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Abstract

Background: Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and
invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis
of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric
bud formation.

Methods and Principal Findings: We have used gene targeting to create an Lrp4 null mouse line. The mutation results in
early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to
stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting
absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome.

Conclusion: Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt
and Bmp signaling. Lrp42/2 mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney
agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidney
malformations in humans and mice.
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Introduction

The definitive kidney forms as a result of inductive interactions

between the metanephric mesenchyme and the UB [1]. In the

mouse, signals from the metanephric mesenchyme stimulate the

ureteric bud to branch from the Wolffian duct around embryonic

stage E10.5 [2]. The UB subsequently invades the overlying

metanephric mesenchyme and produces signals that are necessary

for survival, proliferation and differentiation of the mesenchyme

[3]. The timing and location of ureteric budding are critical factors

in kidney organogenesis. Genetic and surgical manipulations have

revealed that the mesenchyme is only competent to respond to

signals from the bud for a narrow time window [4]. Failure of the

bud to reach the mesenchyme in this narrow window results in

apoptosis of the mesenchyme and subsequent kidney agenesis

[5,6]. Defects in secondary branching of the ureteric bud can

result in a range of phenotypes ranging from congenital anomalies

like hypoplastic kidneys to cystic dysplasia [7].

Defects in kidney formation constitute some of the most

common birth defects in humans [8]. Multiple signaling pathways

have been implicated in UB branching. The GDNF/Ret, FGF

and Wnt signaling pathways are necessary for normal branching

[4,9,10] while the BMP pathway appears to act as a branching

inhibitor [11]. As would be expected, tight regulation of these

pathways is essential to insure the proper timing and location of

branching. Although we have gained a great deal of information

on the molecular mechanism regulating ureteric bud branching in

mice, there has been surprisingly little correlation between these

major pathways and congenital defects in man [12].

Lrp4 is a member of the low-density lipoprotein (LDL) gene

family [13]. Mutations in this membrane receptor have been

implicated in neuromuscular junction [14], limb and tooth

development where it appears to integrate signaling from multiple

pathways including Wnts and Bmps [15,16,17]. Here, we describe

an additional role for Lrp4 in the formation of the UB. Loss of

Lrp4 results in a delay in UB formation and a subpenetrant kidney
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agenesis phenotype. We also identified mutations in Lrp4 in

humans with congenital kidney defects [18]. These studies

establish Lrp4 as a critical regulator of ureteric budding in both

mice and humans.

Materials and Methods

Mouse Strains
HoxB7-Cre and Catnbexon3flox mouse lines have previously been

described [19,20]. The Lrp4 knockout (KO) mouse was generated

by replacing the first exon with a neomycin resistance cassette

using techniques described previously [15]. The long arm of

homology upstream of the first exon of Lrp4 was generated by

PCR using primers MEJ23 (59-GCGGCCGCCAGGTCAT-

GAAGTGAGTGCTGAGCCACTGGG-39) and MEJ24 (59-

CCACCACCGCCTCATGGTGCTGCGGCCGCC-39). The

short arm of homology downstream of the first exon of Lrp4

was generated by PCR amplification using the primers MEJ33 (59-

CTCGAGGAGCGGTCTGCAGATCCTGGCGATTCACGG-

39) and MEJ35 (59-CTCGAGGGTTACAGACTCTGCAA-

CTGCTCTACCTCATTG-39). The long arm and short arm of

homology were cloned into pJB1 using the NotI and XhoI

restriction sites, respectively.

Mice were maintained on a mixed 129/C57 background. All

animal work was conducted according to the relevant national and

international guidelines and in accordance with the recommen-

dations of the Weatherall report, ‘‘The use of non-human primates

in research’’ (no primates were used in this study). Animal

experiments conducted in Dallas were also reviewed and approved

by the Institutional Committee on Animal Use and Care (IACUC)

at UT Southwestern Medical Center.

Genotyping
KO Mice were genotyped by PCR as follows: MEJ358 (59-

ACTATATTCACCCGCCGGCTTTTCCACGTG-39) and

KOT12 (59-AGCAGCTTTCAGAAGCACCTCTTCAGGAC-

C-39) were used to selectively amplify the wild-type allele and

Neo36 (59-CAGGACAGCAAGGGGGAGGATTGGGAAGAC

-39) and KOT12 were used to amplify the knockout allele. The

HoxB7Cre allele was amplified using the primers 59-CCAT-

GAGTGAACGAACCTGG-39 and TGATGAGGTTCGCAA-

GAACC to give a 400 base pair band using the conditions

previously described. The b-catenin exon3flox allele was amplified

using the primers: 59-AACTGGCTTTTGGTGTCGGG-39 and

59-TCGGTGGCTTGCTGATTATTTC-39. Using a 55uC ex-

tension temperature, the wild type allele yields a 291 base pair

band while the exon 3 floxed allele yields a 400 base pair band.

In situ hybridization
Whole-mount in situ hybridization was performed as previously

described using the following antisense probes: cRet, Wnt11,

Pax2, Wnt9b, Lrp4 and GDNF [15,19]. Briefly, embryos were

harvested and fixed in 4% paraformaldehyde in PBS at 4uC
overnight. Embryos were treated with 10 mg/ml proteinase K in

PBST for 20 minutes at room temperature and hybridized

overnight at 72uC with digoxigenin-UTP labeled probes. Embryos

were then incubated overnight at 4uC with alkaline phosphatase-

coupled anti-digoxigenin antibody (Roche Applied Science). Color

reaction was developed using BM Purple (Roche).

H&E histology
Kidneys from P0 pups were emersion fixed with 10% formalin

and embedded in paraffin. The kidneys were then sectioned and

stained with H&E using standard techniques.

Whole mount antibody staining
Embryonic day 10.5 embryos were dissected in PBS and staged

according to somite number. Embryos at the 38 somite stage

were fixed overnight in 4% PBS (Electron microscopy services)

overnight at 4uC. After fixation embryos were dehydrated and

rehydrated through a graded ethanol series. Embryos were then

washed four times for 30 minutes at room temperature with

heavy agitation in PBS +0.1% Triton-X (PBStx). Embryos were

blocked for at least 3 hours at room temperature in 10% FBS/

PBStx. Embryos were incubated with antibodies to E-Cadherin

(Rat 1:400 Zymed) and Pax2 (Rabbit 1:400 Covance) overnight

at 4 degrees Celsius, then washed six times 30 minutes each wash

at room temperature in PBStx. Embryos were incubated with

fluorescently coupled secondary antibodies (Molecular probes)

overnight at 4uC followed by extensive washing in PBStx.

Wolffian ducts were then dissected away from the embryo and

imaged on a Zeiss NeoLumar stereoscope using an Olympus

DP71 camera.

Results

Lrp4 is required for kidney formation
We have generated mice that harbor a null allele of Lrp4 by

replacing exon1 with a neomycin stop cassette (Lrp42/2). In the

examination of post-partum Lrp42/2 mice (n = 156) we found

51 percent bilateral and 22 percent unilateral kidney agenesis

(Fig. 1b, d, e). This distribution was gender-independent and

involved only structures derived from the UB and metanephric

mesenchyme (MM) (Fig. 1a–d). The small number of kidneys

that did form in Lrp4 knockouts were indistinguishable from

wild-type at both the histological and molecular level (Fig. 1f

and g). Functional analysis was not possible due to the

immediate post-partum lethality caused by neuromuscular

junction defects [14].

Lrp4 is widely expressed in the kidney during
development

To better understand its contribution to kidney formation, we

investigated the expression of Lrp4 during development.

Beginning at the initiation of kidney development, embryonic

day (E) 10.5, Lrp4 mRNA is visible in the mesonephric tubules

and the Wolffian duct adjacent to the MM (Fig. 2a). At E11.5,

Lrp4 is expressed throughout the ureteric epithelium and the

adjacent pre-tubular aggregates (Fig. 2b). Lrp4 continues to be

expressed in the ureteric bud derived epithelia and the pre-

tubular aggregates/renal vesicles throughout the embryonic

period (Fig. 2a–d).

Pax2 signaling remains intact in the absence of Lrp4
To gain insight into the nature of the mutant defect, we

evaluated the expression of a series of genes necessary for kidney

development. Pax2 is a critical regulator of kidney branching that

is normally expressed in the Wolffian duct, the ureteric bud/

collecting ducts and the metanephric mesenchyme throughout the

developmental period [21,22,23]. Pax2 is expressed normally in

the Wolffian duct and metanephric mesenchyme in both wild type

and Lrp4 mutants through E11.5 (Fig. 3a–d), although at E11.5

the mutant ureteric bud has not contacted the mesenchyme and

has not formed a T-shape (Fig. 3d). Failure of the ureteric bud to

invade the metanephric mesenchyme leads to a loss of the

metanephric mesenchyme and kidney agenesis [6]. In support of

this hypothesis the mesenchymal expression of Pax2 is lost by

E12.5 in Lrp42/2 animals (Fig. 3f).

Lrp4 in Kidney Development
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The GDNF/Ret/Wnt11 signaling network is unaffected by
Lrp4

Kidney development begins at E10.5 when the ureteric bud

branches from the Wolffian duct in response to GDNF secreted

from the mesenchyme. The apparent failure of the ureteric bud to

reach the mesenchyme in Lrp4 mutant kidneys is similar to what

has been observed in mice with defects in GDNF/Ret signaling

[24]. GDNF is a ligand for c-Ret and a co-receptor, GFRa1 [11].

Mutations in any of these three genes results in partially penetrant

kidney agenesis. To examine potential defects in the GDNF/Ret

pathway, we first examined the expression of Ret and GDNF

mRNA. At E10.5, c-Ret is expressed in the ureteric bud at

equivalent levels in the Lrp4 knockout mice compared to their wild

type counterparts (Fig. 4a and b). At E11.5 the ureteric bud has

invaded the mesenchyme, bifurcated and upregulated c-Ret at the

ureteric tips while no bifurcation or upregulation of c-Ret occurs

in Lrp4 mutants (Fig. 4c and d). At E12.5, c-Ret levels are greatly

reduced in the knockout compared to wild type control (Fig. 4f). As

expected, GDNF is expressed in the metanephric mesenchyme at

normal levels at E10.5 and E11.5 (Fig. 4g–j). As was seen with

Pax2, by E12.5 mesenchymal expression of GDNF is completely

lost, consistent with the hypothesis that the ureteric bud has not

invaded the metanephric mesenchyme (Fig. 4k and l). We next

wanted to test whether Ret/GDNF signaling is intact in Lrp4

mutants. We examined the expression of Wnt11, a GDNF-

inducible downstream target of c-Ret [25]. Similar to c-Ret,

Wnt11 expression is upregulated in the tips of the bud at E10.5

and 11.5. Importantly, Wnt11 is still expressed in Lrp42/2

ureteric buds at E11.5 that have failed to bifurcate, indicating that

Ret/GDNF signaling is active despite the apparent failure of

mesenchymal invasion. By E12.5 Wnt11 expression is absent,

presumably due to the loss of mesenchymal GDNF (Fig. 4a–f).

As the Lrp4 mutant phenotype does not appear to be the result

of defects in Ret/GDNF signaling, we examined the activity of

other pathways involved in ureteric bud branching. Lrp4 has been

implicated in the activity of both Bmp [26,27] and Wnt [28,29]

signaling and both of these pathways play roles in normal

branching morphogenesis. To test for defects in Bmp signaling, we

Figure 1. Unilateral and bilateral kidney agenesis in LRP4 knockout mice. Kidney agenesis in the Lrp4 knockout (b,d,e). Bilateral (b,d) or
unilateral (e) kidney agenesis with rudimentary ureters (red arrows). The lower urinary and genital systems of males and females remain intact.
Histological analysis (Hematoxylin-Eosin stain) does not reveal morphological defects in the kidneys that form in Lrp4 knockout animals (g) compared
to the wild-type kidneys (f).
doi:10.1371/journal.pone.0010418.g001

Lrp4 in Kidney Development
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investigated the expression of phosphorylated Smads1, 4 and 8.

We were unable to detect differences in either the level or location

of p-Smad staining in either the mesenchyme or ureteric buds of

Lrp4 mutants at either E10.5 or 11.5 (data not shown). To assay

Wnt signaling, we examined the expression of Axin2 mRNA in the

Wolffian duct and ureteric bud. Similar to the situation with the p-

Smads, we were unable to detect significant differences in

transcript levels (data not shown).

Ureteric budding is delayed in Lrp4 null mice
The absence of metanephric mesenchyme at E12.5 is indicative

of a failure of the UB to reach these cells and provide survival

signals. The expression of Pax2 (Fig. 3d) indicated that the UB bud

is delayed in reaching the mesenchyme, which could be due either

to defects in growth of the ureteric bud or a delay in formation of

the bud. The complete lack of a phenotype in some mutants

seemed more in line with a delay in bud invasion. To investigate

the possibility of a budding delay as a possible explanation of our

phenotype, we examined ureteric bud formation at E10.5. Stage

and somite matched embryos were stained for the epithelial

markers Pax2 and E-cadherin to assess UB formation. E-cadherin

is a marker for the epithelial structures of the ureteric bud; Pax2 is

expressed in both epithelium and mesenchyme alike. We

proceeded with double-staining for a clear orientation within the

slide. Interestingly, although we noticed at least a partial ureter in

all newborn Lrp4 mutants, we found that the UB had formed in

only 12.5% (1/8) of 38 somite stage Lrp4 mutants (compared to

100% of cases for wild type controls) (Fig. 5a and b). These data

indicate that ureteric bud formation is delayed in mutants, and

that the failure to invade the mesenchyme in time to support

normal growth/survival is the cause for the frequent uni- or

bilateral kidney agenesis.

Wnt overexpression in the ureteric bud leads to kidney
agenesis

Lrp4 is a negative regulator of the Wnt signaling pathway. This

lead us to hypothesize that overactive Wnt signaling in mutants

could be responsible for the delay in ureteric bud formation. We

therefore tested whether expression of a constitutively active b-

catenin transgene would result in a comparable phenotype to the

absence of Lrp4. Expression of this transgene under the control of

a HoxB7Cre promoter, which is restricted to the ureteric bud

epithelium indeed resulted in a comparable kidney agenesis

phenotype (Fig. 6a–c). The formation of the Wolffian duct and

distal ureters as well as bladder and adrenal glands remained

unaffected. The similarity of these two distinct animal models

suggests a role for deregulated Wnt signaling in the generation of

the Lrp4 knockout phenotype.

Lrp4 binds Gremlin1, a positive regulator of ureteric
budding

Lrp4 has been established as a regulator of both the Wnt and

Bmp signaling pathways. This involves, at least in part, the binding

of signal modulating ligands to the extracellular domain. We tested

Gremlin1, a facilitator of ureteric budding, as a possible candidate.

Figure 2. Expression of Lrp4 in the developing kidney. At E10.5
Lrp4 is expressed throughout the Wolffian duct and the ureteric bud.
(a). At E11.5, Lrp4 is expressed in the ureteric bud and the pre-tubular
aggregates (b). At E12.5 and E 14.5, Lrp4 expression is maintained in the
ureteric bud and the renal vesicles (c and d, respectively). The Wolffian
duct and ureteric bud are outlined by dotted lines; the arrow points to
the early ureteric bud in (a) or the renal vesicles in (c), respectively.
doi:10.1371/journal.pone.0010418.g002

Lrp4 in Kidney Development
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Previously, Gremlin1 has been reported to antagonize Bmp4

signaling and its deletion in mice results in a renal phenotype with

skeletal involvement similar to the Lrp4 knockout. In co-

immunoprecipitation experiments, Gremlin1 binds to Lrp4

(Fig. 7). Although we failed to detect a direct difference in Bmp

pathway activation at the protein level, Lrp4 might function by

facilitating the presentation or integration of Gremlin1 into a

signaling complex that mediates the activation of ureteric budding.

Figure 3. Pax2 signaling remains intact in the absence of Lrp4. Pax2 is expressed normally in the metanephric mesenchyme and the ureteric
bud, indicated by the red arrows, at E10.5 in the wild type and Lrp4 knockout mice (a and b). At E11.5, Pax2 is expressed normally in both the ureteric
bud and metanephric mesenchyme, the latter indicated by black arrows, of wild type (c) and Lrp4 knockout animals (d). However, the ureteric bud
fails to invade the metanephric mesenchyme and does not undergo secondary branching in the Lrp4 knockout indicated by the yellow arrow (d). The
black arrows indicate mesenchymal expression of Pax2, which is present in the wild-type, but subsequently lost in the knock-out kidney mesenchyme
at E12.5 (e and f).
doi:10.1371/journal.pone.0010418.g003

Figure 4. Expression of branching regulators in Lrp4 mutants. Expression of c-Ret (a–f), GDNF (g–l) and Wnt11 (m–r) in E10.5 (a,b,g,h,m and
n), E11.5 (c,d,i,j,o and p), and E12.5 (e,f,k,l,q,r) in wild-type (a,c,e,g,i,k,m,o, and q) and Lrp4 knockout (b,d,f,h,j,l,n,p and r) kidneys. C-Ret is expressed in
the ureteric bud at basal levels in the Lrp4 knockout mice at E10.5 (a,b). At E11.5, the Lrp4 knockout ureteric bud fails to bifurcate or upregulate c-Ret
expression at the tip of the ureteric bud (d) compared to wild-type embryos (c). At E12.5, the signal is greatly reduced in the knockout kidney (f).
GDNF is expressed normally in the metanephric mesenchyme at both E10.5 and 11.5 in wild type and Lrp4 knockout animals (g–j). By E12.5, GDNF
expression is completely lost from the Lrp4 knockout metanephric mesenchyme (k and l). Wnt11 is expressed normally at the tips of the ureteric bud
at both E10.5 (m and n) and 11.5 (o and p) in Lrp4 mutants compared to wildtype. By E12.5 Wnt11 is absent from the ureteric bud of Lrp4 knockout
animals (q and r). The Wolffian duct and ureteric bud are outlined by white dashed lines, mesenchyme (g, h, I, j) renal vesicles (e and q) and truncated
ureteric bud (f, l, r) are indicated by black arrows.
doi:10.1371/journal.pone.0010418.g004

Lrp4 in Kidney Development
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Figure 5. Ureteric Budding is delayed in Lrp4 Mutants. 38 somite stage E10.5 embryos were stained with the epithelial markers Pax2 (red) and
E-cadherin (green) to label the Wolffian duct and developing ureteric bud. Representative images of kidney pairs for two wild-type and knock-out
animals are shown. In the wild-type (a–d), ureteric buds appear as expected while there is a frequent delay in ureteric bud outgrowth in the Lrp4
mutants (e,g,h). One Lrp4 mutant animal is shown with a unilateral outgrowth (f). In total, all 10 expected buds are formed at the 38 somite stage in
the wild-type background while only 1 out of 8 predicted buds is present in the knock-out (Panel b). P values (Student’s t-test) p,0.01 indicates
significance.
doi:10.1371/journal.pone.0010418.g005

Figure 6. Wnt Overexpression in the Ureteric Bud Leads to Kidney Agenesis. Expression of a stabilized allele of b-catenin (Catnbexon3flox) in
the Wollfian duct using HoxB7Cre to activate transgene expression phenocopies the Lrp4 knockout phenotype with both uni- and bilateral kidney
agenesis (a-c). The formation of the Wolffian duct and distal ureters as well as bladder and adrenal glands remained unaffected. The asterisks (a and b)
indicate the position of regular kidneys. The arrows (b and c) indicate the predicted position of kidneys that have not formed.
doi:10.1371/journal.pone.0010418.g006

Lrp4 in Kidney Development
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Lrp4 mutations cause renal malformations in humans
In a cooperative effort, Li et al. [18] identified homozygous

LRP4 mutations in patients with Cenani-Lenz syndrome (CLS), a

congenital syndrome mainly characterized by musculoskeletal

malformations, analogous to the murine phenotype including

polysyndactyly and molar fusion. When evaluated for kidney

defects, Li and colleagues observed congenital kidney abnormal-

ities in homozygous carriers in more than half of the investigated

families, which was hitherto unknown. Renal agenesis, in

accordance with the murine phenotype, was observed in one-

third of the families, another 25% percent presented with ectopic

or hypoplastic kidneys. For one of the affected CLS patients of the

CL-6 family described by Li et al. [18], imaging and functional

studies revealed ectopic and hypoplastic kidneys on both sides

(Fig. 8a–d). Dynamic-static renal scintigraphy with Tc-99m DTPA

showed hypofunction of the right kidney, which contributed 26%

vs 74% (left kidney) to total renal function (Fig. 8e). Static renal

cortical scintigraphy with Tc-99m DMSA revealed increased

background activity (Fig. 8f). Creatinine in this patient was

elevated at 1.2 mg/dL. Both of these findings indicated impaired

renal function. Clinical variability of phenotypic expression

suggests that additional modifying factors that affect budding,

branching morphogenesis and organ maturation contribute to this

phenotype in humans.

Discussion

In this study, we have shown that Lrp4 functions as a critical

regulator of kidney development in both mouse and human. In

mice, complete absence of functional Lrp4 leads to uni- or bilateral

kidney agenesis caused by a delay in the formation of the ureteric

bud. In other mouse models, e.g. the limb deformity (ld) mutation

or Danforth’s short tail (Sd) mice [30], delayed invasion of the ureteric

bud into the receptive mesenchyme results in mesenchymal

apoptosis and kidney agenesis [6]. The fact that normal kidneys

do develop in a subset of Lrp4 null embryos suggests that the

Figure 7. Lrp4 binds the Bmp4 antagonist Gremlin1 in vitro.
Lrp4 has been implicated in modulating the Bmp signaling pathway
through binding of the Wnt and Bmp modulator Wise. Co-immuno-
precipitation reveals Gremlin1 binding to Lrp4 in vitro (Panel A lane 4);
we further confirmed the Lrp4 binding partners Wise, Dkk1 and SOST
(Panel A, lanes 6, 10 and 12). The Wnt agonist R-spondin 2 did not
interact with Lrp4 (Panel A lane 7 and 8). Transfection efficiency was
confirmed by immunoblot analysis (Panel B).
doi:10.1371/journal.pone.0010418.g007

Figure 8. Hypoplastic and Hypofunctional Kidney in Human Lrp4 Mutations. CT scan reveals a severely hypoplastic kidney on the right and
mild hypoplasia on the left side (a–d). Both kidneys are ectopic with caudal and lateral shifts (a–d). Dynamic-static renal scintigraphy with Tc-99m
DTPA suggest right kidney dysfunction (e). Global renal functional participation; right kidney 26% and left kidney 74%. Static renal cortical
scintigraphy with Tc-99m DMSA background activity of radiopharmaceutical is higher than expected (f).
doi:10.1371/journal.pone.0010418.g008

Lrp4 in Kidney Development
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signaling capacity of the bud and the receptivity of the

mesenchyme is unaffected by loss of this gene. However, the

range of phenotypes observed in humans, from complete agenesis

to hypoplasia, along with the expression of Lrp4 mRNA in

multiple cell types of the kidney throughout the embryonic period

suggest this molecule may have additional roles in kidney

development, or that other factors exist, which can modify the

phenotype.

The precise mechanism for Lrp4 action during kidney

development is still unclear. During kidney development, tissue-

tissue interactions between the metanephric mesenchyme and the

UB are critical and rely on the integration and regulation of

several signaling pathways. Wnt signaling is crucial for UB

branching and has been shown to be regulated by Lrp4 in other

systems [15,16,17]. Intriguingly, a mouse model with UB-specific

overexpression of activated b-catenin presents with a very similar

phenotype to the Lrp4 mutant (Fig. 6). However, analysis of the

Wnt pathway activity has failed to reveal significant changes in

Lrp4 mutants, possibly due to high baseline activity in wildtype

animals.

An alternative yet equally plausible scenario is that Lrp4 is

involved in the modulation of Bmp signaling. We have found that,

like other members of the LDL receptor gene family, Lrp4 is

capable of modulating TGF-b related signaling [17,31]. In this

study, we have confirmed novel binding partners for Lrp4

including the Bmp regulating ligand Gremlin1 (Fig. 7). As

Gremlin1 knockout mice display a phenotype of bilateral kidney

agenesis (reportedly due to ectopic Bmp4 activity) [27], an

attractive model is that Lrp4 cooperates with Gremlin to inhibit

Bmp4 activity. However, similar to the case with b-catenin

signaling, we were unable to detect significant changes in the

expression of the Bmp targets, pSmad1, 4 and 8. It is therefore

possible that Lrp4 acts through an unrelated pathway or perhaps

through only partial modulation and integration of both Bmp and

Wnt signaling.

Normal kidney formation occurs in a hypomorphic Lrp4

mutant, where only a secreted extracellular domain is expressed,

adding additional insight into the mechanism of Lrp4 during

ureteric budding [15,16]. These findings suggest that whatever

factor Lrp4 is normally interacting with in the kidney, it is

occurring extracellularly and most likely does not require

endocytosis of the receptor. Possible mechanisms include quench-

ing of Wnt and BMP modulators, such as Gremlin1 (Fig. 7) by the

secreted extracellular domain.

In summary, we have identified Lrp4 as a critical factor for UB

outgrowth and kidney formation in the mouse. We have also

shown that mutations in Lrp4 lead to the same or very similar

developmental malformations as seen in human LRP4 deficient

patients with Cenani-Lenz syndrome, further underscoring the

importance of Lrp4 for human genetics and medicine.
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