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Background. Int-6 (integration site 6) was identified as an oncogene in a screen of tumorigenic mouse mammary tumor virus
(MMTV) insertions. INT6 expression is altered in human cancers, but the precise role of disrupted INT6 in tumorigenesis
remains unclear, and an animal model to study Int-6 physiological function has been lacking. Principal Findings. Here, we
create an in vivo model of Int6 function in zebrafish, and through genetic and chemical-genetic approaches implicate Int6 as
a tissue-specific modulator of MEK-ERK signaling. We find that Int6 is required for normal expression of MEK1 protein in human
cells, and for Erk signaling in zebrafish embryos. Loss of either Int6 or Mek signaling causes defects in craniofacial
development, and Int6 and Erk-signaling have overlapping domains of tissue expression. Significance. Our results provide
new insight into the physiological role of vertebrate Int6, and have implications for the treatment of human tumors displaying
altered INT6 expression.
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INTRODUCTION
Embryonic development and tumour development often share

underlying molecular mechanisms–a concept illustrated by the

identification of genes disrupted by the mouse mammary tumor

virus (MMTV) in mammary cancers [1]. An important example,

the Int-1 gene which is a common integration site for MMTV in

mammary tumours, encodes the homologue of the Drosophila

wingless gene [2,3] and was subsequently named Wnt1 (wingless/

Int) in recognition of this conserved function. Wnt signaling is now

known to be disrupted in many human tumor types, especially

colon cancer [4]. Other Int genes, such as Int-2 and 4 (Fgf3, 4), and

Int-3 (Notch4), encode mitogens and regulators of development

that are also misactivated in many cancers [1,5].

In the majority of cases, MMTV activates Int gene expression as

a result of proviral integration upstream of the promoter region.

Remarkably, all three MMTV insertions found in Int-6, which

encodes a component of the eukaryotic translation initation factor

3 (eIF3), were found to lie within introns, and in the opposite

transcriptional orientation to the Int-6 gene, creating a truncated

Int-6 mRNA [1,6]. Ectopic expression of equivalently truncated

Int-6 can transform cell cultures [7,8], and promote persistent

mammary alveolar hyperplasia and tumorigenesis in transgenic

mice [9].

Despite important evidence in favor of a role for INT6 in

human tumourigenesis [10–12], the molecular basis for INT6

in cancer development remains unresolved. Highly conserved

in eukaryotes, INT6 contains a PCI domain, found in proteins

of the 19S regulatory lid of the proteasome, the COP9

signalosome (CSN), and the eIF3 translation initiation complex;

all three complexes share overall structural similarity, and

INT6 has been found associated with each [13]. When over-

expressed in yeast, Int6 induces multi-drug resistance by activating

an AP-1 transcription factor [14,15], and in human cells, the

range of INT6 function includes orderly progression through

mitosis [16], regulation of the proteasome-dependent stability of

MCM7 [17] and HIF2a [18], and nonsense mediated mRNA

decay [19].

With no animal model for Int6 loss-of-function available, we

reasoned that an understanding of INT6 during development

would provide novel insight into INT6 function in normal

vertebrate cells, thereby providing a new perspective on INT6

function in cancer formation. Here, using zebrafish and

mammalian cells, we describe the first Int6 loss-of-function

phenotype in an animal, and link Int6 with a signaling pathway,

that like those effected by other Int genes, is critical for both

development and cancer.

RESULTS

Int6 is essential for zebrafish embryogenesis
We chose to study the physiological role of zebrafish Int6 during

development, using morpholino oligonucleotides (MOs) to reduce

Int6 protein, as well as an int6hi2470 insertional mutant line (kindly

provided by N. Hopkins, A. Amsterdam and S. Farrington.

M.I.T.). Zebrafish Int6 is over 90% identical in its amino acid

sequence to human INT6 (Ensembl ENSDARG00000002549) and

using an Int6 antibody raised against the N-terminus of the human
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INT6 [20] we determined that the int6 MO resulted in loss of Int6

(Figure 1A). As INT6 has been implicated in G2/M-phase cell

cycle control, we first performed whole-mount immunohistochem-

istry with the late G2/M phase marker, phospho-histone H3, and

found only slightly reduced numbers of cells in late G2/M phase in

the int6 morphant compared to the control (Figure S1).

Importantly, we found that embryos injected with int6 MO had

specific developmental defects (Figure 1B–N), most notably

reduced melanisation 2 days post-fertilization (dpf: int-6 MO

n = 51/53; con MO n = 0/35; int-6 5MM n = 3/31); misplaced

pigment cells in the tail 3 dpf (int-6 MO n = 46/49; con MO n =

3/30); and abnormal jaw morphogenesis, with cartilage elements

reduced or malformed at 4 and 5 dpf (int-6 MO n = 81/85 4 dpf,

n = 76/83 5 dpf; con MO 1/67 4 dpf, n = 1/61 5 dpf). The

craniofacial and pigment cell defects observed in the int-6

morphant and hi2470 mutant suggest that int-6 might contribute

to development of neural crest-cell (NCC) derivatives. We used

multiple markers of NCCs and their derivatives to assess when

these phenotypes arise, and found Int6 did not appear to be

required for the specification or organization of premigratory and

migrating cartilage precursors (Figure S2). In contrast, alcian blue

cartilage staining revealed a specific loss of the five ceratobranchial

cartilage elements in the int6 morphants, whereas Meckel’s,

palatoquadrate, and hyoid cartilage were all present, albeit

misshapen (5.5 dpf int6 MO n = 45/53; con MO n = 1/34;

Figure 1I–L, Figure S3). Expression of int6 mRNA restored

normal craniofacial elements to the int6 morphant (data not shown);

and the int6hi2470 mutant had an almost identical craniofacial

phenotype (Figure 1M, N) indicating a genuine requirement for

Int6 in craniofacial development.

Loss of Int6 alters MEK protein and Erk signaling
Biochemical evidence in fission yeast suggests that Int6 is part of

a specialized eIF3 translation initiation complex that may target

specific mRNAs for translation [21]. Given the involvement of

INT6 in cell proliferation [16], western blots using a panel of

antibodies against proteins involved in the cell cycle and associated

signalling pathways were performed using lysates from control and

INT6 siRNA transfected MDA-MB-231 cells. Of 16 proteins

investigated in this way, only MEK1 levels were altered by INT6

siRNA transfection (Figure 2). As previously reported [20], we

found INT6-siRNA cell lysates had reduced levels of INT6 protein

compared with the untransfected and reverse INT6-siRNA

sequence. We also found a dramatic reduction of MEK1 protein

Figure 1. Int6 is essential for zebrafish embryonic development. (A)
Western blot analysis of Int6 (*) in zebrafish embryos injected with
a control (con) MO or int6 MO. (B) int6 morphant melanocytes are less
darkly pigmented. (C–F) Int6 is required for pigment cell placement in
the tail, as int6 morphants and int6hi2470 mutants have misplaced
pigment cells in the tail fin (D, arrow). Ambient light illuminates the
iridophore ‘star-light’ pattern seen in the int6hi2470 embryos (F, arrow).
(G–H) By 5 dpf, embryos injected with a con MO have clearly visible
certobranical arches, while int6 morphants do not have visible
certobranical arches, in addition to other abnormalities, including
unconsumed yolk sac, heart and eye development. (I–N). Alcian blue
staining of 5 dpf embryos shows loss of ceratobrancial arches 1 through
5. M, Meckel’s; PQ, palatoquadrate; CH, ceratohyal; CB, ceratobrancial.
doi:10.1371/journal.pone.0000959.g001

Figure 2. INT6 is required for MEK protein levels and Erk-signaling. A. Osteosarcoma U2-OS cells untransfected (U), or transfected with siRNA
targeted against the INT6 mRNA (si) or the reverse sequence (R), show reduced levels of INT6 and MEK1 protein specifically after transfection with
INT6-siRNA, but no reduction in BAX, tubulin or actin protein levels. (B) Semi-quantitative-PCR shows MEK1 mRNA is unaffected in reverse sequence
and INT6-siRNA treated cells, coupled with the expected reduced levels of the INT6 message in the INT6-siRNA transfected cells. c, PCR control
without DNA. (C) Phospho-Erk levels are reduced in int6 morphants, while ponceau stain detects equal loading of protein on the gel.
doi:10.1371/journal.pone.0000959.g002
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levels that correlated with loss of INT6, while BAX, tubulin and

actin protein levels appeared unaffected in the INT6-siRNA

transfected cells (Figure 2A). The loss of MEK1 was specifically at the

protein level, as semi-quantitative-PCR showed normal levels of

MEK1 mRNA in INT6-siRNA treated cells, as well as the expected

reduced levels of the INT6 message in the INT6-siRNA transfected

cells (Figure 2B). The possibility that INT6 may affect MAPK

signaling through control of MEK protein levels prompted us to

examine the phosphorylation state of Erk1/2, downstream targets of

the Mek kinases, in int6 morphant zebrafish embryos. Compared

with control MO embryos, int6 morphant embryo lysates had

reduced phospho-Erk levels (Figure 2C). These data suggest a novel

function for Int6 in the control of MAPK signaling in the developing

embryo, possibly by direct control of MEK1 protein levels.

Int6 and Mek pathways converge during

development
If Int6 controls Mek activity in the developing embryo, we

theorized that specific developing tissues might have overlapping

expression domains of Int6 protein and phospho-Erk activity.

Indeed, immunohistochemistry with antibodies directed against

Int6 and phospho-Erk revealed overlapping domains of expression

in the developing craniofacial region in 3 and 4 dpf embryos

(Figure 3A–F). Strong Int6 tissue-specific expression was also

detected in the developing intestine and lens, regions that had little

or no phospho-Erk expression (Figure S4). Given the observed

phospho-Erk and Int6 expression in the craniofacial region, we

hypothesized that some of the Int6 phenotypes, such as the jaw

formation defect, might be phenocopied by repression of Erk

signaling. As interpretation of MO phenotypes has recently been

complicated by the identification of MO-induced p53-dependent

craniofacial defects [22], we used an alternative approach – the

highly selective, clinically active MEK inhibitor CI-1040 [23] – to

reduce Mek signaling in zebrafish. We added the drug at 4 hpf at

a concentration of 0.25, 0.5, and 1.0 mM, and confirmed loss of

phospho-Erk expression by Western blot analysis (data not shown).

Notably, the addition of CI-1040 caused a dose-dependent loss of

the posterior structures of the embryo, such that 1.0 mM CI-1040

caused a severe anterior-posterior (AP) axis defect (Figure 4A–C),

consistent with a role for FGF signaling in the development of the

AP axis [24]. CI-1040 also caused loss of ceratobranchial cartilage

elements, while the anterior elements – Meckel’s, palatoquadrate

and hyoid cartilages – were present but misshapen (Figure 3G–J),

similar to the effects seen in int6 morphants and mutants.

To further elucidate the biological relevance of Int6 and Mek

signaling, we took advantage of the ease with which signaling

pathways can be altered pharmacologically in specific genetic

contexts in the zebrafish system. We reasoned that if Int6

contributes to activation of Mek signaling, then embryos with

reduced Int6 should be hypersensitive to low doses of the MEK

inhibitor CI-1040. In control embryos treated with 0.25 mM CI-

1040, no changes in the anterior-posterior axis were detected

(Figure 4B). In addition, int6 morphants generated by low doses of

MO (0.25 ng) did not have an altered AP axis (Figure 4D). In

contrast, in combination with low doses of CI-1040, the low dose

int6 morphant showed a severely enhanced AP axis phenotype

(Figure 4E). Taken together, these data provide further evidence

that int6 may play a role in modulating MEK signaling in vivo.

DISCUSSION
Activated in most cancers, the MAPK signaling pathway is among

the most attractive targets for novel anti-cancer therapies [23].

Like MAPK signaling pathways, most of the Int pathways - Wnt,

Figure 3. Int6 and phospho-Erk expression in the developing zebrafish embryo, and pharmacological inhibition of Mek alters ceratobrancial
(CB) arches. (A–F). Immuno-histochemistry of Int6 and phospho-Erk in the developing craniofacial tissues, counter stained with hematoxylin, and
phospho-histone H3 to show cycling cells. (G, H) Ventral whole mount views of Alcian blue stained pharyngeal cartilages show loss of ceratobrancial
arches 1–5 and a reduction of Meckel’s (M), palatoquadrate (PQ) and ceratohyal (CH) cartilages in 4 dpf embryos treated with 0.5 uM CI-1040. (I, J)
Sections of 4 dpf embryos hematoxylin and eosin stained after 0.5 uM CI-1040 treatment reveals loss of CB arches 1–5 (brackets). E, Ethmoid plate; PC,
Parachordal cartilage.
doi:10.1371/journal.pone.0000959.g003
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Fgf, and Notch - are conserved regulators of development that are

frequently activated to promote oncogenesis. We provide evidence

that, like other Int gene products, Int6 is required for vertebrate

development (Figure 1), in part by providing a novel layer of

MAPK signal transduction regulation (Figure 2). With the wide

range of cellular activities attributed to INT6, the mechanistic

detail of this control remains to be understood; our early

investigations indicate reduction of MEK1 in INT6-siRNA treated

mammalian cells is not dependent on the proteasome (M.G. &

C.J.N., unpublished data), making direct MEK1 regulation by INT6-

dependent translation a possibility.

Recently, importance of RAS, RAF and MEK in human

disease has been extended beyond cancer by the discovery that

human germ-line mutations in these genes cause the LEOPARD-

Noonan family of syndromes [25]. Detailed immunohistochemical

studies in mice have identified highly regulated, specific domains

of discrete and dynamic ERK phosphorylation throughout

development, including the pharyngeal arches and limb buds

[26]. In the first Int6 protein expression studies in a whole

developing animal, we show that Int6 has regionally overlapping

domains of protein expression with phospho-Erk, primarily in the

craniofacial region (Figure 3, Figure S4). Lending biological

significance to these observations, we show that phenotypic

characteristics are shared between the loss of Int6 and inhibition

of Mek activity (Figure 3). In addition, partial loss of Int6 causes

embryos to be highly sensitive to a mildly compromising dose of

Mek inhibition, revealing an in vivo interaction between Int6

protein expression and developmental Mek-Erk signaling

(Figure 4). As early over-expression of Ras-Raf-Mek signaling

causes morphologic defects, we are currently generating transgenic

lines that allow temporal control of Mek signaling, which will be

a valuable tool for deeper genetic dissection of the Int6-Mek-Erk

relationship in vivo. It will be critical in future studies to establish if

Int6 is capable of controlling both Mek1 and Mek2; our initial

MO studies indicate that MEK2 may have a specific role in

melanocyte migration (C.A. & E.E.P, unpublished data), raising the

possibility that the pigment cell migration defects observed in the

int6 morphants also reflect altered MEK signaling.

FGF signaling is crucial for skeletal development, exemplified by

the mutations that disrupt FGF signaling in human genetic skeletal

abnormality syndromes [27]. In the developing mouse embryo,

most phospho-ERK domains overlap with FGF signaling domains

[26]. FGF signaling molecules are candidates for upstream

activation of the Int6-moderated Mek-Erk signaling that shapes

the craniofacial skeleton in vertebrates [28,29], and candidate

downstream targets of Int6-Mek-Erk signaling include the

chondrocyte differentiation transcription factor Sox9, which

requires Mek activity for transcriptional activity [30]. We also

note that erk2, but not erk1, is specifically expressed in the

pharyngeal arches in two-day old zebrafish embryos [31], possibly

suggesting that Int6-Mek modulation in the developing craniofa-

cial region may specifically signal through targets of Erk2.

Relating the Int6 modulation of Mek-Erk signaling to cancer

development is a new angle for future investigation. One possibility is

that in MMTV induced mammary tumors, the truncated Int-6

protein may act as an oncogene by altering MEK-ERK signaling.

We propose that the diverse cellular locations of Int6, combined with

the temporal expression and localization of Mek1/2 and Erk1/2,

may result in fine-tuning of Mek-Erk signaling pathways in specific

tissues during development, and may have important implications

for the role of INT6 in tumorigenesis.

METHODS

Zebrafish husbandry and morpholino studies
Zerbafish (Danio rerio) lines AB, AB*, and AB*-TPL were raised

and staged as described [32,33]. MOs (Table 1) were designed by

and purchased from Gene Tools, LLC (USA), and 1 ng injected

into one-cell stage embryos.

Phenotype analysis
Phenotype analysis were performed as described: cell cycle studies

[34]; alcian blue staining [35]; probe synthesis and whole-mount

in-situ hybridizations [36]. cDNA probes for neural crest markers

Figure 4. Int6 and Mek signaling interact in vivo. (A–C). Only embryos treated with the 1.0 mM CI-1040, and not 0.25 mM, show a loss of posterior
structures, in contrast to (D) int6 morphants (int6 MO 0.25 ng). (E, F) In combination with 0.25 mM of CI-1040, 0.25 mg of int6 MO causes a dramatic
alteration of the anterior-posterior axis.
doi:10.1371/journal.pone.0000959.g004

Table 1. Oligonucleotides used in this study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Method Symbol Oligonucleotide

Morpholino

Control con MO 59 CCTCTTACCTCAGTTACAATTTATA

int6 Translation block int-6 MO 59 GGTCAGATCGTACTCCGCCATGATG

int6 5-base pair
mismatch

int-6 5MM 59 GGTgAGATCcTAgTCCGCgATcATG

siRNA

INT6 sense siRNA (si) INT6-siRNA 59 GAACCACAGUGGUUGCACAUU

INT6 reverse siRNA (R) R 59 UUACACGUUGGUGACACCAAG

RT-PCR primers

MEK1 forward 59 ATTATTGTTCCCCTAAGTGGATTG

MEK1 reverse 59 TTACAACAGCATTGGTACTTGGAT

INT6 forward 59 ATGGCGGAGTACGACTTGACT

INT6 reverse 59 TCAGTAGAAGCCAGAATCTTGAGT

Actin forward 59 CGTGATGGTGGGCATGGGTCA

Actin reverse 59 CTTAATGTCACGCACGATTTCC

doi:10.1371/journal.pone.0000959.t001..
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were the kind gift of David Raible (University of Washington,

USA). Polyadenylated int6 mRNA was generated using Ambion

mMessage mMachine (#1340).

Cell culture and RT-PCR analysis
MDA-MB-231 cells were grown and transfected as described [19]

using Lipofectamine (Invitrogen) with si-oligonucleotides (Table 1;

Eurogentec) at a final concentration of 100 nM in Optimem

(Gibco). Forty-eight hours after transfection total RNA was

isolated (RNeasy Mini Kit; Qiagen) and one-step RT-PCR

reactions (Qiagen) accomplished using specific primers (Table 1).

Immunoblotting
Whole-cell lysates and zebrafish extracts were generated [31,19]

and immunohistochemistry was performed as described [36].

Antibodies used as in Table 2.

SUPPORTING INFORMATION

Figure S1 Cell cycle analysis of int6 morphants. Whole-mount

immunohistochemistry with the late G2/M phase marker,

phospho-histone H3 shows only slightly reduced numbers of cells

in late G2/M phase in the int6 morphant compared to the control.

Similarly, DNA content as measured by flow cytometry reveals

only a slight reduction of cells in G2/M phase in the int6

morphant. Thus, we find that loss of Int6 in normal vertebrate

cells (as well as in additional human cancer cell lines, M.G. &

C.J.N. unpublished data) does not appear result in an accumu-

lation of cells in G2/M progression.

Found at: doi:10.1371/journal.pone.0000959.s001 (4.75 MB TIF)

Figure S2 Lateral views of in situ hybridization of neural crest

markers in control and int6 morphants, revealing no change in cell

number or migration as indicated by the apparently normal

expression of dlx2 (stages 6–36 hpf, examined at two hour intervals),

nor of early markers of NCC and melanocytes, such as sox10,

crestin, snail and mitfa (24 hpf) in int6 morphants. These

observations were extended by examination of a transgenic sox10-

GFP line (1) revealing unaltered GFP-expressing NC-derived cells in

int6 morphants within the first 48 hpf, but a loss of GFP expressing

differentiated pharyngeal arches 3–7 by 3 dpf (data not shown).

Found at: doi:10.1371/journal.pone.0000959.s002 (40.41 MB

TIF)

Figure S3 Development of the pharyngeal arches in the

developing control (A–C) and (D–F) int6 morphant animals. Note

the loss of pharyngeal arches (A, bracket) in the int6 morphants

(bracket). Sections were stained with methylene blue. Anterior to

the left.

Found at: doi:10.1371/journal.pone.0000959.s003 (14.09 MB

TIF)

Figure S4 Immunohistochemistry of Int6 and phospho-Erk

staining in 4 dpf embryos. (A, B) While Int6 and phospho-Erk

signaling overlap in the craniofacial region, they also have distinct

patterns, for example in the eye and (C, D) gut. We note that while

Int6 and phospho-Erk have overlapping domains of expression in

the craniofacial region, Int6 staining in the craniofacial region was

stronger than phospho-Erk, and phospho-Erk staining was limited

to specific tissues within the craniofacial region. M, Meckel’s; E:

Ethmoid plate; CH, ceratohyal; CB, ceratobrancial. Sagittal

section, anterior to the left.

Found at: doi:10.1371/journal.pone.0000959.s004 (17.60 MB

TIF)
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