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Abstract

Background: Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy.
Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased
operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery
(ASTB), which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However,
the ASTB does not evaluate a person’s response to stress. This is important because operating sophisticated aircraft
demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of
stress, and consequently better able to cope with the demands of naval aviation, than others.

Methodology/Principal Findings: Although many psychological studies have examined psychological stress resistance
none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a
novel statistical data normalization method to identify plasma proteins associated with human performance under
psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac
function, coagulation and plasma lipid physiology.

Conclusions/Significance: The proteins identified here further elucidate the physiological response to psychological stress
and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential
biomarkers for screening humans for capability of superior performance under stress.
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Introduction

Attrition of trainees from the aviation program is a continuing

concern for the U.S. Navy. Each late stage navy aviator training

failure costs the taxpayer over $1,000,000 and ultimately results in

decreased operational readiness of the fleet. Over the past 20 years

the attrition rate of incoming aviation students has been between 15–

25%. Failures occur for a variety of reasons including medical

problems. However, most attritions result from academic or flight

performance failures or requests to be dropped from the program

(DoR; drop on request). Naval aviation is a highly stressful

occupation requiring the ability to respond quickly and appropriately

in dangerous situations. While there is no measure of the impact of

psychological stress on attrition from the program, it makes a clear

contribution to academic/flight performance failures and DoR.

Biological screening of potential aviators based on performance

under psychological stress could reduce all of the major contributing

factors of attrition thus saving the Navy millions of dollars.

Potential aviators are currently selected using the Aviation

Selection Test Battery (ASTB). The ASTB is a written test

designed to evaluate math and verbal skills, mechanical compre-

hension, aviation and nautical information and spatial appercep-

tion. The ASTB has a strong predictive validity through primary

flight training. While the ASTB evaluates many skills necessary to

aviation, and it is correlated with performance, it does not account

for the natural genetic variation in physiological stress response.

Once selected by the ASTB, all trainees undergo water survival

training in the Modular Egress Training Simulator (METS) device

(‘‘helo-dunker’’)—an underwater crash simulator that requires

trainees to experience a water ‘‘crash’’ and perform an underwater

egress while blindfolded. The helo-dunker is a highly demanding

and stressful test.

Although human performance under psychological stress has

been studied extensively, it has been primarily done psychomet-

rically or using reductionist biological methods such as blood

cortisol measurements [1]. Here we have used blood plasma of
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aviators undergoing METS training and a high-throughput

proteomic approach to identify differential protein expression

indicative of performance under psychological stress. Low and

median- scoring performers (based on ASTB scores) differed from

high-scoring performers in the regulation of four basic physiolog-

ical processes: innate immunity, cardiac function, coagulation and

plasma lipid physiology.

Results and Discussion

Protein Identification, Quantification, Normalization and
Differentially Expressed Proteins

We identified between 2191–4526 proteins per sample tripli-

cate. Data were normalized using an invariant set of proteins and

compared to determine differential expression. Normalization of

proteomics datasets is typically accomplished in one of two ways:

1) the addition of control proteins in known concentrations to the

samples (a.k.a ‘‘spiking’’) or 2) comparison of expression values to

one or more pre-selected ‘housekeeping genes’. The problem with

spiking is that it does not account for the differences in variation

that are dependent on quantity of a protein in a sample and there

is a 12-log dynamic range between the most and least common

proteins in blood plasma [2]. Pre-selection of ‘‘housekeeping’’

proteins suffers from the same problems as spiking but also the

assumption that the selected proteins do not change, may be

wrong. However, what is clear (and logical) is that a significant

proportion of proteins across the range of concentrations present

in blood plasma will not change under specific conditions and that

these can be used for accurate normalization that will take account

of differences in variation that are dependent on quantity of a

protein in a sample. Identification of invariant proteins post hoc

guarantees normalization to data with unchanged expression. This

concept has been applied to microarray transcriptome data [3]

and proteome data [4]. Here we have used a method based on

similar principles in which SXcorr was calculated for each protein

and used to determine an invariant protein set post hoc. These

proteins were used to normalize the SXcorr for the all the proteins

in the dataset.

A set of 183 proteins were differentially expressed between

subjects with high and low performance scores: 136 proteins were

greater and 47 lower in the low scorers. Between high and median

scorers 206 were differentially expressed: 155 greater and 51 lower

among median scorers. A set of 331 proteins were differentially

expressed between low and median vs. high scoring performers

(Table S1).

Gene Ontology
We next obtained up-to-date (23JUL08) GO annotations for,

and then modeled based on GO biological process (GOBP), these

differentially expressed proteins. The Gene Ontology Annotation

(GOA) slim for biological process was applied to the differentially

expressed proteins (Figure 1). More proteins had GOBP ‘‘response

to stimulus’’ than any other GO slim category. Response to

stimulus is defined as: ‘‘a change in state or activity of a cell or an

organism (in terms of movement, secretion, enzyme production,

gene expression, etc.) as a result of a stimulus’’. This category

Figure 1. GO slim of differentially expressed proteins. All 183 differentially expressed proteins between high scoring and low scoring
performers were GO annotated and slimmed according to the GOA GO slim. This graph shows the number of proteins annotated to each slim
category.
doi:10.1371/journal.pone.0008371.g001
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includes responses to a variety of stimuli including stress. The use

of GO slims allows for the identification of general physiological

processes important to performance under stress. However, these

categories are very broad. Figure S1 shows the specific annotations

identified as a part of the response to stimulus GO slim category.

Differentially regulated proteins were annotated to each of the

shaded terms. Not surprisingly, most (13/18) of these terms are a

part of immune response and response to stress.

Ingenuity Pathways Analysis
To better understand the physiological responses related to

performance under stress we modeled our biomarkers using

Ingenuity Pathways Analysis software (IPA). Because our aim was

to identify the protein expression that distinguishes stress-resistant

high-scoring performers from their stress-susceptible low perform-

ing colleagues, we compared expression levels of low and median-

scoring vs. high-scoring performers. This resulted in nine

canonical pathways (Figure 2): acute phase response (APR),

complement system, coagulation system, LXR/RXR activation,

nitric oxide signaling in the cardiovascular system, cardiac b-

adrenergic signaling, role of pattern recognition receptors in the

recognition of bacteria and viruses, RAR activation and actin

cytoskeleton signaling. Together these pathways represent 4 basic

physiological processes: innate immunity, coagulation, cardiac

function and plasma lipid regulation. Each of these processes is

discussed in detail.

Innate Immunity
Several innate immune response pathways were differentially

expressed in low and median scoring performers compared to

high-scoring performers: acute phase response, complement

system (Figure S2), role of pattern recognition in recognition of

bacteria and viruses and RAR activation.

Acute phase response is an evolutionarily conserved systemic

physiological response to infection, injury or stress resulting in the

increased or decreased plasma concentration of several proteins

called acute phase proteins (APP). In addition to APP, we also

found up-regulation of three regulatory members of the APR

pathway among low and median-scoring performers. We also

found a greater increase in plasma IL-1, PI3K and NFkB among

low and median- scoring performers. These three regulatory

proteins are necessary for the activation of the acute phase

response. We identified 22 APP that were up-regulated among

poor and median performers in response to psychological stress.

Several complement system proteins were differentially ex-

pressed (Figure S2). As with acute phase response, the complement

system is a potent activator of inflammation that has been

previously associated with both chronic [5] and acute psycholog-

ical stress [6]. Proteins of the complement system act as a cascade

ultimately initiating inflammation and formation of the membrane

attack complex, responsible for pathogen cytolysis. We identified

many proteins belonging to the classical and alternative pathways

of the complement cascade for which plasma concentrations are

Figure 2. Pathways significantly affected by performance under psychological stress. Differentially expressed proteins were mapped to
canonical pathways using Ingenuity Pathways Analysis software. Nine pathways were found to be significantly (Fisher’s Exact; p,0.05) represented
by the differentially expressed proteins. The threshold is the 2log of the p-value (0.05).
doi:10.1371/journal.pone.0008371.g002
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inversely correlated with performance under psychological stress.

Low and median scoring performers showed greater increases in

plasma concentrations of these proteins than did high-scoring

performers. Identification of these proteins supports our above

finding that poor performance under psychological stress is

correlated with a pro-inflammatory state. Indeed, this is in

agreement with previous findings that several complement

proteins were elevated before and during both lab and naturalistic

psychological stress [7].

We also found up-regulation of the RELA and PIK3 proteins

present in the pattern recognition and RAR activation pathways.

Differential expression of these proteins also suggests that poor and

median-scoring performers experience a greater pro-inflammatory

response to psychological stress. From an evolutionary perspective,

inflammation as a part of the fight, flight or freeze response would

prepare organisms for infections resulting from injury. According-

ly, individuals who performed poorly in a stressful situation would

be more likely to incur injury and require an immune response.

Coagulation
We found several members of the intrinsic coagulation pathway

to be increased in low and median-scoring performers compared

to high-scoring performers (Figure S3). Specifically, low and

median-scoring performers show increases in both the coagulation

and fibrinolysis pathways; overall tending toward fibrinolysis

compared to their high-scoring counterparts. In support of our

findings, acute psychological stress causes up-regulation of both

the coagulant and fibrinolysis pathways, resulting in overall hyper-

coagulability [8]. More significantly, a pro-coagulant response has

been directly correlated with anticipatory appraisal of a stressor

[9].

Simultaneous upregulation of both coagulation and fibrinolysis

is continuous and serves to maintain hemostasis. As coagulatory

response to stress increases, greater compensatory mechanisms are

necessary to maintain the balance between coagulation and

fibrinolysis. Greater increases among poor and median-scoring

performers, compared to high-scoring performers, suggest in-

creased responsiveness among poor and median-scoring perform-

ers resulting in greater shifts in this fine balance. A tendency

toward fibrinolysis is a compensatory response to prevent

disseminated intravascular coagulation (DIC) which can result

from shock. DIC is elicited by inflammatory cytokines also

indicative of the greater innate immune response discussed above.

However, paradoxically, an excessive anticoagulant response can

itself induce DIC and thus shock [10] and we hypothesize that the

low and moderate performers may be more prone to shock.

Cardiac Function
Three pathways affecting cardiac function were differentially

regulated in poor and median performers compared to superior

performers. The cardiac b-andrenergic signaling, nitric oxide

signaling in the cardiovascular system and actin cytoskeleton

signaling pathways were more greatly up-regulated among poor

and median-scoring performers compared to high-scoring per-

formers.

Beta-adrenergic signaling in the cardiac system is elicited by the

release of epinerphrine (adrenaline) in response to stress and is

responsible for the increased heart rate, contractility and

vasodilation central to a fight-or-flight response. Nitric oxide

produced within cardiac muscle cells enhances the effect of

catecholamines (eg. epinephrine) either by increasing the release or

preventing the reuptake of catecholamines at a pre-synaptic level

[11,12]. Among the proteins identified in the actin cytoskeleton

signaling pathway was F-actin (filamentous actin), the major

component of muscle. Although F-actin is found in all muscle and

could represent changes taking place throughout the body, in light

of the other pathways significantly affected here it is likely that

cardiac muscle is most affected. Increased F-actin production likely

results from the increased heart rate and contractility discussed

above. More F-actin would be necessary for both addition to and

repair of the muscle tissue. Taken together, greater up-regulation

of these pathways among poor and median-scoring performers

suggests an enhanced cardiac epinephrine response to psycholog-

ical stress.

Plasma Lipid Physiology
Previously, increased plasma cholesterol has been linked to

stress [13]. Here, we found several proteins of the LXR/RXR

activation pathway were more greatly increased among poor and

median-scoring performers compared to high-scoring performers:

APOA1, APOC1, APOC4, RBP4, AGT, HPX, CP and ITIH4.

Up-regulation of the proteins found here would be expected to

cause both increased cholesterol efflux and reduced plasma lipid

clearance resulting in increased plasma lipid levels. APOA1,

APOC1 and APOC4 are exchangeable apolipoproteins involved

in cholesterol efflux [14], a critical step in reverse cholesterol

transport (RCT), the process by which cholesterol is removed from

the peripheral tissues and returned to the liver. Exchangeable

apolipoproteins bind effluxed cholesterol in the blood stream.

Increases in plasma apolipoprotein concentrations promote

cholesterol efflux from the peripheral tissues [14–16]. Plasma

RBP4 concentration is directly correlated with triacylglycerol [17–

20], serum total cholesterol [21,22] and LDL [22,23] concentra-

tions. ITIH4 has been correlated with hypercholesterolemia [24].

Poor and median-scoring performers would also experience

reduced lipid clearance. APOC1 reduces lipid clearance through

inhibition of APOE-mediated hepatic clearance via the low-

density lipoprotein receptor (LDLR) [25], very low-density

lipoprotein receptor (VLDLR) and the alternate clearance

pathway via binding of LDLR-related protein (LRP) [26] and

inhibition of lipoprotein lipase (LPL)-mediated triglyceride lipolysis

[27]. Increased APOC1 has been associated with elevated plasma

VLDL, triglyceride and free fatty acid levels [28]. A2M decreases

the uptake of LDL cholesteryl ester via APOE [29]. These

findings, taken together, suggest an increase in plasma lipids

among low and median-scoring performers in response to

psychological stress.

Conclusion
We have used a novel statistical method to ensure accurate

quantitative comparisons between subjects with various perfor-

mance levels under psychological stress. This invariant set method

does not rely on the assumption that ‘housekeeping genes’ have

unchanged expression. Normalization to several proteins across a

range of expression levels ensures appropriate normalization of all

sample proteins. We have identified 331 proteins differentially

expressed in poor and median-scoring performers compared to

high-scoring performers under psychological stress. Four basic

physiological processes were related to inferior performance:

innate immunity, coagulation, cardiac function and plasma lipid

physiology. Poor and median-scoring performers experienced

more inflammation, coagulation and fibrinolysis, cardiac response

to epinephrine and increased plasma lipid concentrations than did

their superior-scoring counterparts. These proteins and processes

provide value for developing a complementary tool for selecting

not only Naval aviators but also trainees in other fields in which

superior performance under extreme psychological stress is

required. Regardless of the underlying physiology, these proteins
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in themselves provide a foundation for developing the first robust

blood biomarker for rapidly quantifying human stress responses.

Materials and Methods

Ethics Statement
All sample collection took place at the Water Survival Training

facility at Naval Air Station Pensacola and was approved by the

Naval Aerospace Medical Research Laboratory Institutional

Review Board (human use research protocol number

NAMRL.2005.0003). Written informed consent was obtained

from all participants.

Subjects and Sample Collection
Trainees were required to successfully egress the METS (a

simulated helicopter fuselage) three times in six attempts. Blood

samples were collected from 22 trainees before (pre-stress) and

after (post-stress) their METS training. Pre-stress samples were

collected 24 h prior to the METS and post-stress samples were

collected no more than 20 minutes following the last successful

egress.

Plasma samples were collected and stored according to the

conventional method. Blood was collected into EDTA vaccutai-

ners, centrifuged (900 x g, 15 min, room temperature) to collect

plasma and then stored in a plain vaccutainer. After collection,

each sample was aliquoted into 200 ml aliquots and frozen at

280uC. The pre- and post-stress plasma samples were labeled

accordingly with subject numbers in order to match the data to

each of the participants. All the plasma samples were sent to

Mississippi State University for analysis.

The Aviation Selection Test Battery (ASTB) is the only test used

by the Navy, Marine Corp and Coast guard for aviation program

selection. It consists of 4 subtests: Math and Verbal Test,

Mechanical Comprehension Test, Aviation and Nautical Infor-

mation Test, and Spatial Apperception Test. The ASTB subtests

are weighted and the following composite scores are computed: 1)

Academic Qualification Rating (AQR); 2) Pilot Flight Aptitude

Rating (PFAR); 3) Flight Officer Flight Aptitude Rating and 4)

Officer Aptitude Rating. AQR and PFAR scores are used for pilot

programs [30]. Composite scores were collected for all subjects.

Because we were interested in pilot performance AQR+PFAR was

used as a measure of ASTB score.

Experimental Design
Of the 22 students 9 (all male) were chosen, based on their

ASTB scores, for further analysis: 3 students with the highest

scores (high performance group), 3 with the lowest scores (low

performance group) and 3 with median scores (median perfor-

mance group).

Abundant Protein Depletion
In order to increase proteome coverage, six of the most

abundant plasma proteins (albumin, IgG, IgA, anti-trypsin,

transferrin and haptoglobin) were depleted using the Agilent

Multiple Affinity Removal System, 4.6650 mm LC column

(Agilent Technologies). Plasma from each sample was diluted 1:5

in Buffer A. Particulates were removed using 0.22 mm spin filters;

1 min at 16 000 x g. Filtered plasma samples were then loaded

into the Thermo-Separation Products AS3000 autosampler

attached to the Agilent 1100 LC system equipped with a

quaternary pump and diode array detector. Samples were run

according to the LC timetable indicated by the column

manufacturer and collected using the Gilson FC203B fraction

collector. Samples in both the autosampler and fraction collector

were maintained at 4uC throughout the LC protocol. Samples

were collected between 1.7–4.5 min of the 20 min protocol

ensuring collection of the high-abundant protein peak as detected

by UV. Following abundant protein depletion, sample concentra-

tion was determined using the 2-D Quant Kit (Amersham

Biosciences) and found to have been reduced by ,90% as

predicted by the column manufacturer. Each sample was divided

into three 100 mg technical replicates. Each replicate was frozen

(280uC, 15 min) and lyophilized (FreeZone 2.5 L Benchtop freeze

dry system, Labconco Corporation, Kansas City, MO. USA;

2 hr).

Proteomics
Samples were diluted in ammonium bicarbonate (0.1 M;

100 ml), reduced using dithiothreitol (5 mM; 5 min; 65uC),

alkylated using iodoacetamide (10 mM; 30 min; 30uC) and

trypsin-digested (molecular biology grade trypsin; Promega

Corporation, Madison, WI; 50:1 protein:trypsin [w/w]; 16 h;

37uC). Peptides were desalted using a peptide macrotrap

(Michrom Bioresources, Inc., Auburn, CA, USA) and eluted in a

95% ACN, 0.01% TFA solution. Desalted peptides were dried in a

vacuum centrifuge (ThermoElectron) and stored (280uC) for

further analysis.

Dried samples were resuspended in 20 ml of 0.1% formic acid,

5% acetonitrile. LC analysis was accomplished by SCX followed

by RP LC coupled directly in line with ESI IT MS. Samples were

loaded into a LC gradient ion exchange system containing a

Thermo Separations P4000 quaternary gradient pump (Thermo-

Electron) coupled with a 0.326100 mm BioBasic SCX column. A

flow rate of 3 mL/min was used for both SCX and RP columns. A

salt gradient was applied in steps of 0, 10, 15, 20, 25, 30, 35, 40,

45, 50, 57, 64, 90 and 700 mM ammonium acetate in 5% ACN,

0.1% formic acid and the resultant peptides loaded directly into

the sample loop of a 0.186100 mm BioBasic C18 RP LC column

of a ProteomeX workstation (Thermo Electron). The RP gradient

used 0.1% formic acid in ACN and increased the ACN

concentration in a linear gradient from 5% to 30% in 30 min

and then 30% to 65% in 9 min followed by 95% for 5 min and

5% for 15 min. The spectrum collection time was 59 min for

every SCX step. The Deca LCQ IT mass spectrometer was

configured to optimize the duty cycle length with the quality of

data acquired by alternating between a single full MS scan

followed by three tandem MS scans on the three most intense

precursor masses (as determined by Xcalibur mass spectrometer

software in real time) from the full scan. The collision energy was

normalized to 35%. Dynamic mass exclusion windows were set at

2 min and all of the spectra were measured with an overall mass/

charge (m/z) ratio range of 300–1700 Th.

Tandem mass spectra were used to search a database of all

human RefSeq proteins downloaded directly from the National

Center for Biotechnology Institute (NCBI; 27MAR07) and a decoy

database using TurboSEQUEST (Bioworks Browser 3.2; Ther-

moElectron). Trypsin digestion was applied in silico to the modified

database including mass changes due to cysteine carbamido-

methylation and methionine oxidation. The peptide (MS precur-

sor ion) mass tolerance was set to 1.5 Da and the fragment ion

(MS2) mass tolerance was set to 1.0 Da. For both the real and

decoy databases, peptides were filtered by Xcorr .1.0 and

exported for further analysis. Real database identifications were

determined by comparison of the real and decoy database matches

using our DecoyPepFilter program. Peptides were grouped by charge

state (+1, +2, +3) and sorted by Xcorr x DCn. For each real

database peptide match within a charge state group, the

percentage of decoy database matches with the same or higher
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Xcorr x DCn was calculated. Peptides were considered real if

#1% of decoy database matches had the same or higher Xcorr x

DCn. Protein identifications have been submitted to the

proteomics identifications database (PRIDE, [31,32]), accession

numbers 10075–10092 inclusive.

Data Normalization and Calculation of Differential
Expression

Sample normalization was done based on the principle that

many proteins would not vary between samples and these proteins

can be used as internal standards [3,4]. To identify these proteins

and then use them for normalization we did global lowess

normalization and constructed an invariant protein set. For the jth

sample denote the SXCorr associated with protein k as Ykj where

k = 1,…,m and j = 1,…, n. A median mock sample was constructed

with jth element, Yj0 = median [Yj1,…, Yjn]. Within each sample

the Ykjs were ranked. We denote the rank of protein k within

sample j as Rkj. A rank sum of squares (RSS) was calculated for each

kth protein as RSSk = P n
i = 1(Rki 2Rk0)2. We plotted log(RSSk)

versus log(Rk0). The invariant protein set was determined by visual

inspection of the plot. Invariant proteins were chosen so they

covered the full range of Ykj scores. A lowess normalization was

then performed by fitting a lowess smooth [33] to the Ykj scores of

the invariant protein set. Once all SXcorr values were normalized

between samples we then calculated the differential expression for

each subject using post-stress SXcorr – control SXcorr =

DSXcorr. DSXcorr values were then compared between subjects

grouped by ASTB scores (e.g. high performance group vs. low

performance group). DSXcorr values were subjected to monte

carlo resampling with replacement (1000 iterations) to generate a

p-value exactly as described previously [34]. Differential expres-

sion was considered statistically significant when p,0.05.

Gene Ontology Annotation
Gene Ontology annotations for all differentially expressed

proteins were obtained using GORetriever [35]. These annotations

were grouped into broader categories using GOSlimViewer [35] and

the GOA slim.

Canonical Genetic Network and Pathway Modeling
Data were analyzed using Ingenuity Pathways Analysis

(IngenuityHSystems). Canonical pathways analysis identified the

pathways from the Ingenuity Pathways Analysis library of

canonical pathways that were most significant to the data set.

Genes from the data set that were associated with a canonical

pathway in the Ingenuity Pathways Knowledge Base were

considered for the analysis. A Fisher’s Exact test was used to

calculate a p-value determining the probability that the association

between the genes in the dataset and the canonical pathway is

explained by chance alone. Pathways were considered to be

statistically significantly associated with the dataset if p,0.05.

Supporting Information

Figure S1 Response to stimulus annotations. Proteins annotated

to the response to stimulus slim category were mapped to their

most specific GO terms. Terms to which identified proteins were

annotated are shaded.

Found at: doi:10.1371/journal.pone.0008371.s001 (0.34 MB JPG)

Figure S2 Coagulation Sytstem. The intrinsic pathway of

coagulation was differentially regulated according to performance

under psychological stress. Proteins we identified within this

pathway are in color. Proteins up-regulated in low and median

scoring performers compared to high scoring performers are red.

Found at: doi:10.1371/journal.pone.0008371.s002 (0.37 MB JPG)

Figure S3 Complement System. The complement system

pathway was differentially regulated according to performance

under psychological stress. Proteins we identified within this

pathway are in color. Proteins up-regulated in low and median

scoring performers compared to high scoring performers are red.

Found at: doi:10.1371/journal.pone.0008371.s003 (0.31 MB JPG)

Table S1 Differentially Expressed Proteins

Found at: doi:10.1371/journal.pone.0008371.s004 (0.06 MB

PDF)
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