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Abstract

The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models
and computational approaches become available. Various computational approaches have been developed to predict how
genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial
strains with improved primary or secondary metabolite production. However, identification of metabolic engineering
strategies involving a large number of perturbations is currently limited by computational resources due to the size of
genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain
design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the
performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion
and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to
predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques
significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach
(OptORF) (e.g., from ,10 days to ,5 minutes for metabolic engineering strategies with 4 gene deletions), and identified
strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found
novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have
been found using an existing approach that considers network additions and deletions in sequential steps rather than
simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate
and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution
techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic
engineering.
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Introduction

Metabolic engineering of microbial strains has been of great

interest for producing a wide variety of chemicals including

biofuels, polymer precursors, and drugs. While conventional

metabolic engineering approaches often focus on modifications

to the desired and neighboring pathways, recent developments in

computational analysis of metabolic models allow identification of

genetic modifications needed to improve production of biochem-

icals [1,2,3]. Computational approaches, such as BNICE [4] and

BioPathway Predictor [5], have been developed which enumerate

novel biochemical routes for chemical production. Metabolic

pathway-based approaches, such as elementary modes [6] and

extreme pathways [7], have been used to design strains with

improved chemical production (e.g., ethanol and carotenoids

[8,9]). Subsequent analysis of elementary modes finds those with

desired behaviors and finds the genetic strategies that would force

cells to utilize these desired modes [10]. While advances have

improved the efficiency of these pathway-based approaches,

enumerating these pathways for genome-scale metabolic networks

is still a very challenging task [11].

To avoid this computational challenge, approaches like flux

balance analysis (FBA) [12], minimization of metabolic adjustment

(MOMA) [13], and regulatory on/off minimization (ROOM) [14]

use optimization to predict knockout mutant phenotypes. For

example, MOMA was used to find knockout mutations that would

improve lycopene and valine production in Escherichia coli [15,16].

In these studies, either an exhaustive search (all possible

combinations are evaluated) or sequential search (where a strategy

with k+1 deletions is identified by evaluating the best strategy with

k deletions combined with all single deletions) was used to find

mutants with the highest predicted production using MOMA. A

more recent bi-level approach based on MOMA was developed

(OptGene) [17], which uses a genetic algorithm to find mutants

with improved production, and this approach was used to improve

sesquiterpene production in Saccharomyces cerevisiae [18].

A number of bi-level strain design approaches use mixed-integer

programming (MIP) to efficiently identify the mutations needed to

achieve the highest production rates, including OptKnock,

OptStrain, OptReg, OptForce, and OptORF. These bi-level

MIP approaches consist of an ‘outer’ problem and an ‘inner’

problem, where the outer problem optimizes an engineering
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objective function and the inner problem optimizes a cellular

objective function. Frequently, the inner problem is FBA which is

a linear programming (LP) problem. In MIP-based approaches,

the inner FBA problem is converted into optimality constraints by

formulating a dual LP of FBA and enforcing strong duality [19].

OptKnock [19] identifies a set of reaction deletions which couple

cellular growth and biochemical production, so an increase in

mutant growth rate requires an increase in biochemical produc-

tion as predicted by FBA. Due to this coupling, adaptive evolution

of these strains, where higher growth rates are selected, leads to

higher biochemical production [20]. Another approach, OptStrain

[21], uses a multi-step process to first identify non-native reactions

that would improve the host organism’s maximum production

capabilities. Reaction deletions can then be found which couple

production and growth in the modified host metabolic network. In

addition to reaction deletions, OptReg [22] identifies reaction

activations or inhibitions (increase or decrease in fluxes) to suggest

up-regulation or down-regulation of metabolic genes for enhanc-

ing biochemical production. Recently, this MIP problem was

reformulated and solved efficiently using a successive linear

programming approach (EMILiO) [23]. Another MIP-based bi-

level approach, OptForce [24], searches for all possible reaction

modulations to meet a pre-specified overproduction target and

identifies a minimal set of flux changes that need to be forced

through genetic manipulations. Recently, we developed an

approach, OptORF [25], that identifies gene deletion and

overexpression strategies (instead of reaction deletions) by directly

taking into account gene to protein to reaction association and

transcriptional regulation. All of these bi-level MIP approaches,

except OptForce, predict mutant behaviors by finding solutions

that maximize growth, and so resulting strains would often need to

undergo adaptive evolution to improve growth and chemical

production, but they may have increased stability [20]. On the

other hand, strains that have been designed using MOMA would

not require adaptive evolution and for some compounds non-

evolutionary strategies may be needed if product and biomass

formation cannot be coupled. So the choice of computational

approach will likely depend on the product of interest and

experimental strategies used for strain development.

In this study, we report two new MIP-based bi-level strain

design approaches and solution techniques to improve their

runtime performance. First, we present SimOptStrain which

simultaneously considers gene deletions in a host organism and

reaction additions from a universal database such as KEGG [26]

or MetaCyc [27]. Previously, the OptStrain framework used a

multi-step procedure to first identify a minimal set of non-native

reactions to add to the metabolic network to achieve the

theoretical maximum production (TMP) of a biochemical target

(Step 1 in Figure 1A), and then identify deletion strategies in the

expanded metabolic network using OptKnock (Step 2 in

Figure 1A). The current multi-step OptStrain procedure may

miss higher production strategies by not evaluating additions and

deletions simultaneously. First, additions of non-native reactions

that yield zero (Solution s1 in Figure 1B) or suboptimal (Solution

s2 in Figure 1B) increases in the TMP of a host organism are not

considered, even though such reactions may increase the

biochemical production when coupled to cellular growth in a

mutant strain. Second, addition of the minimal number of non-

native reactions may not lead to the highest chemical production

that can be found when coupled to cellular growth rate (Solution

s3 in Figure 1B). To overcome these limitations, we developed a

new bi-level MIP approach which simultaneously identifies gene

deletions in a host organism and reaction additions from a curated

universal database, and demonstrate the utility of the approach for

production of succinate and glycerol.

Second, we present a new quadratic bi-level MIP approach,

BiMOMA, to identify gene deletions for improving biochemical

production when MOMA is used as an inner problem (see

Figure 2). MOMA has been used in metabolic engineering for

predicting metabolic flux distributions in un-evolved deletion

mutants, and resulting strains do not need to undergo adaptive

evolution. Previous studies [15,16,18] employed a sequential

search or heuristic algorithms, such as genetic algorithms (used by

OptGene), to identify gene knockout mutants with improved

biochemical production. However, these approaches can be

computationally expensive and may miss higher production

strategies since the number of possible combinations is extremely

large and the optimality of such methods is generally not

guaranteed. Here, we develop a direct bi-level approach using

mixed-integer quadratically constrained programming (MIQCP)

and show we can efficiently identify knockout strategies for

improved production of glutamate and pyruvate.

These bi-level computational approaches lead to MIP formu-

lations that become intractable when the number of allowed

modifications is large. Pre-processing and heuristic algorithms

have been used to improve tractability [17,28]; however, these

methods sometimes converge to local optima and can miss better

solutions. Here, we show how novel MIP techniques based on

duality can significantly improve the performance of strain design

approaches. We first illustrate the improvement in performance by

applying the developed techniques to OptORF and comparing the

results to those obtained using heuristic algorithms. We then apply

the MIP techniques to the two new bi-level strain design

approaches. In this work, we use ‘approaches’ to describe the

strain design problems and ‘techniques’ to refer to the MIP

solution methods used to solve the bi-level problems.

Materials and Methods

Illustration of Proposed Mixed-integer Programming
Techniques using OptORF

We recently developed a bi-level optimization approach

(OptORF) which uses metabolic and transcriptional regulatory

models to find metabolic and/or regulatory gene perturbation

strategies [25]. Using OptORF without regulatory considerations

(see Text S1 for complete formulation), we demonstrate in this

work how our MIP techniques can be used to quickly find global

or near-global optimal solutions. The modified OptORF problem

searches for metabolic gene deletion strategies to improve

biochemical production, where the inner problem is an FBA

problem maximizing cellular growth. The MIP techniques are

described below and include four steps: tightening dual variable

bounds, adding perturbation penalties, reducing search space, and

solving successive problems.

Tightening the bounds on dual variables. First, we

tightened the bounds on a subset of variables in the dual LP of

FBA by examining its feasible region. Similar to FBA, the dual LP

often has alternate optimal solutions due to the redundancy in

metabolic networks. In a bi-level problem, any optimal solution of

the dual LP will provide a feasible solution to the bi-level problem

without affecting solutions of the primal LP since the primal-dual

LP pair is only connected via strong duality. Therefore, we can

obtain a valid solution of the dual LP among alternate optimal

solutions by minimizing the norm of the dual variables subject to

the dual LP constraints and optimal objective function value. We

focused on dual variables corresponding to the reaction removals,

and sampled their values using 1,000,000 samples of 10 random

Strain Design Approaches and MIP Techniques
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gene knockouts. We initially tested different sample sizes and

numbers of gene knockouts and found the results were consistent

above ,100,000 samples and ,5 gene knockouts. Therefore, we

collected 1,000,000 samples, which was computationally tractable,

and 10 gene knockouts, which was the maximum number allowed

for the case studies in this work.

For each sample, we randomly choose 10 genes and solve FBA

where the reactions corresponding to the 10 genes are removed via

gene to protein to reaction (GPR) associations. If the FBA problem

is feasible and biomass production is positive, we then minimize

the Euclidean norm of the dual variables for reaction removals in

the dual LP while the objective function is constrained to be equal

to the optimal biomass production value. This process is repeated

1,000,000 times to sample the values of dual variables for removed

reactions in different modified network structures.

Figure 3 shows the minimum and maximum of dual variable

values (y-axis) for each reaction (x-axis) across the 1,000,000

samples of 10 gene knockouts in glucose anaerobic conditions

using the iAF1260 metabolic model of E. coli [29] (see Figure S1

for other conditions and additional statistics). It can be seen from

the Figure 3 that the dual variable values for non-essential

reactions would not likely exceed values of +/21. Based on these

results, we tightened the bounds on these dual variables for

reaction removal constraints to be [21, 1] (Equations A.4 and

A.15 in Text S1). This procedure took a few hours for 1,000,000

samples, but it only needs to be performed once for a given

metabolic network and environmental conditions, and the results

can be used for production of any biochemical. In this study, we

did not find any cases where these bounds affected the optimal

solutions of the inner FBA problem.

Applying penalties for genetic perturbations. Second, we

applied a penalty (a) for each additional gene deletion in the outer

objective function to create a trade-off between biochemical

production and the required number of genetic modifications

(Equation A.1). This penalty results in selection of strategies with

fewer modifications among solutions with equal production and

reduces the solution time.

Reducing the search space. Third, as other studies have

done [28,30], we reduced the number of perturbation targets by

excluding genes that are essential (associated reactions are

required for growth) which can be found using FBA with GPR

associations. We also performed flux variability analysis (FVA)

[31] to exclude genes that are inactive (associated with reactions

that cannot carry flux). These essential and inactive genes were

also excluded from the analysis of dual variable ranges described

above.

Solving successive problems iteratively. Fourth, we used

an iterative algorithm by solving successive problems to optimality

Figure 1. Bi-level approaches considering additions and deletions. (A) Simplified representation of the existing OptStrain procedure and an
illustrative example. Step 1 adds a minimum number of reactions from a universal database that yields the maximal increase in theoretical maximum
production (TMP). Step 2 identifies reaction deletions in the augmented network identified in Step 1 that couple biomass and biochemical
production. (B) SimOptStrain with simultaneous gene deletion and non-native reaction addition, and illustrative examples. Solution s1 shows an
example of reaction additions, which do not increase the TMP, that improve biochemical production at the maximum growth rate when combined
with gene deletions. Solution s2 is an example of reaction additions that yield a suboptimal increase in the TMP, while solution s3 is a case where the
number of added reactions is not necessarily the minimum. Solutions s1, s2, and s3 could only be found using SimOptStrain.
doi:10.1371/journal.pone.0024162.g001

Strain Design Approaches and MIP Techniques
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with increasing numbers of allowed gene deletions (k) where the

solution from the previous problem (pk) is used as a starting point

for the next problem (pk+1). Unlike a local search where the next

solution is constrained to keep parts of the previous solution, here

the next solution is not at all constrained by this starting point, but

it facilitates the search by providing a good feasible solution that

can be used to prune large numbers of suboptimal solutions. The

successive runs improved solver stability for some difficult cases.

While all four steps were taken, we found that major runtime

performance improvements were made when the bounds on dual

variables and the penalty for gene deletions were applied

simultaneously. We found that placing [21, 1] bounds on the

dual variables for reaction removals was very effective for the

OptORF cases examined here, but these values may need to be

adjusted for other models or conditions. The optimization

problems were solved using CPLEX 11.2 accessed via GAMS

on a linux machine with Intel Xeon 2.66GHz processors.

SimOptStrain – simultaneous gene deletion and
non-native reaction addition

SimOptStrain was developed to simultaneously consider gene

deletions in a host organism and reaction additions from a

universal database (see Figure 1 and Text S1 for complete

mathematical formulation). Conceptually, adding a non-native

reaction to a host network is equivalent to adding all non-native

reactions to the host network and then deleting all non-native

reactions except the desired addition. Binary variables were used

in the outer problem to indicate whether non-native reactions

were added (1) or not (0).

SimOptStrain formulation. First, GPR associations and

gene deletion constraints (Equations B.16–B.20 in Text S1) were

introduced to consider gene deletions instead of reaction deletions

as described previously [25]. Second, the inner problem was

modified to account for the addition of non-native reactions.

When a non-native reaction is added, a new primal variable and

a corresponding dual constraint are introduced (Equations B.2,

and B10–B12). If the added reaction is irreversible, a primal

constraint for non-negativity and a non-negative dual variable

were also introduced (Equations B.5 and B.14). Third, new

binary variables were used in the outer problem to determine

whether a non-native reaction is added to a host model

(Equations B.5 and B.6). A new penalty (b) for each reaction

addition was applied in the outer objective function (Equation

B.1), and the total number of non-native reactions added to a

host model was limited to a desired value (Equation B.21). The

size of such an optimization problem is generally very large due

to the number of reactions in a universal database (,4,000), but

the MIP techniques described in the previous section allowed for

a fast and effective solution process.

Metabolic model and universal reaction database. The

curated KEGG [26] universal reaction database and reaction

reversibility from previous studies [21,32], and the iJR904

metabolic model of E. coli [33] were used in this work (see

Dataset S1 and S2 for corresponding network details in SBML

format). We excluded from consideration the reactions that cannot

carry flux in a glucose aerobic environment by performing FVA

with the E. coli model augmented with non-native reactions in the

universal database. Reactions in the universal database that exist

Figure 3. Analysis of dual variables for reaction removals using
dual LP of FBA. Maximum (downward triangle) and minimum
(upward triangle) of observed dual variable values for each reaction
sorted by the standard deviation. The values of dual variables were
obtained from 1,000,000 samples of 10 gene knockouts in glucose
anaerobic condition using the iAF1260 metabolic model of E. coli.
doi:10.1371/journal.pone.0024162.g003

Figure 2. BiMOMA – a direct mixed-integer programming
approach for quadratic bi-level strain design. The MOMA inner
problem, a convex quadratic program, is converted to its optimality
conditions using strong duality. The resulting BiMOMA problem is a
single level mixed-integer quadratically constrained program.
doi:10.1371/journal.pone.0024162.g002

Strain Design Approaches and MIP Techniques
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in the E. coli model were also not considered as additions. After this

preprocessing, there were reactions which no longer exist in the

current KEGG database or have the wrong directionality, and

these reactions were excluded from consideration as they were

found in SimOptStrain calculations (see Table S1 for the list of

reaction changes to the universal database).

BiMOMA – bi-level MIQCP approach with MOMA inner
objective function

We also developed a bi-level MIQCP approach that, for the first

time, uses MOMA as an inner objective problem (see Figure 2 and

Text S1 for complete mathematical formulation). MOMA is a

convex quadratic program (QP) that minimizes the Euclidean

norm of flux changes between the wildtype and knockout strain.

Here, we show how the MOMA inner problem can be replaced

with its optimality conditions using complementarity [34] or strong

duality [35] (Equations C.2–C.9 in Text S1) to yield a single-level

MIQCP problem.

BiMOMA formulation. First, the MOMA inner problem is

converted into a standard QP form (Equations C.2–C.4, and the

left hand side of Equation C.9 in Text S1), and the dual QP of

MOMA is constructed from its Lagrangian (Equations C.5–C.8,

and the right hand side of Equation C.9). To enforce optimality,

the complementarity conditions can be implemented in the outer

problem by introducing binary variables which ensure at least one

of each primal-dual constraint pair holds at equality. However,

this results in a large number of additional binary variables that is

not desirable. Instead, we used strong duality to set the objective

values of the primal and dual pair to be equal at their optima. The

quadratic equality constraint results in a non-convex region, but it

can be replaced with a convex inequality constraint (Equation C.9)

because the opposite inequality holds from weak duality. The

resulting bi-level problem is converted into a single-level MIQCP

problem, and can be directly solved using available solvers such as

CPLEX.

Tightening the bounds on dual variables for the MOMA

inner problem. While a global optimum can be obtained since

the inner MOMA problem is convex, the BiMOMA problem for a

genome-scale model can be very difficult to solve due to its size

and non-linearity. Therefore, we investigated the dual QP of

MOMA using a similar sampling procedure described in the first

subsection of Materials and Methods. We modified the methods

for the quadratic inner objective by simply solving dual QPs of

MOMA to obtain the values of dual variables for reaction removal

constraints, since the optimal solution of a convex QP is unique.

Figure S2A shows the average and standard deviation of dual

variable values (y-axis in log-scale) for each reaction (x-axis), and

Figure S2B shows the minimum and maximum of dual variable

values (y-axis in log-scale) for each reaction (x-axis) across the

1,000,000 samples of 10 gene knockouts in glucose aerobic

conditions using the iJR904 metabolic model of E. coli (see Figure

S2 for other conditions). Most of the shadow prices were between

[2100, 100] except for a few reactions involved in cell envelope

biosynthesis. We subsequently tightened the bounds on the dual

variables for reaction removal constraints to be [2100, 100]

(Equation C.7 and C.15) and applied a very small penalty (c= 1e-

6) to the squared Euclidean norm of these dual variables in the

outer objective function (Equation C.1). The additional penalty

term was found to be very effective in improving the performance

of the bi-level optimization when combined with the bounds on

the dual variables. The solutions from the bi-level problems were

verified by solving subsequently MOMA with the identified gene

deletions.

Results

Performance of the developed MIP techniques using
OptORF

We first tested the performance of the developed MIP

techniques to identify gene deletion strains that are predicted to

have high acetate production (Table 1) under glucose anaerobic

conditions with a minimum growth rate of 0.01 h21 using the

iAF1260 metabolic model of E. coli [29]. We compared solutions

and CPU times with and without these techniques, and to other

available methods (Figure 4A and 4B), for strategies with different

numbers of gene knockouts (k). First, we identified globally optimal

solutions for k = 1 to 4 without using the bounds on dual variables

and penalty (a= 0% TMP). The problems for k.4 could not be

solved to optimality within ,10 days. Then, we solved the

problems to optimality from k = 1 to 10 using dual variable bounds

and a penalty of 0.5% of the theoretical maximum production

(TMP) (a= 0.5% TMP, bounds). Solutions found using the penalty

Table 1. Best gene deletion strategies identified by OptORF using our MIP techniques for acetate production under glucose
anaerobic condition.

k Identified Genes Changesa Yieldb (%)

1 eno 38.67

2 eno glyA 1 38.86

3 adhE mhpF ydfG 5 53.97

4 adhE mhpF ydfG pgi 1 54.93

5 adhE frmA adhP pgi atpC 5 59.16

6 fsaA fsaB zwf ldhA dld tpiA 11 68.00

7 fsaA fsaB zwf ldhA dld tpiA serB 1 68.56

8 adhE mhpF frmA ldhA dld adhP nuoN gldA 11 75.42

9 adhE mhpF frmA ldhA dld adhP nuoN mgsA pgi 3 77.15

10 adhE mhpF frmA ldhA dld adhP nuoN mgsA gdhA ptsH 3 77.25

a‘Changes’ refer to the number of genes which are newly introduced in the solution with k deletions or removed from the solution with k–1 deletions.
bYield is reported as % of the TMP for wildtype strain with a maximum glucose uptake rate of 10 mmol gDW21 h21 (2.56 mol acetate produced/mol glucose

consumed). gDW stands for gram dry weight.
doi:10.1371/journal.pone.0024162.t001
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and bounds were identical to the globally optimal solutions (those

found without penalties and bounds) for k = 1, 3, and 4, but the

CPU times were significantly lower (e.g., 106 seconds versus

103 seconds for k = 4). No solutions were found for 2 and 10 gene

deletions because deleting an additional gene (over a 1 and 9

deletion strategy) did not increase TMP more than 0.5%, the

penalty for the additional deletion. We subsequently limited the

size of search tree (using the nodelim CPLEX option) to 104 nodes

in order to evaluate if we could identify solutions of high quality

faster using multiple runs, in this case lowering the penalty

(a= 0.005% TMP, bounds, 104 nodes). This resulted in the same

optimal solutions as those found in a= 0.5% TMP case for k = 1,

3, 4, 8, and 9, near optimal solutions that were still within 4%

TMP of the optimal solutions for k = 5 to 7, and new solutions for

k = 2 and 10 due to the smaller penalty. Overall, the process took

less than 1 hour to find all 10 strategies. We did not observe any

cases where bounding the dual variables prevented us from finding

the global solutions (for k = 1 to 4) or affected the predicted growth

and production rates for all k, which was confirmed by solving just

the FBA inner problems after the deletions were identified. We

also performed a sensitivity analysis on these bounds on dual

variables by collecting optimal OptORF solutions for k = 1 to 4

with increasing restrictions on the bounds on dual variables (Figure

S3), and found that the optimal solutions were only affected when

the bounds were narrower than [20.01, 0.01].

To compare the proposed MIP techniques to local search

methods, we implemented and modified the Genetic Design

through Local Search algorithm (GDLS [28]) to use gene deletions

instead of unique manipulations, where the latter can be

comprised of multiple gene deletions. GDLS was performed with

local search sizes from 1 to 3, where a local search size of n

indicates that a total of n genes were removed from or added to the

previous strategy. While the computational requirements of our

MIP techniques and local search methods were comparable, in

many cases the local search (GDLS) was unable to find better

deletion strategies (Figure 4). This is because the best strategies

found using our method did not share a significant number of

genes with simpler strategies (Table 1). For example, none of the

gene deletions in the k = 5 strategy were found in the k = 6 strategy

indicating a local search size of 11 would be needed to find it. We

also tested the performances of cellular genetic, evolutionary, and

simulated annealing algorithms in OptFlux v2.1 [36] using a

maximum of 10 gene deletions and 50,000 function evaluations

(,6.56104 seconds). These algorithms found strains with lower

acetate production (,40% TMP, data not shown).

We additionally used OptORF to find high production

strategies for metabolites that were previously found to be difficult

to couple to biomass production under glucose and/or xylose

aerobic conditions (Figure 5) [30]. The OptKnock [19] and

OptGene [17] results shown in Figure 5 are from a recent study

where strategies had a maximum of 5 or 10 reaction deletions,

respectively [30]. For the OptORF cases, the model and

simulation conditions from the earlier study [30] were used to

obtain the results shown in Figure 5 (including minimum growth

rate requirement, maximum substrate uptake rates, metabolic

network changes, and ‘tilting’ of the inner objective function –

which helps eliminate strategies where alternate maximal growth

solutions with high and low productivity are possible). For

comparison purposes, we identified the number of reaction

deletions that are equivalent to each OptORF gene deletion

strategy. Overall, our methods found strategies with higher

production using similar numbers of deletions, and also identified

strategies for cases where other approaches could not (missing bars

in Figure 5), including malate and serine.

Identification of novel enzyme additions using
SimOptStrain

To demonstrate the benefit of considering gene deletions and

non-native reaction additions simultaneously, we applied the

SimOptStrain approach to succinate and glycerol production

under glucose aerobic conditions with a minimum growth of

0.1 h21. We used a metabolic model of E. coli with GPR

associations [33] and a curated KEGG universal database that was

used in the previous OptStrain study [21]. Even after preprocess-

ing, the size of the problem involving addition of multiple non-

native reactions was still very large. However, when applied to

SimOptStrain, the MIP solution techniques resulted in significant

Figure 4. Performance of different search methods. (A) Predicted
acetate production yields in glucose anaerobic conditions for E. coli
strains designed using our MIP techniques or a local search method. (B)
Cumulative CPU times for our MIP techniques (#) and a local search
method (%). For both panels, cases using a= 0% TMP (light blue) or
0.5% TMP (blue) were solved to optimality and a= 0.005% TMP (dark
blue) was solved with a node limit of 104 (TMP = 2.56 mol acetate
produced/mol glucose consumed).
doi:10.1371/journal.pone.0024162.g004
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reductions in computational requirements (e.g., from ,15 CPU

hours to 0.4 CPU hours for succinate production considering

strategies with 3 gene deletions (k = 3) and 1 non-native reaction

addition (k9 = 1)). We focused here on finding strategies with

improved product yields rather than evaluating their relative

optimality (as was done above for OptORF). The best gene

deletion strategies without any addition of non-native reactions

were identified using OptORF, and the resulting solutions were

compared to new strategies which give higher yields with the same

number of deletions but with non-native reaction additions. First,

a high penalty value for each addition (b= 10% TMP of wildtype)

and deletion (a= 1% TMP) was applied to find strategies with

significantly improved yields. Second, a lower value of the reaction

addition penalty (b= 1% TMP of wildtype and a= 1%) was used

to identify additional strategies which may further improve the

yields. In addition, ‘tilting’ of the inner objective function [30] was

employed to eliminate strategies where alternate solutions with

high and low productivity are possible.

For succinate production, we found that there are no non-native

reactions which improve the TMP when added to the wildtype E.

coli model. Therefore, the previous multi-step OptStrain procedure

would not identify any non-native reactions from the KEGG

database to be added to the host model. However, when we

explored the simultaneous deletion of genes in E. coli model and

addition of non-native reactions from KEGG database using

SimOptStrain, we were able to identify non-native reactions which

can significantly improve the amount of succinate produced when

the E. coli mutant strains achieve their maximum growth rate

(Table 2). Without the addition of identified reactions, these

mutant strains would not produce succinate or would exhibit a

significantly lower level of succinate production at the maximum

growth (data not shown). A common characteristic of the

identified non-native reaction additions was the use of NADP(H)

instead of NAD(H) cofactors (Figure 6A). The reactions associated

with enzyme commission (EC) numbers 1.2.1.51 and 1.2.1.52

produce NADPH as a cofactor and replace native E. coli reactions

which instead produce NADH. Additionally, reactions catalyzed

by EC 1.4.1.9 and 1.4.1.20 enzymes convert carboxylates and

ammonia into amino acids using NADH, and the amine groups

from these amino acids were transferred onto 2-oxoglutarate to

produce glutamate using different transaminases. This reduces the

flux through glutamate dehydrogenase, which uses NADPH to

convert ammonia and 2-oxoglutarate into glutamate. This

additional NADPH (from reduced glutamate dehydrogenase flux)

lowered fluxes in the pentose phosphate pathway and increased

fluxes in the TCA cycle thereby improving succinate production

(Figure 6B). Addition of another non-native reaction associated

with EC 2.1.3.1 further increased fluxes in the TCA cycle by

reducing the amount of acetate secreted as a by-product.

For glycerol production, the addition of non-native reactions

from the KEGG database could improve the TMP up to ,220%

of the TMP for the wildtype E. coli strain. Interestingly, the non-

native reactions we found using SimOptStrain yielded a

suboptimal increase in the TMP (140%,170% of the wildtype

TMP, Table 3). There were numerous combinations of non-native

reactions which yielded the maximum increase in TMP (,220%);

thus it would be almost impossible to identify these suboptimal

non-native reactions using the previous OptStrain procedure. One

of the most frequently identified reactions was associated with EC

3.1.3.21, which dephosphorylates glycerol-3-phosphate into glyc-

erol. The addition of these non-native reactions and deletion of

,5 to 6 E. coli genes were predicted to significantly improve

glycerol production when coupled to the growth (up to ,106%

TMP of wildtype). Without the addition of the identified non-

native reactions, we found that the best strategies using only gene

deletions resulted in very low glycerol yields (less than 0.1% TMP

for 3 gene knockout mutants and 6.8% TMP for 6 gene knockout

mutants, see Table 3).

Un-evolved strain designs using BiMOMA
To find ‘un-evolved’ E. coli strain designs for improving

biochemical production we used BiMOMA, the first MIQCP bi-

level strain design approach that uses a quadratic inner problem.

For the ‘un-evolved’ strain designs, biochemical production does

Figure 5. Product yields for E. coli strains designed to generate different products. Different colors indicate OptKnock (light grey), OptGene
(grey), and OptORF (dark grey). The numbers on the x-axis correspond to the number of reaction deletions identified (or maximum allowed if no
strategy was found) by OptKnock and OptGene [30], or gene deletions (equivalent reaction deletions listed in parentheses) identified by OptORF (this
study). The product yields for OptKnock and OptGene were taken from an earlier study [30] and re-calculated based on TMP values without a
minimum growth requirement. A missing bar indicates that no strategy was previously found.
doi:10.1371/journal.pone.0024162.g005
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not have to be coupled to the cellular growth in the mutant strain.

Instead production is improved when the metabolic fluxes are re-

adjusted after a gene(s) is deleted. These adjusted fluxes can be

predicted by finding solutions that are closest to the wildtype flux

distribution. We used a metabolic model of E. coli with GPR

associations [33] to identify optimal gene deletion strategies that

would immediately improve production of pyruvate or glutamate

in a glucose aerobic condition (Figure 7). The same penalty for

each additional deletion (a= 0.5% TMP), minimum growth rate

of 0.1 h21, and bounds on the dual variables [2100, 100] were

used for all cases. First, we identified the best strategies for 1 to 10

deletions (k = 1 to 10) using a local search with search size of 1,

which is equivalent to a sequential search (labeled as Sequential in

Figure 7). Next, we solved the problems using our BiMOMA

approach to optimality from k = 1 to 5 (labeled as BiMOMA in

Figure 7). The MIP solution techniques also significantly reduced

the solution times for this quadratic bi-level problem (e.g. from

,65 CPU hours to 2 CPU hours for pyruvate production

considering strategies with 3 gene deletions). A sensitivity analysis

on the bounds on dual variables was also performed to check

whether these bounds prevented finding optimal solutions for k = 1

to 3 by changing the bounds from [2infinity, +infinity] to [210,

10] (Figure S3). We did not observe cases where the bounds of

[2100, 100] prevented us from finding the optimal solutions. To

find more complex strategies for k = 6 to 10, we also combined

BiMOMA with a local search method by applying a local search

with search size of 2 using the BiMOMA solutions for k = 2 and 3

as starting points (labeled as BiMOMA+Local, size = 2 in Figure 7),

and a local search with search size of 3 using the BiMOMA

solutions for k = 3, 4 and 5 as starting points (labeled as

BiMOMA+Local, size = 3). The combined BiMOMA and local

search resulted in strain designs with significantly higher product

yields than the sequential method (by up to ,10% higher TMP for

pyruvate and ,20% higher TMP for glutamate).

In the pyruvate case, the differences in yields between the

sequential search and BiMOMA search were somewhat moderate

for k = 1 to 5, but the sequential search missed higher production

strategies as the number of allowed gene deletions increased

(Figure 7A). These results indicate that using a bigger search size is

advantageous, which can be explained by significant changes in

genes that need to be deleted (Table 4). However, the best strategy

for k = 10 was found during the BiMOMA+Local search of size 2.

This is due to the fact that more genes in the best strategy for

k = 10 were shared by the strategies found during the search path

of size 2 than by the strategies found during the path of size 3.

The benefit of a bigger search size is more evident in the

glutamate case (Figure 7B). The changes in identified genes were

not as remarkable as the pyruvate case (Table 5), but the

consequence of these small gene differences was more striking. For

example, a significant improvement in yields from k = 3 to 4 and 4

to 5 was found using BiMOMA (8.8% and 11.6% TMP), while

only a small increase was shown by the sequential search (1.7%

and 2.4% TMP). Surprisingly, the combined BiMOMA and local

search with search size of 2 resulted in lower yields than those

found using the sequential search for k = 6 and 8, but identified a

strategy with higher predicted yield for k = 10.

Using the BiMOMA approach, we were able to efficiently

identify production strategies with up to 40–45% theoretical

maximum yields for glutamate and pyruvate (Figure 7), while the

existing genetic algorithm based approach OptGene only found

strategies with 2–5% of the maximum yields using a maximum of

10 knockouts and 100,000 function evaluations (data not shown).

These results illustrate the advantages of using mixed-integer

programming to solve bi-level problems as they can significantly

reduce solution times while still finding high production strategies.

Discussion

The use of computational approaches in metabolic engineering

has grown rapidly, alongside an increasing number of genome-

scale metabolic models [2,37,38,39,40]. These models can provide

detailed predictions regarding metabolic flux distributions and

Table 2. Gene deletion and reaction addition strategies identified by SimOptStrain for succinate production under glucose
aerobic condition.

k Deleted Genes k9 Added Reactions (EC No.a)

Growth Rate
(h21) TMPb (mol/mol) Yieldc (%)

wildtype 0.88 1.5 0.0

3 sdhC pta eutD 0 Noned 0.83 1.5 8.8

sdhC gnd glyA 1 1.2.1.52 0.62 1.5 32.5

sdhC gnd glyA 2 1.2.1.52 2.1.3.1 0.62 1.5 37.3

4 sdhC gnd glyA pntA 0 Noned 0.59 1.5 38.2

cyoA cydA adhE pntA 1 1.2.1.51 0.17 1.5 60.4

5 cyoA cydA lpd ptsH atpA 0 Noned 0.11 1.5 54.4

cyoA cydA adhE ptsH atpA 1 1.4.1.20 0.12 1.5 67.5

cyoA cydA adhE ptsH atpA 1 1.4.1.9 0.12 1.5 67.5

aEnzyme Commission number.
1.2.1.52 2-Oxoglutarate+CoA+NADP+, = .Succinyl-CoA+CO2+NADPH.
2.1.3.1 Malonyl-CoA+Pyruvate, = .Acetyl-CoA+Oxaloacetate.
1.2.1.51 Pyruvate+CoA+NADP+, = .Acetyl-CoA+CO2+NADPH.
1.4.1.20 L-Phenylalanine+H2O+NAD+, = .Phenylpyruvate+NH3+NADH.
1.4.1.9 L-Valine+H2O+NAD+, = .3-Methyl-2-oxobutanoate+NH3+NADH.
bTheoretical maximum production (TMP) is reported as mol succinate produced/mol glucose consumed for each strain with non-native reaction additions, but without

gene deletions. A maximum glucose uptake rate of 10 mmol gDW21 h21 and a maximum oxygen uptake rate of 18.5 mmol gDW21 h21 were used.
cYield is reported as % of the TMP for each strain after reactions are added.
dBest strategies without addition of non-native reactions.
doi:10.1371/journal.pone.0024162.t002
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identify strains with enhanced biochemical production. The

computational models can predict the effects of genetic modifica-

tions (including gene knockout, gene overexpression, or gene/

reaction addition), and they can be used to identify the best set(s) of

strain modifications to improve production by considering all

possible modifications. Computational approaches have the

capability to generate a diverse collection of modification strategies

that can be tested experimentally. In this study, we presented two

new strain design approaches and mixed-integer programming

techniques which allow us to solve different types of strain design

problems more effectively, thereby facilitating the strain design

process.

The MIP techniques developed in this study can be applied to

most existing bi-level approaches for strain design, synthetic lethal

identification, or network identification [2,41,42]. We demon-

strated this by applying the developed techniques to OptORF and

SimOptStrain, both of which use the optimal cellular growth as an

underlying assumption for predicting mutant phenotypes. The

results from the OptORF case show how these techniques can

significantly improve the performance of the strain design

approaches, thereby allowing us to more quickly identify

perturbation strategies with large numbers of modifications. This

alleviates one of the major limitations in the current strain design

process, and provides us with more options that can be explored

experimentally. An important step when using these techniques is

finding appropriate bounds for the dual variables, since bounds

that are too restrictive may prevent the optimal solutions from

being found. The sampling procedure used here is one way to

Figure 6. Fluxes involving NADPH production/consumption and central metabolism. The top numbers are for wild-type and the bottom
numbers are for a predicted succinate producing strain (DsdhC Dgnd DglyA+EC 1.2.1.52+EC 2.1.3.1 reactions). (A) Metabolic pathways producing or
consuming NADPH are shown. The numbers are percentages of the total NADPH produced or consumed, where 100% is 15.7 mmol gDW21 h21 for
wild-type (first line) and 7.3 mmol gDW21 h21 for succinate producing strain (second line). gDW stands for gram dry weight. Abbreviations of
metabolites: Glu, glutamate; Gln, glutamine; Ile, isoleucine; Leu, leucine; Lys, lysine; Thr, threonine; Val, valine. (B) Metabolic fluxes and genes
associated with each reaction in the central metabolic networks are shown. Blue arrows indicate removed native E. coli reactions, and red arrows
indicate added non-native reactions. The numbers are relative fluxes normalized with respect to the total glucose uptake rate (100% is 10 mmol
glucose gDW21 h21). Abbreviations of metabolites (‘_ext’ indicates extracellular): AC, acetate; ACCOA, acetyl-CoA; ACTP, acetyl phosphate; AKG, 2-
oxoglutarate; CIT, citrate; FUM, fumarate; G6P, glucose 6-phosphate; GLC, glucose; ICIT, isocitrate; MAL, malate; MALCOA, malonyl-CoA; OAA,
oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; SUCC, succinate; SUCCOA, succinyl-CoA.
doi:10.1371/journal.pone.0024162.g006
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Figure 7. Improvements in product yields in glucose aerobic conditions for E. coli strains designed using BiMOMA. (A) Pyruvate and
(B) Glutamate. The best BiMOMA strategies (#) were identified for k = 1 to 5 using a penalty of 0.5% TMP, and were combined with a local search (%)
with search sizes of 2 or 3. BiMOMA+local search size of 2 starts from the best BiMOMA solutions for k = 2 and 3; and BiMOMA+local search size of 3
starts from the best BiMOMA solutions for k = 3, 4, and 5. A sequential search was also performed, which is a local search with search size of 1 starting
from the best k = 1 solution.
doi:10.1371/journal.pone.0024162.g007

Table 3. Gene deletion and reaction addition strategies identified by SimOptStrain for glycerol production under glucose aerobic
condition.

k Deleted Genes k9 Added Reactions (EC No.a)

Growth Rate
(h21)

TMPb (mol/
mol) Yieldc (%)

Wildtype 0.88 0.91 0.0

3 glpK frmA gldA 0 Noned 0.88 0.91 0.06

5 pgk fbp gloB nuoN gldA 1 3.1.3.21 0.21 1.51 47.1

pgk fbp gloB nuoN pgi 1 3.1.3.21 0.21 1.51 55.1

pgk fbp gloA frmA gldA 1 2.7.1.142 0.35 1.58 59.3

pgk fbp gloA frmA gldA 1 3.1.3.21 0.30 1.51 62.6

6 fsaA fsaB gloB tpiA eda deoC 0 Noned 0.64 0.91 6.8

pgk fbp gloB nuoN gldA cyoA 2 3.1.3.21 2.1.3.1 0.17 1.51 64.1

aEnzyme Commission number.
3.1.3.21 sn-Glycerol 3-phosphate+H2O, = .Glycerol+Orthophosphate.
2.7.1.142 sn-Glycerol 3-phosphate+D-Glucose, = .Glycerol+D-Glucose 6-phosphate.
2.1.3.1 Malonyl-CoA+Pyruvate, = .Acetyl-CoA+Oxaloacetate.
bTheoretical maximum production is reported as mol glycerol produced/mol glucose consumed for each strain with non-native reaction additions, but without gene

deletions. A maximum glucose uptake rate of 10 mmol gDW21 h21 and a maximum oxygen uptake rate of 18.5 mmol gDW21 h21 were used.
cYield is reported as % of the TMP for each strain after reactions are added.
dBest strategies without addition of non-native reactions (no strategy was found for k = 5 and k9 = 0 because any small production increases (over the k = 3 strategy)

were negated by the penalty a= 1026).
doi:10.1371/journal.pone.0024162.t003
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approximate the dual bounds, and this should be done before

applying the developed approaches to other models or growth

conditions.

With these runtime performance improvements, the SimOpt-

Strain approach can now be used to simultaneously consider the

deletion of genes in a host organism and addition of non-native

reactions. The simultaneous search broadens the scope of strain

designs and identifies novel combinations of modifications, which

could not have been found previously using a multi-step

procedure. In addition to strain design, SimOptStrain could also

be used to refine models (by adding and removing reactions) for

cases when FBA does not correctly predict by-product secretion.

Improvements in the universal reaction database are still needed,

particularly with respect to reaction reversibility which affects

constraint-based model predictions [43]. In this work, we used

reaction reversibility based on KEGG (see [32] for details), and

found that removing strategies involving incorrect reaction

directionality was more time consuming than obtaining strategies

with the strain design approach itself. This issue could possibly be

resolved by using a large collection of genome-scale metabolic

models, which may have better curation of reaction directionality

than universal databases. In addition, these models usually come

with gene to protein to reaction (GPR) associations which can be

used to eliminate reactions without associated genes or make the

addition of reactions from a related organism preferable. In order

to achieve this, common nomenclature for metabolites and

reactions across models would be needed as aligning models from

multiple sources is a current challenge [44,45].

We further expanded the application of the solution techniques

to BiMOMA, the first mixed-integer programming approach that

uses MOMA [13] as an underlying assumption for the inner

problem. Previously, OptGene [17] solved this bi-level problem

using genetic algorithms, but its application to a large scale search

is currently limited by the convergence of the algorithms used. Our

solution techniques allowed for fast identification of metabolic

engineering strategies involving a large number of gene knockouts

for improving the production of different biochemicals. A number

of previous studies successfully engineered microbial strains using

Table 4. Top gene deletion strategies identified by BiMOMA (k,5) or BiMOMA+Local Search (k.5) for pyruvate production under
glucose aerobic condition.

k Identified Genes Changesa Yieldb (%)

1 aceE 6.59

2 lpd gnd 3 11.78

3 lpd gnd brnQ 1 15.69

4 lpd gnd brnQ poxB 1 19.16

5 lpd gnd gdhA poxB ppc 3 22.39

6 lpd gnd brnQ poxB pps mdh 5 25.87

7 lpd gnd brnQ poxB gdhA lysP pgi 5 31.86

8 lpd gnd brnQ poxB gdhA ppc pgi purT 3 37.21

9 lpd gnd brnQ poxB gdhA pps mdh pfkA pfkB 7 38.46

10 lpd gnd brnQ poxB gdhA pps mdh pfkA pfkB mqo 1 41.03

a‘Changes’ refer to the number of genes which are newly introduced in the solution with k deletions or removed from the solution with k–1 deletions.
bYield is reported as % of the TMP (2 mol pyruvate produced/mol glucose consumed) for wildtype strain with a maximum glucose uptake rate of 10 mmol gDW21 h21

and a maximum oxygen uptake rate of 18.5 mmol gDW21 h21.
doi:10.1371/journal.pone.0024162.t004

Table 5. Top gene deletion strategies identified by BiMOMA (k,5) or BiMOMA+Local Search (k.5) for glutamate production
under glucose aerobic condition.

k Identified Genes Changesa Yieldb (%)

1 sucA 3.01

2 sucA kgtP 1 5.41

3 sdhC kgtP dcuC 3 7.90

4 sdhC kgtP dcuC gadC 1 16.74

5 sdhC kgtP dcuC gadC gnd 1 28.29

6 sdhC kgtP dcuC gadC gnd pntB 1 31.16

7 sdhC kgtP dcuC gadC gnd brnQ ptsH 3 35.54

8 sdhC kgtP dcuC gadC gnd brnQ ptsH citF 1 38.56

9 sdhC kgtP dcuC gadC gnd brnQ ptsH tpiA fabH 3 39.65

10 sdhC kgtP dcuC gadC gnd brnQ ptsH citF pta eutD 5 43.70

a‘Changes’ refer to the number of genes which are newly introduced in the solution with k deletions or removed from the solution with k–1 deletions.
bYield is reported as % of the TMP (1.15 mol glutamate produced/mol glucose consumed) for wildtype strain with a maximum glucose uptake rate of 10 mmol

gDW21 h21 and a maximum oxygen uptake rate of 18.5 mmol gDW21 h21.
doi:10.1371/journal.pone.0024162.t005
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the MOMA assumption [15,16,18], but they employed a

sequential search or considered only a small number of

modifications. A sequential search may identify an optimal

strategy involving a few modifications, but it is more likely to

converge to sub-optimal strategies as the number of modifications

increases (Figure 7). One may argue that a large number of genetic

modifications would not be necessary and a few key modifications

would be sufficient. However, a lot of metabolic engineering

successes required a large number of perturbations involving gene

deletion, gene overexpression, or gene addition [15,46,47]. As new

computational strain design approaches are rapidly being

developed to account for these different types of perturbations

[13,14,21,22,24,25,36,48,49], the solution techniques used in this

study would benefit approaches that use a bi-level architecture to

enumerate mutants with desired phenotypes.

In summary, we developed two new bi-level strain design

approaches using mixed-integer programming. The developed

approaches could be useful particularly for identifying novel

metabolic engineering strategies to improve production of non-

native secondary metabolites. We also presented mixed-integer

programming solution techniques based on concepts from duality

to effectively identify genetic perturbation strategies, within a

reasonable amount of time even for a large number of

perturbations. The MIP techniques were successfully applied to

existing strain design approaches as well as new approaches

developed in this study. They will likely improve the efficiency of

other bi-level problems as well, including model identification,

synthetic lethal identification, and objective function prediction

[41,42,50,51]. We believe these approaches and techniques will

contribute to the field of metabolic engineering by accelerating the

strain design process.
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Figure S1 Analysis of dual variables for reaction
removals using dual LP of FBA in different media
conditions. Results from sampling of dual variable values are

shown for (A) glucose aerobic, (B) glucose anaerobic, (C) xylose

aerobic, and (D) xylose anaerobic conditions. The top plots show

for each reaction the average of positive dual variable values

(downward triangle) and negative dual variable values (upward

triangle) observed over different samples, and their respective

standard deviations (error bars). The averages and standard

deviations were calculated for positive and negative values

separately, and zero values were excluded from these statistical

calculations. The bottom plots show the maximum (downward

triangle) and minimum (upward triangle) of observed dual variable

values for each reaction across the 1,000,000 samples of 10 gene

knockouts in each condition.
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Figure S2 Analysis of dual variables for reaction
removals using dual QP of MOMA in different media
conditions. Results from sampling of dual variable values are

shown for (A) glucose aerobic, (B) glucose anaerobic, (C) xylose

aerobic, and (D) xylose anaerobic conditions. The top plots show

for each reaction the average of positive dual variable values

(downward triangle) and negative dual variable values (upward

triangle) observed over different samples, and their respective

standard deviations (error bars). The averages and standard

deviations were calculated for positive and negative values
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triangle) and minimum (upward triangle) of observed dual variable

values for each reaction across the 1,000,000 samples of 10 gene

knockouts in each condition.
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Figure S3 Sensitivity analysis of the bounds on dual
variables. Optimal solutions were collected with no bounds or

different values of bounds on dual variables for (A) acetate

production using OptORF and (B) pyruvate production using

BiMOMA, respectively.

(PDF)

Table S1 List of reaction changes to the universal
database. This table includes the list of reactions removed in

this study from the original universal database (reported in [21]).

(XLSX)

Text S1 Detailed formulations of the bi-level strain
design approaches used in this study. Complete formula-

tions of single-level transformed bi-level strain design approaches

are included for (A) OptORF without regulatory considerations,

(B) SimOptStrain, and (C) BiMOMA.

(PDF)

Dataset S1 iJR904 model in SBML format. The file

contains details for the iJR904 model in SBML format. Most of

the compound abbreviations used in this file differ from those in

the original iJR904 publication [33] and instead match those

abbreviations used in the universal database (Dataset S2). There

are more compounds and reactions in this SBML file than

originally published [33], since some compounds in iJR904 were

matched to more than one compound in the universal database.

(XML)

Dataset S2 Universal database in SBML format. The file

contains details for the universal database used in the SimOpt-

Strain simulations. This database was modified slightly from the

original published database (reported in [21]) by specifying

reaction directionality and excluding those reactions listed in

Table S1 (see Materials and Methods for details).

(XML)
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