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Abstract

Background: Chronic fatiguing illness remains a poorly understood syndrome of unknown pathogenesis. We attempted to
identify biomarkers for chronic fatiguing illness using microarrays to query the transcriptome in peripheral blood leukocytes.

Methods: Cases were 44 individuals who were clinically evaluated and found to meet standard international criteria for
chronic fatigue syndrome or idiopathic chronic fatigue, and controls were their monozygotic co-twins who were clinically
evaluated and never had even one month of impairing fatigue. Biological sampling conditions were standardized and RNA
stabilizing media were used. These methodological features provide rigorous control for bias resulting from case-control
mismatched ancestry and experimental error. Individual gene expression profiles were assessed using Affymetrix Human
Genome U133 Plus 2.0 arrays.

Findings: There were no significant differences in gene expression for any transcript.

Conclusions: Contrary to our expectations, we were unable to identify a biomarker for chronic fatiguing illness in the
transcriptome of peripheral blood leukocytes suggesting that positive findings in prior studies may have resulted from
experimental bias.
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Introduction

The etiology of chronic fatigue syndrome (CFS) is unknown [1–3].

Many theories of the pathophysiology of CFS have been suggested

[4–9], often based on suspicions of the role of an acute viral illness or

immune dysfunction. The availability of a biomarker for CFS would

be of particular benefit for clinical and basic research.

Gene expression studies of peripheral blood leukocytes (PBLs) are

a potentially promising source of biomarkers for CFS [10]. PBLs are

both accessible and salient for CFS given the prominence of immune

and infectious theories of its etiology. Moreover, gene expression

patterns in human PBLs are not unrelated to less accessible tissues

like brain [11]. We are aware of four published non-overlapping

studies that compared gene expression in PBLs in cases with CFS in

comparison to controls [12–15]. These small studies included a total

of only 45 cases (5, 7, 8, and 25) and, of the 108 transcripts reported

to have altered expression, only one transcript was altered in more

than one study (MSN, moesin). [13,15]

Given the lack of clarity in existing studies of CFS, we

undertook an ‘‘unbiased’’, transcriptome-wide search for gene

expression changes associated with CFS in PBLs. Our study had

two notable design features. First, we used a control group optimal

for detecting state-related gene expression changes and minimized

false-positive findings due to genetic mismatching between cases

and controls as we contrasted 44 individuals with clinically-

evaluated chronic fatiguing illness with their 44 unaffected

monozygotic co-twins. Use of rigorously discordant monozygotic

twins provides the best control for genetic background currently

possible in humans and allows use of paired statistics with greater

statistical power. Second, we carefully standardized sampling

conditions so that PBL samples were drawn into RNA-stabilizing

media and taken from both members of a twin pair at the same

time and place.

Materials and Methods

Ethics Statement
The protocol was approved in advance by the ethical review

board at UNC-CH and the Karolinska Institutet and all subjects

provided written informed consent.
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We screened ,61,000 individual twins from the Swedish Twin

Registry for the symptoms of fatiguing illness [16–18]. All twins

were born in Sweden of Scandinavian ancestry. Of 5,597

monozygotic twin pairs where both were alive and had provided

usable responses to CFS screening questions, we identified 140

pairs of twins who met preliminary inclusion criteria: born 1935–

1985, classified as a monozygotic twin based on questionnaire

responses [19], and discordant for chronic fatiguing illness (i.e.,

one twin reported substantial fatigue and the other twin was

evidently well). A telephone interview using a standardized script

was used to assess eligibility for participation. Twins who remained

eligible attended a half-day clinical assessment by a specially

trained physician at the Karolinska Institutet in Stockholm. At this

visit, a CFS-focused medical assessment was conducted that

included standardized medical history, physical examination, and

screening biochemical, hormonal, and hematological studies in

accordance with international recommendations [1].

Of 140 monozygotic and preliminarily discordant twin pairs,

one or both twins declined participation in 23 pairs, 25 pairs were

concordant for CFS-like illness, and inclusion criteria were not met

in 35 pairs (e.g., chronic fatigue had resolved or an illness that

could explain fatiguing symptoms such as neoplasia had emerged).

After excluding these 83 pairs, 57 pairs of twins attended the

clinical evaluation sessions, and 10 pairs were found not to meet

inclusion criteria (9 pairs were concordant for the presence or

absence of chronic fatigue or a medical explanation was detected –

e.g., newly diagnosed type 2 diabetes mellitus – and 1 pair was

dizygotic). Zygosity was confirmed by genotyping 46 single

nucleotide polymorphisms using two Sequenom iPlex panels. In

3 pairs, microarray data of satisfactory quality could not be

obtained.

The analysis sample consisted of 44 pairs of rigorously

discordant and genetically proven monozygotic twins. Discor-

dance was defined as one twin meeting criteria for either

idiopathic chronic fatigue (ICF, 12 pairs) or CFS (32 pairs) [1,2]

and the co-twin was required never to have experienced impairing

unusual fatigue or tiredness lasting more than one month. Thus,

all affected twins were required to have current, long-standing ($6

months), medically unexplained fatigue associated with substantial

impairment in social and occupational functioning and the

unaffected co-twins were effectively well. A diagnosis of CFS adds

a requirement for $4 of 8 specific symptoms (e.g., unrefreshing

sleep, muscle pain) to that of ICF. We explain elsewhere the

rationale for including ICF along with CFS based on phenotypic

[17] and twin analyses [18].

Transient/situational factors can influence gene expression

measurements. Biological sampling was standardized by having

samples drawn from both members of a twin pair at the same

place and time (,0900) after an overnight fast. We required that

all subjects be in their usual state of health on the day of sampling

(i.e., no acute illness or recent exacerbation of a chronic illness). It

was neither practical nor ethical to study subjects medication-free,

but we delayed assessment if there had been a recent significant

dosage change.

Peripheral venous blood was drawn using sterile technique into

PAXgene tubes manufactured in the same batch (Qiagen, to

protect RNA from degradation and to minimize ex vivo gene

expression). Total RNA was purified using the PAXgene blood

RNA kit following the manufacturer’s instructions (Qiagen). RNA

quality was determined using the Agilent 2100 Bioanalyzer. Total

RNA (5.0 mg) was labeled with the one-cycle cDNA synthesis kit

(Invitrogen) and spiked with eukaryotic Poly-A RNA controls to

check the target labeling process (Affymetrix). Synthesized cDNA

was transcribed in vitro using the GeneChip IVT labeling kit

(Affymetrix). The biotin labeled cRNA product (20 mg) was

purified with a sample cleanup module (Qiagen) and samples

were fragmented with the fragmentation buffer from Affymetrix at

94uC for 35 minutes. Fragmented and labeled targets (together

with hybridization and oligo B2 controls) were hybridized to

Affymetrix Human Genome U133 Plus 2.0 arrays at 45uC for

16 hours. Washing and staining of the arrays were performed on

the Affymetrix fluidics station using the EukGE-WS2v5_450

protocol. Imaging of the arrays and signal quantification were

performed with the Affymetrix GeneChip Scanner 3000 and

GeneChip Operating Software. For verification, we used qRT-

PCR. RNA was converted to cDNA with Superscript III

(Invitrogen) and qRT-PCR was run with ABI’s Taqman gene

expression assays (with 18S rRNA as control). The DDCt method

was used for the calculations.

Array images were manually checked for defects using DChip

[20,21] and then normalized using the RMA algorithm in

Affymetrix Expression Console (v1.0). After normalization, the

Bioconductor [22] Significance Analysis of Microarrays package

[23] was used to compute modified paired t-tests that contrasted

an affected twin with the unaffected co-twin for each transcript

using R [24]. To adjust for multiple comparisons, the nominal

permutation-based p-values from SAM were used to compute false

discovery rate q-values [25–27]. Pathway analyses for KEGG

pathways [28], GO keywords [29] (biological process, cellular

component, and molecular function), and PFAM protein family

groupings [30] were conducted using SAFE which performs array

permutation to account for transcript correlation [31,32]. These

expression data are available from GEO (http://www.ncbi.nlm.

nih.gov/geo) under accession number GSE16059 and were

prepared in accordance with MIAME 2.0 standards.

Results

The analytic data set consisted of microarray data from 44 pairs

of monozygotic twins discordant for clinically-evaluated chronic

fatiguing illness (Table 1). Most pairs were female (89%), and the

median age at evaluation was 51 years. Of the affected twins, 32

met criteria for CFS and 12 for ICF with a median duration of

chronic fatigue of 8 years with no significant difference between

affected twins with CFS and ICF (paired t43 = 0.32, p = 0.75).

Body mass index was similar between the affected and unaffected

twins. Two affected individuals (4.5%) reported sudden onset of

fatigue. Affected twins had significantly worse physical and mental

functioning on the SF-36 [33] and reported significantly greater

current fatigue. The mean functioning of affected twins was over a

standard deviation worse than Swedish norms whereas the

unaffected twins were similar to Swedish norms (http://www.sf-

36.org/nbscalc/index.shtml, accessed 12 December 2008).

The main analyses contrasted gene expression in PBLs in 44

pairs of monozygotic twins affected with CFS or ICF to that of

their unaffected co-twins. As inclusion of males could increase

noise, the second planned analysis compared 39 female pairs with

CFS or ICF and the third planned analysis compared the 28 pairs

of female twins with CFS. For each of these three sets of statistical

comparisons, the observed results did not deviate from those

expected by chance (Figure S1). When we compared our findings

to a list of 108 transcripts reported as differentially expressed in

CFS [12–15], 107 were studied in our experiment, 101/107 had

p.0.1 in our study, and only two had p,0.05 (CXCR4 p = 0.03

and RAP2C p = 0.04), a degree of overlap that does not depart

from chance expectations. At the single transcript level, there was

no biological evidence of altered gene expression in PBLs that

correlated with chronic, impairing, and medically unexplained

Gene Expression in CFS
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fatiguing illness. For verification, we used qRT-PCR to assess the

expression of seven genes selected from the CFS gene expression

literature and our empirical findings (ANKLE2, BLKE, BRD1,

CPA3, DCTN1, ICAM, and ORC). All p-values from paired t-tests

contrasting affected and unaffected monozygotic twins were

$0.26.

It is possible that functionally-related genes might have

important set-wise gene expression changes with no individual

transcript meeting criteria for significance. As a hypothesis-

generating analysis, we used SAFE [31] to conduct analyses of

gene groupings defined by KEGG pathways [28], GO keywords

[29] (biological process, cellular component, and molecular

function), and PFAM protein family groupings [30]. Broadly,

these analyses revealed significant differences in cell replication

processes and amino acid and lipid metabolic pathways (Table
S1). These results do not map directly onto current major theories

of CFS pathogenesis and should be regarded as hypothesis-

generating.

Discussion

Main Finding
The overarching goal in this study was to attempt to identify one

or more biomarkers for chronic fatiguing illness via a compre-

hensive search of the ‘‘transcriptome’’ in an accessible tissue

(peripheral blood leukocytes, PBLs) plausibly involved in the

pathophysiology of this idiopathic syndrome. We attempted to

correct methodological issues in prior reports by careful control of

sources of bias (e.g., by studying discordant monozygotic twin

pairs, use of RNA stabilizing media, and standardized sampling

conditions). We found no evidence of differential PBL gene

expression that characterized the presence or absence of CFS or

ICF. Therefore, unlike most prior published studies, we did not

find evidence of a gene expression biomarker for chronic fatiguing

illness.

Methodological Issue: genetic matching in gene
expression studies

These results may hold a lesson for case-control gene expression

studies in humans. There are certainly examples where transcrip-

tomic studies have yielded results that have the potential to

improve disease prognosis and management (e.g., breast cancer)

[34]; however, gene expression studies have the potential to yield

false positive findings if the ancestry of cases and controls are not

appropriately matched. Genetic background is usually not taken

into consideration although gene expression is can be both

heritable and under strong genetic control [35]. Relatively low-

resolution studies in immortalized PBLs suggest that hundreds of

human genes are under relatively strong genetic control by

common genetic variants (e.g., the single nucleotide polymor-

phism ‘‘rs407257’’ is strongly associated (p,10266) with the

expression level of glutathione S-transferase theta 1, GSTT1)

[36]. The genetic variant rs407257 is variable in human

populations (allele frequencies of 0.72, 0.64, and 0.39 in African,

East Asian, and European samples) [37]. If case and control

subjects are not extremely well-matched for genetic background

(including for location within Europe) highly significant differ-

ences could occur because of bias from inappropriate case-

control matching. This concern is particularly important for

studies of PBLs as genes whose expression is under strong

genetic control [36] are highly enriched for genes expressed in

lymphoid tissue and lymphocyte cell populations (analyses using

DAVID [38], data not shown).

Use of discordant monozygotic twins represents the best control

for genetic background currently possible in humans. Assuming

identify at the DNA level and control for experimental bias, gene

expression differences in discordant monozygotic twins can be

cleanly attributed to disease state. It is reasonable to consider if use

of discordant monozygotic twins represents ‘‘over-matching’’. In

comparisons of unrelated cases and controls, gene expression

differences are an amalgam of disease state, the RNA-level impact

of genetic loci causal to the trait, and the effects of case-control

genetic mismatching (i.e., non-causal loci that differ in frequency

between cases and controls and which have strong control on gene

expression). Use of discordant monozygotic twins yields more

interpretable results particularly as there are large numbers of non-

causal loci under genetic control. We would also argue that a gene

expression study is a poor way to identify genetic loci causal to a

disease when an alternative study design (the genome-wide

association study) has been so successful [39].

Conclusions
We were unable to identify a biomarker for chronic fatiguing

illness in the transcriptome of peripheral blood leukocytes

suggesting that positive findings in prior studies may have resulted

from experimental bias.

Table 1. Descriptive characteristics for 44 pairs of monozygotic twins discordant for chronic fatiguing illness.

Variable Affected twins Unaffected co-twins Statistical comparison

Met criteria for CFS 32/44, 73% 0/44, 0% By design

Met criteria for ICF 12/44, 27% 0/44, 0% By design

Female sex 39/44, 89% 39/44, 89% Identical by design

Median age at evaluation, IQR 51, 39–59 years 51, 39–59 years Identical by design

Median body mass index, IQR 24.6, 22–30 kg/m2 24.4, 22–31 kg/m2 Paired t43 = 0.2, p = 0.87

Median SF-36 physical function, IQR 41.2, 28–48 48.2, 40–52 Paired t43 = 3.0, p = 0.004

Median SF-36 mental function, IQR 38.9, 29–47 51.6, 40–56 Paired t43 = 5.0, p = 161025

Median current fatigue by VAS, IQR 69, 49–77 19, 10–51 Paired t43 = 27.2, p = 661029

Median duration of fatigue, IQR 7.6, 4–16 years NA –

Sudden onset of fatigue 2/44, 4.5% NA –

Abbreviations. CFS = chronic fatigue syndrome, ICF = idiopathic chronic fatigue, IQR = inter-quartile range, VAS = visual analog scale (0–100, higher means greater
fatigue at clinical examination).
doi:10.1371/journal.pone.0005805.t001

Gene Expression in CFS

PLoS ONE | www.plosone.org 3 June 2009 | Volume 4 | Issue 6 | e5805



Supporting Information

Table S1 Shown are results from pathway analyses using SAFE

to investigate KEGG pathways, GO keywords (BP = biological

process, CC = cellular component, and MF = molecular function),

and PFAM protein family groupings. These all had an empirical p-

value (from permutation) ,0.005 and were composed of $10

transcripts.

Found at: doi:10.1371/journal.pone.0005805.s001 (0.11 MB

DOC)

Figure S1 Quantile-quantile (QQ) plots from the planned paired

analyses contrasting monozygotic (MZ) twins affected with chronic

fatiguing illness versus their unaffected co-twins. CFS = chronic

fatigue syndrome, ICF = idiopathic chronic fatigue. The observed

distribution of statistical results conform to chance expectations.

Found at: doi:10.1371/journal.pone.0005805.s002 (0.11 MB

DOC)
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