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Abstract

Changes in conscious level have been associated with changes in dynamical integration and segregation among distributed
brain regions. Recent theoretical developments emphasize changes in directed functional (i.e., causal) connectivity as
reflected in quantities such as ‘integrated information’ and ‘causal density’. Here we develop and illustrate a rigorous
methodology for assessing causal connectivity from electroencephalographic (EEG) signals using Granger causality (GC).
Our method addresses the challenges of non-stationarity and bias by dividing data into short segments and applying
permutation analysis. We apply the method to EEG data obtained from subjects undergoing propofol-induced anaesthesia,
with signals source-localized to the anterior and posterior cingulate cortices. We found significant increases in bidirectional
GC in most subjects during loss-of-consciousness, especially in the beta and gamma frequency ranges. Corroborating a
previous analysis we also found increases in synchrony in these ranges; importantly, the Granger causality analysis showed
higher inter-subject consistency than the synchrony analysis. Finally, we validate our method using simulated data
generated from a model for which GC values can be analytically derived. In summary, our findings advance the
methodology of Granger causality analysis of EEG data and carry implications for integrated information and causal density
theories of consciousness.
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Introduction

An important challenge for cognitive neuroscience is to

characterize directed functional (i.e., causal) connectivity between

brain regions, either in the absence of identifiable behaviour or

during task performance. In particular, characterizing causal

connectivity patterns across different conscious levels (e.g., sleep,

anaesthesia, normal wakefulness) is likely to shed important new

light on the neural mechanisms underlying consciousness, and

may also provide new clinical methods for assessment of

intraoperative anaesthetic depth [1]. For example, two potential

measures of conscious level predicated on causal interactions

among neural elements are ‘integrated information’ (or W) [2] and

causal density [3].

One powerful approach to identifying causal connectivity from

time series data, originally developed in the 1960s by Norbert

Wiener and Clive Granger, is ‘Granger causality’ (GC) [4,5]. GC

embodies a data-driven, statistical time series approach to causal

inference based on prediction. The GC from one signal Y to

another signal X quantifies the extent to which the past of Y

contains information that helps predict the future of X more

accurately than when using only the past of X . GC is theoretically

well founded, is easy to apply when implemented via linear

autoregressive modelling, and partly for these reasons has enjoyed

accelerating application in neuroscience and beyond [6,7,8].

However, despite this growing popularity, rigorous application to

neuronal time series data remains challenging for several reasons.

First, assumptions of stationarity (requiring in the weak sense

constant mean and variance) are often only weakly met in

empirical data. Second, common preprocessing steps such as

bandpass filtering can interact problematically with GC analysis

[9]. Third, comparisons of GC between different conditions can

be confounded by bias in the statistical sample since, in finite

sample, GC is by definition positive. Here we address these

challenges in the context of analysis of steady-state electroenceph-

alographic (EEG) signals. We describe a rigorous analysis pipeline
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which takes into account potential non-stationarity by applying

GC to short data segments that are approximately stationary, and

allowing GC to vary across segments. This approach enables us to

move beyond the detection of significant causal connections

between time series, allowing analysis of the distribution of GC

values across segments, and, moreover, inference on differences in

distributions of GC values between different steady states. Our

method also incorporates a permutation analysis to eliminate

statistical bias. We further distinguish our approach by validation

against a simulation model for which GC values can be

analytically derived.

We illustrate our method by application to high-density, steady-

state, source-localized EEG data acquired from subjects during

wakeful resting (WR) and when undergoing propofol-induced

general anaesthesia (loss-of-consciousness, LOC). Extending a

previous analysis, we focused on time series localized to the

anterior and posterior cingulate cortices (ACC and PCC

respectively), see Figure 1; (ACC coverage extends to the

mesiofrontal cortex and PCC to the precuneus). These areas form

part of an anatomically-defined ‘mesial highway’ implicated in

slow-wave propagation during both anaesthesia and sleep [10,11].

In the previous analysis, both ACC and PCC showed large

increases in gamma (25–40 Hz) power during LOC [11].

Significantly, functional connectivity in the gamma range between

these regions also increased during LOC, as measured by phase

synchrony. Here, we extend this analysis by examining changes in

power and phase synchrony across multiple frequency bands (delta

0.5–4 Hz, theta 4–8 Hz, alpha 8–12 Hz, beta 12–25 Hz, and

gamma 25–40 Hz) on a subject-by-subject basis. Our main

extension remains however to examine bidirectional GC changes

for each subject using a rigorous and well-validated analysis

pipeline.

Methods

Ethics statement
The data analysed in this study were obtained from a previous

study [11] with procedures approved by the Ethics Committee of

the Faculty of Medicine of the University of Liège.

EEG data acquisition and preprocessing
We re-analyzed a subset of the data comprising 5 min of

spontaneous high-density EEG recordings sampled at 1000 Hz

from each of 7 subjects during both WR and LOC, with LOC

defined as clinical unconsciousness (no response to command,

Ramsay scale score 5) [12]. LOC was induced via administration

of propofol, an intravenous anaesthetic that is widely used in

surgical settings which reversibly induces a state of diminished

responsiveness behaviourally similar to non-rapid eye movement

sleep [13]. Average arterial blood concentrations of propofol were

3:87+1:39 mcg/mL for LOC [11]. Sensor-space EEG data were

source modelled using GeoSource (see [11]) and time-courses

corresponding to the ACC and PCC regions were extracted. Each

region furnished 9 time series, which we averaged to obtain a

single time series pair for each subject, in each of the WR and

LOC states. From each pair we selected 1–3 non-overlapping

artifact-free epochs of variable length. For ease of analysis, for a

given subject, the total length of data analyzed in each condition

was the same. Across different subjects, the data retained ranged

between 140 sec and 200 sec. We paid particular attention to

preprocessing steps given the sensitivity of GC to standard

manipulations [8,7]. For the GC analysis we applied the

following additional preprocessing steps. Following [9], for each

epoch we applied two-way least-squares finite impulse response

(FIR) notch filters (49–51 Hz and 99–101 Hz) to remove the

50 Hz mains-electricity line-noise as well as its harmonic at

100 Hz (if left in, these artifacts lead to nonstationarity). Then we

downsampled the data to 250 Hz in order to ensure a reasonable

model order for autoregressive modelling (see the section

‘Granger causality’ and [14,8]). Note that higher harmonics of

the line noise were rendered higher than the Nyquist frequency

following downsampling. No other filtering was carried out; other

artifacts were dealt with by choosing artifact-free epochs by

inspection.

Granger causality
In this section we rehearse the formalism of Granger causality in

the time and frequency domains. Given two wide-sense stationary

time series X and Y (i.e., time series whose observations have

constant means and variances), GC, FY?X , is a measure of the

extent to which the past of Y assists in predicting the future of X ,

over and above the extent to which the past of X already predicts

the future of X [5]. Standardly, the measure is implemented in

terms of linear regressions. Specifically we compare the (unre-

stricted, Eq. (1), and restricted, Eq. (2)) models

X (t)

Y (t)

� �
~
Xp

k~1

Ak
: X (t{kt0)

Y (t{kt0)

� �
z

Ex(t)

Ey(t)

� �
, ð1Þ

X (t)~
Xp

k~1

Bk
:X (t{kt0)zÊEx(t), ð2Þ

where Ak and Bk are respectively 262 and 161 matrices of model

coefficients, p is the model order, Ex, Ey and ÊEx are the residuals,

t0 denotes the time between successive observations, and we have

assumed for simplicity that X and Y are both zero mean. In

practice, Ak and Bk, and hence Ex, Ey and ÊEx can be derived by

standard linear autoregression methods, including ordinary least

squares and multivariate Yule-Walker equations [15]. GC is then

given by the log-ratio of the variance of the residual in the

restricted regression to that in the unrestricted regression:

Figure 1. The anatomical locations of the source-localized
regions analysed in this paper and in [11]. The frontal region (left)
is a portion of the anterior cingulate cortex (with extension to the
mesiofrontal cortex) and the posterior region (right) is a portion of the
posterior cingulate cortex (with extension to the precuneus). Repro-
duced with permission from Ref. [11].
doi:10.1371/journal.pone.0029072.g001
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FY?X ~ : ln
var(ÊEx)

var(Ex)

" #
: ð3Þ

Importantly, GC has a spectral decomposition that can be used

to restrict inferences about causal influence to particular frequency

bands [16,17,6]. Spectral GC can be thought of as measuring the

proportion of power of X at the given frequency that derives from

its interaction with Y . Spectral GC is written in terms of the

inverse H of the transfer matrix A, which is defined via the

frequency domain representation for the unrestricted regression:

A(v):
~XX (v)

~YY (v)

" #
~

~EEx(v)

~EEy(v)

" #
, ð4Þ

where we use tildes to denote Fourier transform. Explicitly in

terms of unrestricted regression coefficients we have

A(v)~I{
Xp

k~1

zkAk, ð5Þ

where z~e{itvt0 , and t~ : 2p is the circle constant [18]; (see

http://tauday.com for several reasons why we adopt t rather than

p as the circle constant). Let us also introduce the covariance

matrix of residuals of the unrestricted regression (1) as

S:
sxx sxy

syx syy

� �
~ : COV

Ex(t)

Ey(t)

� �
: ð6Þ

Then the spectral GC at a given frequency v is given by

FY?X (v)~ : ln
Sxx(v)

Sxx(v){Hxy(v)½syy{s2
xy=sxx�H�xy(v)

( )
, ð7Þ

where ‘*’ denotes complex conjugation. The transformation

Y?Y{(syx=sxx)X leaves GC invariant, but diagonalizes the

covariance matrix S of residuals and simplifies the expression for

spectral GC to

FY?X (v)~ : ln
Sxx(v)

Hxx(v)sxxH�xx(v)

� �
, ð8Þ

where now we have from Eq. (4) and Sxx~ : j ~XX j2 that

Sxx(v)~Hxx(v)sxxH�xx(v)zHxy(v)syyH�xy(v): ð9Þ

Written this way, we see explicitly how spectral GC is measuring

the contribution of causal power relative to intrinsic power.

To obtain the ‘band-limited’ GC for a frequency band defined

by the range ½v1,v2�, which we denote as FY?X (v1,v2), we

compute the mean spectral GC across the range, thus

FY?X (v1,v2)~ :
1

v2{v1

ðv2

v1

FY?X (v)dv: ð10Þ

It is noteworthy that the total time-domain GC is given by the

mean spectral GC over all frequencies up to the Nyquist frequency

vN~t{1
0 =2:

FY?X ~
1

vN

ðvN

0

FY?X (v)dv: ð11Þ

Simulation model
To validate our GC methodology, we simulated data from a

multivariate autoregressive model with white noise error terms, a

model for which we were able to derive true GC values

analytically. The general such system is specified by:

X (t)

Y (t)

� �
~
Xp

k~1

Ak
: X (t{kt0)

Y (t{kt0)

� �
z

Ex(t)

Ey(t)

� �
, ð12Þ

where t0 is the time between observations and each Ex(t) and

Ey(t) are independent Gaussian random variables of mean 0 and

variance 1. True spectral GC values are obtained as follows. Since

the residuals are uncorrelated in this model, spectral GC is given

by Eq. (8). The transfer matrix is given by (5), and its inverse H by

H(v)~
1

detA(v)

1{
X

k

ak,yyzk
X

k

ak,xyzk

X
k

ak,yxzk 1{
X

k

ak,xxzk

0
BB@

1
CCA, ð13Þ

where z~e{itvt0 . From this, and Eq. (9), and using that the

covariance matrix of residuals is the identity, we have

Sxx~
1

jdetA(v)j2
j1{

X
k

ak,yyzkj2zj
X

k

ak,xyzkj2
 !

: ð14Þ

Putting these together into Eq. (8) yields

FY?X (v)~ ln 1z

jX
k

ak,xyzkj2

j1{
X

k

ak,yyzkj2

0
BBBB@

1
CCCCA: ð15Þ

For FX?Y (v), simply swap X and Y in Eq. (15).

Results

Granger causality analysis of EEG data
GC analysis was conducted on artifact-free epoched time series,

following notch filtering and downsampling, reflecting mean EEG

activity within two source-localized brain areas, the ACC and the

PCC, recorded from subjects during normal wakeful resting (WR)

and under propofol sedation (LOC). Figure 2 shows 40 sec

representative samples of data from each area during both LOC

and WR. These samples exhibit non-stationary features such as

local linear trends at time scales of approximately 1 sec, which

would confound GC analysis. To avoid confounds due to

nonstationarity we divided the data into approximately stationary

non-overlapping short segments from each of which we removed

the mean and applied a linear detrend [19,20]. We chose segment

lengths of 2 sec (i.e., 500 time points) in order to strike a balance

between stationarity (shorter time series are more likely to be

stationary) and model fit (longer time series support better

parameter estimation for locally valid linear autoregressive

G-Causality in EEG during Propofol Anaesthesia
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models). For our data, shorter segments (1 sec) led to poor model

fitting for many segments, while longer segments (4 sec) were

frequently nonstationary; a 2 sec segment length is also in line with

previous investigations of stationarity of EEG obtained from sleeping

human subjects [21,22]. Dividing each epoch into non-overlapping

2 sec segments furnished at least 70 segments per condition per

subject. Figure 3 illustrates representative segments (with additional

normalization of standard deviation for clarity of illustration).

We next computed, for each segment, the recommended model

order (p in equations (1) and (2)) as given by the Akaike

information criterion (AIC) [23]. (We also computed the Bayesian

information criterion [24]; however this criterion often failed to

reach a minimum.) The 95th percentile of the values obtained was

20 (corresponding to 80 ms). We used this as our model order

throughout the GC analysis.

We next carried out the following GC analysis method for each

subject, condition (WR or LOC), direction, and frequency band

(delta, theta, alpha, beta, gamma). First, for each 2 sec segment we

calculated numerical estimates of GC using Eqs. (1), (2), (8) and

(10), using the model order p~20, and denoted these by F̂Fi, where

i~1, . . . ,ns, and ns is the number of segments per condition for

the given subject. These computations were performed using the

Granger Causal Connectivity Analysis toolbox implemented in

MATLAB (Natick, MA) [8].

Numerical GC values obtained directly from finite data yield

biased estimates of the true GC of the underlying process. In our

next step we estimated and removed the bias by applying the

following permutation procedure. For each subject, condition,

direction and frequency band, we selected 1000 random pairs of

2 sec segments from the ACC with (non-corresponding) 2 sec

segments from the PCC. We then computed the numerical GC for

each pair, F̂F (0)
a , where a~1, . . . ,1000. Since each pair has a true

GC of zero by definition, the distribution of observed GC values

across all pairs approximates the null distribution for zero GC in

processes that closely match the analyzed processes. From the

empirical null distribution we extracted the mean (m(F̂F (0))) and the

standard error (s(F̂F (0)), i.e. standard deviation divided by
ffiffiffiffiffiffiffiffiffiffi
1000
p

).

Approximately unbiased GC values were then obtained by

subtracting the mean of the null distribution from the biased

estimates: ĜGi:F̂Fi{m(F̂F (0)). It is worth noting that, for time-

domain GC, and a true linear autoregressive process, this de-

biasing procedure is asymptotically exact. This follows because

estimates of time-domain GC for such processes asymptotically

follow a non-central chi-squared distribution with the true GC

value given by the non-centrality parameter [16]. Therefore, the

above procedure will furnish exactly unbiased GC values if any

factors distorting the distribution away from a chi-square

distribution affect the null and non-zero true GC distributions in

the same way. These factors may include (i) aspects of the data that

are not exactly linear autoregressive, (ii) analysis of short segments

which challenge accurate model fitting, (iii) analysis in the

frequency domain rather than the time-domain (exact distribu-

tions are not known for the frequency domain). In practice, even if

these factors apply non-uniformly to null and non-null distribu-

tions, our debiasing procedure nonetheless provides improved

empirical estimates of the true (unbiased) GC values. We further

validate our methods by application to a simulation model (see

Section ‘Simulation model’).

Finally, for each subject, condition, direction and frequency

band, we obtained an estimate of the mean GC, m(ĜG) by taking the

mean of the approximately unbiased estimates across segments,

m(ĜG)~
1

ns

Xns

i~1

ĜGi: ð16Þ

An estimate of the standard error s(ĜG) of this estimate is then given

by

s(ĜG)~
1ffiffiffiffi
ns
p s(ĜG)zs(F̂F (0)), ð17Þ

where s denotes the standard deviation of the ĜGi.

We repeated the above procedure for the time-domain, with

time-domain GC values computed in approximation by taking the

mean over frequencies from 0.5–40 Hz (Eq. (10)). We avoided the

explicit time-domain GC (3) because that was found to sometimes

contain residual spurious contributions from the line noise at

Figure 2. Representative samples of data used in the GC analysis. The data have been notch filtered at 50 Hz and 100 Hz and downsampled
to 250 Hz.
doi:10.1371/journal.pone.0029072.g002

Figure 3. Three representative 2 sec segments used in the GC analysis from the ACC during LOC (left) and WR (right). Vertical lines
indicate segment boundaries. The time series shown for each segment have been preprocessed to remove the linear trend and renormalized to each
have mean of 0 and standard deviation of 1.
doi:10.1371/journal.pone.0029072.g003
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50 Hz [9]; (we took 40 Hz as a safe frequency cut-off for avoiding

this, and there was negligible power above 50 Hz in all data). We

also repeated the procedure to compute GC values at all integer

frequencies from 1 Hz to 40 Hz.

To confirm validity of application of linear regression models of

order p~20 to each of the data segments, following [8] we

performed both the Durbin-Watson test for whiteness of residuals

[25] and the consistency test of Ding et al [26]. Residuals were

reliably white across all segments for all subjects (mean Pw0:66),

indicating that the linear regression models adequately accounted

for the variance in the data. The mean consistency value across

segments was w80% for 4/7 subjects and w60% for 6/7 subjects,

verifying that the models are capable of regenerating the observed

data with high accuracy. Together, these results validate the

suitability of GC analysis for the data.

Figures 4 and 5 show band-limited and time domain GC for

the directions (PCC?ACC) and (ACC?PCC) respectively.

Figure 6 shows mean GC (and phase synchrony, see below) at

all integer frequencies for each condition and each subject. To

assess significance of differences in GC between WR and LOC,

for each subject, condition, direction and frequency, we

performed a Wilcoxon rank sum test to compare the distributions

of ĜGW
i and ĜGLOC

i , i.e., the distributions across segments of

approximately unbiased GC estimates for WR and LOC

respectively. (Note that we are interested in whether GC values

differ between conditions, not in whether any particular GC

value is statistically significant.) The results of these tests are given

in Table 1 (PCC?ACC) and Table 2 (ACC?PCC), at various

significance levels. Verifying the consistency of these results, in all

cases in which a significant difference was found at a false

discovery rate of either v0:01 or v0:05, there was no overlap in

the corresponding error bars in the corresponding graph (see

Figs. 4 and 5). The overall outcome of this analysis is that changes

in mean GC from WR to LOC show high inter-subject

consistency, with most subjects exhibiting a bidirectional increase

in GC between the ACC and the PCC during LOC, particularly

in the beta and gamma bands.

Granger causality of simulated data
To validate the GC analysis of the EEG data, we applied the

same procedure to the simulation model described in the section

‘Simulation model’, for which analytical GC values could be

computed. The model we simulated had the following non-zero

regression matrices

A1~
0:3 0

0 0:1

� �
, A10~

0 0:25

0:2 0

� �
, ð18Þ

chosen so that there is frequency-dependent bidirectional causality

between X and Y . We assumed a sampling rate of 250 Hz, so that

t0~4 ms. Using this model, we computed bidirectional spectral

GC analytically using Eq. (15), and compared results with those

obtained from simulated data consisting of 100 segments of length

2 sec each. For comparison with the GC analysis of the EEG data,

we used a model order of p~20. Figure 7 (a) shows the analytical

GC and the numerically computed (‘sample’) GC both before and

after application of the debiasing method described in the section

‘Granger causality analysis of EEG data’. It is clear that raw

sample GC values have a substantial positive bias, which is

significantly reduced uniformly across frequencies by the debiasing

method. Figure 7 (b) shows the results of repeating this procedure

over 100 different instantiations of the model, confirming the

effectiveness of the debiasing method. We note that there is some

remaining oscillation of the debiased value around the analytic

value, but that this oscillation is small. Finally, we performed

Wilcoxon tests on numerical GC estimates across 100 segments (of

a single instantiation of the model) to look for significant

differences in GC in the two directions. We tested for differences

in band-limited GC in the frequency bands 1–25 Hz, 26–50 Hz,

51–75 Hz, 75–100 Hz and 100–125 Hz. Consistent with the

analytical profile of the spectral GC measure, we found no

significant difference in the 1–25 Hz band, Pv0:05 in the 26–

50 Hz band, and P%0:01 in all the other bands. These

observations further attest the consistency of our method.

Figure 4. Mean band-limited GC computed using (16) in the direction PCC?ACC, in WR (light) and LOC (dark). Each panel shows a
different frequency band; the bottom-right panel shows the time-domain. Error bars show standard error (17).
doi:10.1371/journal.pone.0029072.g004
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Phase synchrony analysis of EEG data
We next compared the results of our GC analysis of the EEG

data with a phase synchrony analysis of the same data. Unlike GC,

phase synchrony provides an undirected measure of functional

connectivity. Synchrony measures have also been widely applied

in studies of both conscious content and conscious level (see [27]

for a review). The present analysis extends the previous analysis

[11], which found that on average, across all subjects, phase

synchrony increased during LOC in the theta, alpha and gamma

frequency bands. Here, augmenting this group level analysis, we

investigate changes in synchrony for each subject individually.

As described in the Methods section, in contrast to the GC

analysis, for the synchrony analysis we did not notch-filter or

downsample the data during preprocessing. (We did repeat the

synchrony analysis with downsampling to 250 Hz; the only effect of

this was loss of significance for a few cases, due to the throwing away

of data. Notch filtering would be redundant because bandpass filters

are applied as part of the synchrony computation.) For each data

point we computed the instantaneous synchrony between the ACC

and PCC in each of the five frequency bands (delta, theta, alpha,

beta, gamma) following the spatial analytic phase difference (SAPD)

method of [28], which was also the method used in [11]. This

procedure works as follows: First the time series from each epoch of

data were filtered using two-way least-squares FIR filters, with pass

band given by the frequency band under consideration. Next,

instantaneous phases were computed for each data point, via

Hilbert transform. Phases were then unwrapped, allowing instan-

taneous differences between phases of the ACC and the PCC to be

computed. These instantaneous differences were mapped back onto

the interval ½0,t=2� to obtain the SAPD at each time-point. Finally,

a binary value of phase synchrony at each time-point was obtained

by associating SAPD values below 0.2 radians with synchrony of 1,

and SAPD values above 0.2 radians with synchrony of 0. (We

repeated our calculations using a continuous measure of phase

synchrony, obtained directly from SAPDs; results were unchanged.)

For each subject and condition we divided the synchrony data

into 10 sec non-overlapping windows. For each window we

calculated the proportion of time-points with above-threshold (i.e.,

v0:2 SAPD) phase synchrony within each frequency band.

Figure 8 shows the mean of this proportion across all 10 sec

windows, in each frequency band, for each subject individually. As

for GC, we also computed synchrony at all integer frequencies

from 1 Hz to 40 Hz (using pass bands of (f {0:5) Hz to (f z0:5)
Hz for each frequency f ). Figure 6 shows synchrony at all

frequencies for each condition and subject, furnishing a direct

comparison with the GC analysis. Together, Figures 8 and 6

indicate that phase synchrony generally increases during LOC

though with less consistency across subjects than as compared to

the GC analysis. Supporting this interpretation, Table 3 shows the

outcome of significance tests on the difference in phase synchrony

between WR and LOC, calculated using the Wilcoxon rank sum

test. In contrast to the GC analysis, the results of this analysis show

substantial variability between subjects, particularly in the beta

and gamma bands, for which two subjects showed a highly

significant decrease in synchrony during LOC while the majority of

subjects showed a highly significant increase. Nonetheless, the grand

average across all subjects showed an increase during LOC in the

theta, alpha, beta and gamma bands and a decrease in the delta

band (significance not tested for here), reconfirming the group-

average analysis in [11].

Power spectral density analysis of EEG data
To examine changes in spectral power on a subject-by-subject

basis, we applied a fast Fourier transform to each of the 10 sec

windows identified in the previous synchrony analysis. For each

subject and frequency band we computed the mean power spectral

density (PSD) across all windows, in both the ACC (Figure 9) and

the PCC. Table 4 shows the outcome of Wilcoxon rank sum

significance tests on the difference in PSD between LOC and WR

for each subject and frequency band. The majority of entries in

Figure 5. Mean band-limited GC computed using (16) in the direction ACC?PCC, in WR (light) and LOC (dark). Each panel shows a
different frequency band; the bottom-right panel shows the time-domain. Error bars show standard error (17).
doi:10.1371/journal.pone.0029072.g005
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this table show a significant increase in PSD during LOC, in line

with the group-average results described by [11]. Corroborating

these findings, Figure 10 shows the full PSD spectra in WR and

LOC for the ACC region in each subject, averaged over all the

windows.

Discussion

We have presented a method for applying GC analysis to steady

state EEG data, that (i) accommodates non-stationarity by dividing

the data into short approximately-stationary segments, and (ii)

systematically removes bias by permutation analysis. Our method

is generally applicable in neuroimaging contexts that generate

continuous time series data at sampling rates reflecting neural

interactions (magneto/electroencephalographic signals, intracra-

nial recordings, electrocorticographic signals, other local-field-

potential signals). We demonstrated the efficacy of our method via

a rigorous set of simulations for which GC could be solved

analytically. We illustrated its value by application to source-

localized steady-state high-density EEG data obtained from

healthy human subjects undergoing propofol-induced anaesthesia,

examining changes in bidirectional GC between the ACC and

Figure 6. Plots of mean spectral GC and synchrony against frequency. Left column shows the mean spectral GC in the direction PCC?ACC
by frequency, for WR (blue) and LOC (red). The middle column shows the same data for mean GC in the direction PCC?ACC. The right column shows
mean phase synchrony by frequency. Each row shows a different subject.
doi:10.1371/journal.pone.0029072.g006
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PCC as subjects transitioned from wakeful resting (WR) to loss-of-

consciousness (LOC). We found an increase in bidirectional GC

during LOC that was most pronounced in the beta (12–25 Hz)

and gamma (25–40 Hz) frequency bands and which was observed

consistently across subjects. A comparison with a phase synchrony

analysis (following [11]) showed that the changes in GC were more

consistent across subjects than were changes in synchrony.

Nonetheless, both GC and phase synchrony pointed to increased

dynamical connectivity between the ACC and PCC during LOC

at the group level. Changes in spectral power were also consistent

across subjects, with power in most frequency bands generally

increasing during LOC.

A rigorous methodology for GC analysis
The increasing focus on functional brain networks underlying

cognition [29] requires well validated methods for extracting

functional connectivity from time series data obtained via

neuroimaging. While robust methods exist for identification of

undirected functional connectivity (e.g., synchrony, correlation),

methods for extracting directed functional (i.e., causal) connectiv-

ity are less well established. Among these methods, GC is

especially promising because of its simple conceptual and statistical

foundations (relative predictive ability and autoregressive model-

ling, respectively, see [7]), and because it does not require strong

priors on the underlying connectivity patterns. (GC can be

contrasted with ‘dynamic causal modelling’ [30], which aims at

assessing effective connectivity rather than (directed) functional

connectivity. Functional connectivity describes directed or undi-

rected network dynamics which need not univocally map onto

underlying structural connectivity, whereas effective connectivity

aims to infer the underlying physical generative processes [7,31].)

GC also admits a useful interpretation in terms of information

transfer because, for Gaussian variables, it is equivalent to transfer

entropy [32]. Importantly, changes in GC are not confounded by

changes in spectral power: changes in power simply rescale

prediction error for both the unrestricted (1) and restricted (2)

regressions by the same factor, leaving GC (3) invariant. Despite

these advantages, application of GC to empirical data requires

great care because GC estimates are readily confounded both by

unmet assumptions on the data (e.g., stationarity [20]) and by the

impact of standard preprocessing techniques such as bandpass

filtering [8,9]; moreover, GC analysis in sample yields a biased

estimate of the ‘true’ GC, complicating comparisons between

conditions and subjects. The method described here overcomes

these difficulties. In summary, for steady-state EEG data, for

comparison of GC values between experimental conditions, we

recommend the following steps:

1. Remove any line-noise artifact via notch filtering; avoid

bandpass filtering.

2. Choose a minimum timescale for interactions within the system

under consideration; downsample the data to a rate reflecting

this timescale.

3. Choose a segment length over which the data remain

approximately stationary, reflecting a trade-off between

increased stationarity (better for short segments) and parameter

estimation (better for long segments); partition the data into

non-overlapping segments of the chosen length, removing the

linear trend and mean from each segment. Exclude segments

containing artifacts.

4. For each segment, estimate the model order (e.g., using the

Akaike or Bayesian information criterion [23,24]); compute a

high percentile (e.g. 95th) of the recommended model order

across all segments.

5. Using this model order, compute GC in both directions for all

pairs of variables and for all frequencies of interest. For band-

limited GC, integrate spectral GC across the relevant

frequencies; for time-domain GC, integrate across all frequen-

cies (up to the Nyquist frequency), omitting any frequencies

contaminated by line-noise removal.

6. To estimate the bias in GC values for a particular connection

and frequency, compute the mean numerical GC at this

frequency between N randomized non-corresponding pairs of

segments from the predictor and predictee variables (use large

N, e.g., 1000).

7. Subtract the estimated bias from each raw GC value to obtain

an approximately unbiased estimate.

8. Assess significance using a Wilcoxon rank sum test on the

distribution of approximately unbiased GC estimates across

segments.

Elements of the above method have been proposed previously.

Analysis of short time-windows was advocated by Hesse et al [20];

however their emphasis was on extracting time-varying GC over

short time-scales and not on accurate estimation of GC for steady-

state data. To our knowledge, the issue of bias has not been

Table 1. Significant changes in GC from WR to LOC, in the
direction PCC?ACC, in each frequency band, and also in
the time domain.

Subject 1 2 3 4 5 6 7

d n/s (+) n/s [+] n/s [+] n/s

h [+] + n/s n/s + n/s n/s

a n/s [+] n/s n/s [+] n/s n/s

b n/s + n/s n/s + n/s n/s

c (+) n/s [2] n/s n/s n/s (+)

time domain (+) + n/s n/s + n/s [+]

‘+’ indicates an increase during LOC, ‘2’ indicates a decrease, and ‘n/s’ indicates
no significant change. Absence of brackets indicates significance at a false
discovery rate of v0:01, round brackets indicate significance at a false
discovery rate of v0:05, and square brackets indicate significance at the
Pv0:05 level.
doi:10.1371/journal.pone.0029072.t001

Table 2. Significant changes in GC from WR to LOC, in the
direction ACC?PCC, in each frequency band, and also in
the time domain.

Subject 1 2 3 4 5 6 7

d n/s n/s n/s n/s n/s n/s n/s

h n/s n/s n/s (+) n/s n/s n/s

a n/s n/s n/s [+] n/s n/s n/s

b n/s + n/s [+] n/s (+) (+)

c [+] (+) n/s [+] [+] + +

time domain n/s + n/s [+] n/s + (+)

‘+’ indicates an increase during LOC, ‘2’ indicates a decrease, and ‘n/s’ indicates
no significant change. Absence of brackets indicates significance at a false
discovery rate of v0:01, round brackets indicate significance at a false
discovery rate of v0:05, and square brackets indicate significance at the
Pv0:05 level.
doi:10.1371/journal.pone.0029072.t002
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examined until now, possibly because most previous studies have

been concerned with inference on the statistical significance of

individual GC values and not on comparing distributions of GC

values across conditions, as we do here. Importantly, we have been

able to demonstrate the efficacy of our method with respect to

debiasing via our novel analytically solvable model of spectral

bidirectional GC.

The context of spectral bidirectional GC between two variables

is deliberately simple. The method is however readily extensible to

more complicated situations including conditional GC (in which

the GC between each pair is conditioned on the common causal

influence of other variables, see [6,9]) and ‘multivariate’ or ‘block’

GC in which causality is assessed between two (or more)

multivariate variables (i.e., variables consisting of w1 time series)

[33]. With respect to preprocessing we have emphasized the need

to avoid bandpass filtering. While GC is theoretically invariant to

very general filtering, in practice GC estimates are often

confounded by increases in empirical model order entailed by

the application of a filter [9]. Hence we recommend that filtering

be used only where absolutely necessary to ensure stationarity (e.g.,

application of a notch filter to remove line noise); bandpass

filtering should not be applied as a panacea for artifact removal;

furthermore, bandpass filtering is entirely inappropriate for

estimation of GC within specific frequency ranges. In the latter

case, the correct approach is to compute spectral GC at all

frequencies and then integrate over the desired range (‘band-

limited’ GC, see [9]).

Dynamical neural correlates of propofol anaesthesia
The neurophysiological changes accompanying propofol-in-

duced LOC have been extensively studied. Alkire and colleagues

found using positron emission tomography a reduction in global

Figure 7. Analytical and numerical GC in a simulation model. (a) Mean spectral GC obtained from 200 sec of simulated data, obtained from
the model described by Eqs. (12) and (18), implementing bidirectional causality between two variables X and Y . Blue lines show GC in the direction
X?Y ; red lines show GC in the opposite direction. Dashed lines show numerical estimates of GC prior to debiasing, solid lines show numerical
estimates following debiasing, and dotted lines show the analytical GC values. (b) Mean numerical GC estimates, before and after debiasing,
computed across 100 instantiations of the model, with each instantiation generating 200 sec of simulated data.
doi:10.1371/journal.pone.0029072.g007

Figure 8. Mean phase synchrony in WR (light) and LOC (dark). Each panel shows a different frequency band. Error bars show standard error.
Mean and standard error computed across 10 sec windows of data, see main text.
doi:10.1371/journal.pone.0029072.g008
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brain metabolism of about 50% [34]; however global brain

metabolism is not a reliable predictor of conscious level, as

demonstrated by patients who recover from a vegetative state

while still exhibiting dramatically reduced brain metabolism [35].

While a large number of subsequent studies have focused on

region-specific neural activity changes during anaesthesia, only

recently have researchers studied changes in connectivity.

Connectivity studies of propofol-induced LOC have now lever-

aged multimodal neuroimaging methods including functional

magnetic resonance imaging [36,37,38,39], EEG [11,40,41], and

electrocorticography [42]. Other important studies assessed

connectivity changes using different anaesthetic agents including

isoflurane and halothane [43] and midazolam [44], the latter in

combination with transcranial magnetic stimulation (TMS). A

complex picture is emerging from these studies, indicating that

anaesthetic LOC is associated with modulated operation of

discrete networks rather than global or regional suppression or

enhancement of neural activity [45]. However, the diversity of

methodologies, potential anaesthetic pathways, and neuroimaging

results, together indicate a need for overarching theories specifying

unifying dynamical mechanisms.

Addressing this need, a variety of theoretical interpretations

have been offered to account for the sedative effects of

anaesthetics, including impaired thalamocortical connectivity

[43], ‘cognitive unbinding’ of low-level sensory and high-level

executive cortical regions [46,47], reduced information integration

[45,2,48], and diminished causal density among participating

brain regions [49,3]. The latter two notions specifically involve

causal interactions and so are particularly relevant to the present

approach. Integrated information uses information theory to

capture the extent to which a system considered as a whole

generates more information than when considered as a set of

independent parts [2,50,48]. Causal density uses GC to measure

the overall level of causal interactivity sustained by a system [49,3].

Both measures are motivated by the observation that conscious

experiences seem, at the level of phenomenology, to be

simultaneously highly differentiated (each experience is different

from every other experience) and highly integrated (every

experience appears as a unified whole). Both measures also

account for experimental observations that consciousness seems to

be lost in situations in which the underlying neural dynamics are

disintegrated [44,51] or pathologically integrated, as in general-

ized epilepsy [52].

The ability to detect directed functional brain networks during

anaesthetic LOC is therefore key to refining, as well as

differentiating between, the above theories. To our knowledge,

only one previous neuroimaging study has attempted this. Lee and

colleagues [41] used a method based on asymmetry of modula-

tions of scalp EEG signals, finding diminished feedback connec-

tivity during LOC. However, their method is not widely used as

compared to GC and its properties are less well understood. In a

related study, Ferrarelli et al examined effective connectivity during

anaesthesia by perturbing the brain using TMS and observing

cortical response patterns [44]. However, this perturbational

method does not characterize directed functional networks per se.

In this context, the method we have described opens the way to

Table 3. Significant changes in mean phase synchrony from
WR to LOC in each frequency band.

Subject 1 2 3 4 5 6 7

d 2 n/s + n/s n/s n/s n/s

h n/s 2 n/s + + + +

a (2) n/s n/s + n/s + +

b 2 2 + + + + +

c n/s 2 + + 2 + +

‘+’ indicates an increase during LOC, ‘2’ indicates a decrease, and ‘n/s’ indicates
no significant change. Absence of brackets indicates significance at a false
discovery rate of v0:01, round brackets indicate significance at a false
discovery rate of v0:05, and square brackets indicate significance at the
Pv0:05 level.
doi:10.1371/journal.pone.0029072.t003

Figure 9. Mean power spectral density in the ACC in WR (light) and LOC (dark). Each panel shows a different frequency band. Error bars
show standard error. Mean and standard error computed across 10 sec windows of data, see main text.
doi:10.1371/journal.pone.0029072.g009
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explicitly linking theoretically-motivated measures of conscious

level with experimentally available data. Our method is also

supported by the increased between-subject consistency we

observed in modulations of GC, as compared to modulations of

phase synchrony, suggesting that GC analysis may offer increased

robustness as well as sensitivity to directed interactions.

Stepping back, most theoretical views share the notion that

anaesthetic LOC is associated with decreased functional (or

effective) connectivity, whether directed or undirected. On the face

of it, these views contrast with our results which showed increased

GC and phase synchrony during LOC, as well as increased power.

However, increased functional connectivity could be consistent

with overall reduction of causal density and/or information

integration under at least two scenarios. First, high values of some

measures (synchrony, bivariate GC) could reflect pathologically

increased integration at the expense of differentiation. This view

aligns with the increased cortical-subcortical synchrony observed

during LOC associated with generalized epilepsy [52]; these

authors argue that enhanced synchrony ‘blocks access’ to a

neuronal global workspace. Second, in any GC analysis, common

unmeasured sources can influence results [53,29]. In this context,

it is important to recognize that the present results are based on

analyzing connectivity between only two areas, the ACC and the

PCC, which form part of a distinctive anatomical cortical

backbone (the ‘mesial highway’) [54]. Thus it is plausible that

increased functional connectivity between the ACC and the PCC

may reflect a wider disruption or disintegration of functional

connectivity, once other regions are taken into account. Adequate

tests of theories based on functional disintegration therefore

require extending the present analysis to incorporate a broader

range of cortical (and possibly subcortical) sources, together with

fully multivariate measures of causal connectivity.

Conclusions
We have described a methodological pipeline for GC analysis of

steady-state EEG signals, accommodating nonstationarity, elimi-

nating bias, and validated against an analytically solvable model.

This pipeline represents a contribution towards the general

problem of identifying directed functional connectivity in brain

networks [29], with specific relevance to the problem of measuring

conscious level [55,3]. The bidirectional increases in GC that we

observed between the ACC and PCC appear to challenge current

theories of consciousness based on integrated information and

causal density. However, these theories are based on network-

theoretic descriptions of causal connectivity which are not well

represented by considering only two regions. Further studies

incorporating additional regions are therefore required to shed

new light on the network-level dynamical changes underlying

anaesthetic LOC. Such studies may, as a result, furnish novel

theoretically-motivated procedures for assessing intraoperative

anaesthetic depth [45] and for assaying residual consciousness in

traumatically brain-injured patients [56]. The increased between-

subject consistency we observed for GC, as compared to phase

synchrony, further supports its potential use as a biomarker for

consciousness.

Table 4. Significant changes in mean power from WR to LOC
in each frequency band and for both the ACC and the PCC.
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‘+’ indicates an increase during LOC, ‘2’ indicates a decrease, and ‘n/s’ indicates
no significant change. Absence of brackets indicates significance at a false
discovery rate of v0:01, round brackets indicate significance at a false
discovery rate of v0:05, and square brackets indicate significance at the
Pv0:05 level.
doi:10.1371/journal.pone.0029072.t004

Figure 10. Mean (log) power spectral density in the ACC during
WR (blue) and LOC (red) for each subject. Logarithms are to base
10.
doi:10.1371/journal.pone.0029072.g010
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