3 target genes SERPINE1, COL7A1, SMAD6, SMAD7, TGFB1, and LTBP3 are shown in B-G, respectively.
doi:10.1371/journal.pone.0020319.g001

Direct Targets of TGFb1/SMAD3
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important signal pathway was TGFb signaling and it included

approximately 10% of bound genes. Other prominent signaling

pathways included glucocorticoid receptor, ERK/MAPK and

integrin signaling, which were consistent with known interactions

of TGFb1. In addition, pyruvate metabolism, G-protein coupled

receptor signaling, leukocyte extravasation signaling and citrate

cycles were also identified. A combined analysis of gene expression

microarray and ChIP-on-chip of TGFb1 treated A549 cells was

performed using MetaCore GeneGo system biology analysis tools

(Figure 4B). Among the top biological pathways identified by both

ChIP-on-chip and microarray, TGFb receptor signaling remained

to be the most significant associated pathway. Interestingly, three

of the top 10 pathways were associated with cytoskeleton

remodeling (pathways 2, 4, and 7) and 4 of them were associated

with cell adhesion related pathways (pathways 5, 6, 9, and 10).

Validation of Gene Expression Changes by Quantitative
Real Time PCR

To verify the efficacy of both TGFb1 stimulation as well as the

inhibitory efficiency of SIS3 treatment in A549 cells, mRNA levels

of the highest responsive gene SERPINE1 and FOXA2, one of the

down regulated genes, were determined by quantitative real-time

PCR (Figure 5A and 5B). SERPINE1 levels increased approxi-

mately 10, 25 and 36 folds at 2, 12, and 24 h TGFb1 stimulation.

Conversely, FOXA2 levels were repressed by approximately 70-

80% at 2, 12, and 24 h. The stimulation and repression effects

were largely abrogated by SIS3 treatments, suggesting that it was

mediated specifically and directly through the TGFb1/SMAD3

pathway. To assess whether these effects were specific only to the

A549 cell line, SERPINE1 and FOXA2 mRNA levels were also

measured in primary human small airway epithelial cells (SAEC)

Figure 2. Gene expression levels of known TGFb1/SMAD3 target genes. Heat map of average expression values for genes known to be
affected by the TGFb1/SMAD3 pathway by microarray analysis. Color intensity values correspond to log2 of absolute intensity and reach saturation on
the heat map at value 4 to preserve dynamic range at lower values. The time series is in hour after TGFb1 stimulation and vehicle only (DMSO; left)
and with TGFb1 stimulation and also inhibition of SMAD3/ALK5 phosphorylation by Specific Inhibitor of SMAD3 (SIS3) (right). The gene expression
profiles on the left (non-SIS3-treated) were all identified as significantly up- or down-regulated (p,0.00001) by STEM as described in the method
section. A * indicated microarray results from two distinct DNA probes of the same gene.
doi:10.1371/journal.pone.0020319.g002
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Figure 3. Correlation of promoter binding by SMAD3 and altered gene expression by TGFb1. Heat map illustrate the genes with highest ChIP
binding values (left-most heat map columns) before and after TGFb1 treatment alongside their respective gene expression microarray intensities (middle heat
map columns). Color intensity values correspond to log2 of absolute intensity and reach saturation on the heat map at value 4 to preserve dynamic range at
lower values. Pre-treatment of A549 cells with SIS3 is shown to attenuate the TGFb1 gene expression response (right-most heat map columns).
doi:10.1371/journal.pone.0020319.g003
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(Figure 5C). FOXA2 mRNA levels were measured in relation to

SERPINE1 as a verification of TGFb1/SMAD3 pathway induc-

tion. SERPINE1 level was increased steadily and monotonically by

over 2-fold during 24 h stimulation while the FOXA2 mRNA was

repressed at similar level as that observed in A549 cells. The qRT-

PCR results in both A549 and human primary SAECs suggested

that TGFb1 modulated mRNA expression of SERPINE1 and

FOXA2 in pulmonary epithelial cells through SMAD3.

FOXA2 Promoter as a Direct Target of SMAD3
Since the gene expression study demonstrated FOXA2 as a

novel target of TGFb1/SMAD3 pathway, we analyzed the direct

binding of SMAD3 to its promoter. Significant binding of

SMAD3 to FOXA2 promoter was detected after TGFb1

stimulation in ChIP-on-chip analysis (Figure 6A). The maximum

peak height was 1.41 for basal level and 2.62 after TGFb1

stimulation. The gene expression of FOXA2 was reduced by

TGFb1 stimulation and SIS3 significantly abolished this effect at

both 6 h and 24 h treatment (Figure 6B). We complemented the

ChIP-on chip results by performing EMSA using both SMAD3

recombinant protein and nuclear extract of TGFb1 stimulated

A549 cells and a DNA probe specific for the FOXA2 promoter

(Figure 6C). Specific binding was detected for both recombinant

SMAD3 and nuclear extracts. Two protein complexes were

Figure 4. Signal pathways of the SMAD3-bound target genes. A: ChIP SMAD3-bound target genes grouped by signaling pathway and ranked
in order of statistical significance. The ratio of genes (orange line) refers to number of genes involved in pathway divided by total genes;
approximately 10% of bound genes are identified as belonging to the known TGFb1 signaling pathway. Other prominent signaling pathways include
ERK/MAPK and integrin signaling, which is consistent with known interactions of TGFb1. Data and image generated using Ingenuity Pathways
Analysis. B: Combined gene expression microarray and ChIP-on-chip data grouped by biological process using MetaCore GeneGo systems biology
analysis tools [46,47]. The top 10 identified pathways are shown. The solid blue and orange bars represent the -log (p-value) for unique genes
identified by the TGFb1-induced gene expression and the ChIP SMAD3-bound genes, respectively. The stripped blue bars represent the -log (p-value)
for common genes identified by both TGFb1-induced gene expression and ChIP SMAD3-bound genes. The black bars represent the -log (p-value) for
similar genes identified by both TGFb1-induced gene expression and ChIP SMAD3-bound genes.
doi:10.1371/journal.pone.0020319.g004
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identified using recombinant SMAD3 protein (denoted as 1) and

competition with unlabeled probes partially abolished both

complexes. With nuclear extracts of TGFb1 stimulated A549

cells, one of these complexes (upper one) was detected in addition

to a new protein complex (denoted as 2). Similarly, unlabeled

probe competition was able to partially abolish both complexes.

The presence of SMAD3 in the complexes associated with

nuclear extracts was verified by a supershift analysis using an

antibody specific to SMAD3. The supershifted complex was

denoted as 3 in Figure 6C. Taken together, we have

demonstrated that FOXA2 promoter was a direct target of

SMAD3 protein and its expression was down-regulated by

TGFb1 in pulmonary epithelial cells.

Discussion

Despite its well-known role as a mediator of TGFb1 signaling, a

comprehensive list of SMAD3 binding targets is not available. To

identify SMAD3 binding targets on a genome-wide scale, we

performed chromatin immunoprecipitation for SMAD3 in a

human lung alveolar epithelial carcinoma cell line A549 and

identified its binding targets using promoter region microarrays

(ChIP-on-chip). Additionally, a global gene expression analysis was

performed in the same cells before and after stimulation with

TGFb1. Analysis of both ChIP-on-chip and gene expression

microarray using computational approaches revealed multiple

target molecular pathways affected by the TGFb1/SMAD3

pathway. We have identified a novel TGFb1/SMAD3 target

gene, FOXA2, a key regulator of embryonic lung development as

well as proper function of the mature lung [50,51]. Identification

of global targets and molecular pathways associated with TGFb1/

SMAD3 pathway will provide insights to its function and lead to

better understanding of its important roles in multiple cellular

processes.

SMAD3 is a well-known mediator of TGFb induced-fibrosis.

Lack of SMAD3 in mice confers resistance to TGFb, injury, or

inflammation mediated renal and lung fibrosis [52,53,54] as well

as chemical-induced liver and pancreatic fibrosis [55,56]. Despite

this key role, to the best of our knowledge, this is the first global

assessment of SMAD3 targets using ChIP-on-chip technology.

Interestingly, genes associated with TGFb pathway accounted for

10% of directly bounded genes by SMAD3, but many of the

pathways affected by TGFb1/SMAD3 identified using a combi-

nation of ChIP-on-Chip and microarray analysis were consistent

with the roles of TGFb in development, fibrosis and cancer.

Additionally, multiple known genes associated with EMT and IPF

were affected by TGFb1/SMAD3, including the recently reported

S100A2, RRAS, MYO1D (Table S3) [40], SERPINE1 [57] and

TAGLN [58].

In this study, we identified a novel connection between the

TGFb1/SMAD3 transcriptional regulatory pathway and FOXA2,

a transcription factor vitally necessary for lung development and

function [50,59,60,61,62,63]. TGFb1 is a known regulator of

pulmonary surfactant levels and is known to suppress levels of

surfactant protein B (SFTPB) and SFTPC specifically through

thyroid transcription factor (TTF-1). Pulmonary surfactants are

lipoprotein complexes produced by type II alveolar epithelial cells

[64] and play important roles in lung development and normal

lung function. Similarly, TTF-1 is also a critical transcription

factor in lung development and it is regulated by FOXA2

[65,66,67,68]. Previously it was argued that FOXA2 regulates

TTF-1 levels and SFTPB/C through protein-protein interactions

[65,66]. However, the current data strongly suggests that SMAD3

directly binds the promoter of FOXA2 and regulates its activity at

the transcriptional level. TGFb1 selectively activates or represses

specific surfactant genes and these regulations are time dependent

(data not shown). The exact transcriptional regulatory mechanisms

of surfactants through the TGFb1/SMAD3/FOXA2 regulatory

chain remain to be elucidated.

This study provided a comprehensive list of SMAD3 binding

targets and global molecular analysis of TGFb1/SMAD3 signaling

networks in the human A549 lung alveolar epithelial cell line. In

this context it is important to mention that A549 cells are human

alveolar basal epithelial cells derived originally from an explanted

adenocarcinoma of the lung. While A549 cells do not necessarily

share all features of alveolar epithelial cell, they are commonly

used to study pathways and mechanisms relevant to the lung

alveolar epithelium because they express alveolar type II markers

such as SFTPA2, ZO1 and SFTPC [69,70,71]. In our case, we

used A549 cells as an in-vitro screening tool for identifying specific

targets of SMAD3 binding in a lung epithelial cell system. While

we believe that the majority of identified SMAD3 target genes in

A549 cells are likely to be also true for primary epithelial cells it is

plausible that binding targets that require SMAD3 and additional

co-factors, only expressed in normal epithelial cells, may not be

fully represented in our system. Thus validation of specific

TGFb1/SMAD3 targets in human primary cells is probably

needed to focus on specific pathways as we did in the case of

Figure 5. Quantitative analysis of SERPINE1 and FOXA2 gene expression. A and B: Quantitative real-time PCR of SERPINE1 (A) and FOXA2 (B)
gene expression levels in human A549 cells after 2, 12, and 24 h of stimulation with 2 ng/ml exogenous TGFb1 and the specific SMAD3 inhibitor, SIS3,
or a vehicle-only control (DMSO). The asterisk denotes a highly statistically significant (p,0.001; n = 3) difference at each time point between SIS3-
treated and vehicle-only controls after TGFb1 treatment. C: Quantitative real-time PCR of SERPINE1 and FOXA2 levels in human Small Airway Epithelial
Cells (SAEC) at 2, 12, and 24 h TGFb1 treatment in relation to control (no TGFb1). The asterisk denotes a statistically significant (p,0.01; n = 3)
difference at each time point for SERPINE1 and for FOXA2 at 24 h with respect to no TGFb1 treatment (time zero).
doi:10.1371/journal.pone.0020319.g005
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Figure 6. FOXA2 promoter as a direct target of SMAD3. A: ChIP promoter binding profile of FOXA2, baseline (left) and after 30 min 2 ng/ml TGFb1
stimulation (right). Each bar height indicates respective array signal intensity for that probe. Values from the three promoter array replicates are shown
(green, blue, purple, respectively). If the binding was statistically significant, the binding curve (red) is also included and shows the fitted peak shape. B: Heat
map illustration specifically of FOXA2 ChIP binding values (left) with respective gene expression microarray intensities with and without SIS3 treatment
(right and far right, respectively). The microarray expression values are plotted in a bar graph (bottom) and show significant repression (white bars) of FOXA2
during a time course of TGFb1 treatment that is largely abolished by SIS3 treatment (black bars). C: Electrophoretic mobility shift assay shows specific
binding of the SMAD3 protein (lanes 2-4) and nuclear extract from TGFb1-stimulated A549 cells (lanes 5-7). Lanes 3/6 and 4/7 contain non-labeled
competitor FOXA2 promoter sequence DNA, 40 ng and 200 ng, respectively. Lane 8 contains a polyclonal Ab against SMAD3 and has a supershift band (3).
doi:10.1371/journal.pone.0020319.g006
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FOXA2 and SERPINE1. Naturally, our comprehensive list of

SMAD1 targets in A549 cells will be of interest also to cancer

researchers because of the role of TGFb1/SMAD3 signaling in

lung cancer [72,73,74] and because A549 is also often used in lung

cancer research. The analyses of both baseline and after

stimulation ChIP-on-chip enhance the mechanistic value of our

observations and allow more insights into the pathways recruited

in response to TGFb1/SMAD3 signaling.

In conclusion, the availability of a comprehensive list of

SMAD3 signaling targets in response to TGFb1 stimulation, the

analysis of the transcriptional and molecular networks associated

with this pathway in lung epithelial cells will improve our

understanding of the effects of TGFb1/SMAD3 signaling in

fibrosis and cancer. The discovery of the direct effect of TGFb1/

SMAD3 on FOXA2, a major player in lung development and

surfactant production and a key regulator of epithelial cell

phenotype, should have significant impact on our understanding

of the phenotype of lung alveolar epithelial cells in fibrosis and

carcinogenesis and should encourage further research into the role

of this molecule in fibrosis.
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Figure S1 SMAD3 matrices used for the computational
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