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Abstract

Background: Given the usefulness of rats as an experimental system, an efficient method for generating rat induced
pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease.
Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by
retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2,
Klf4, c-Myc, and Nanog) genes.

Methodology and Principal Findings: iPS cells were generated from both NP and REF using only three (Oct3/4, Sox2, and
Klf4) genes without c-Myc. Two factors were found to be critical for efficient derivation and maintenance of rat iPS cells: the use
of rat instead of mouse feeders, and the use of small molecules specifically inhibiting mitogen-activated protein kinase and
glycogen synthase kinase 3 pathways. In contrast, introduction of embryonic stem cell (ESC) extracts induced partial
reprogramming, but failed to generate iPS cells. However, when combined with retroviral transduction, this method generated
iPS cells with significantly higher efficiency. Morphology, gene expression, and epigenetic status confirmed that these rat iPS
cells exhibited ESC-like properties, including the ability to differentiate into all three germ layers both in vitro and in teratomas.
In particular, we found that these rat iPS cells could differentiate to midbrain-like dopamine neurons with a high efficiency.

Conclusions/Significance: Given the usefulness of rats as an experimental system, our optimized method would be useful
for generating rat iPS cells from diverse tissues and provide researchers with a powerful tool for studying human physiology
and disease.
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Introduction

The cloning of Dolly the Sheep over a decade ago demonstrated

that adult somatic cells could reprogrammed back to a state of

pluripotency [1]. In 2006, Yamanaka and his colleagues showed

that retroviral transduction of four transcription factors (Oct4,

Sox2, Klf4 and c-Myc) could also induce pluripotency in

mammalian (mouse) cells [2]. Subsequent studies demonstrated

that human induced pluripotent stem (hiPS) cells could be

generated using the same or slightly different sets of reprogram-

ming factors, offering the possibility to generate disease- or patient-

specific stem cells [3,4,5,6,7,8,9,10].

The rat animal model is one of most valuable models for the

study of numerous human diseases as well as for therapeutics

development. For instance, 6-OHDA lesioned rats is one of most

popular animal model for Parkinson’s disease (PD) [11,12,13].

Notably, however, its biological and biomedical study is limited

because the generation of transgenic rats by targeted gene

manipulation is not yet established. Recently, three groups

reported the establishments of chimera- and/or germline-compe-

tent ESCs from rat blastocysts [14,15,16], strongly suggesting that

it will be possible to generate transgenic rats by targeted gene

manipulation in the near future. In addition, two groups recently

reported generation of iPS cells from rat liver progenitor cells [17]

or primary ear fibroblasts and bone marrow cells [18].

In this study, we sought to establish an efficient procedure to

generate iPS cells from two different rat tissues, neural precursors

(NPs) and rat embryonic fibroblast (REF), by introducing total
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extracts from ESCs and/or retroviral transduction of defined

transcription factors. We found that introduction of ESC-extracts

into rat NP cells failed to generate iPS cells inducing only partial

reprogramming. However, rat iPS cells were successfully generated

from both NPs and REF by retroviral transduction of reprogram-

ming factors with or without c-Myc, and the efficiency was

significantly improved when these two methods were combined.

Notably, we established an optimal procedure to generate and

maintain rat iPS cells by culturing the cells on REF instead of mouse

embryonic fibroblast (MEF) as the feeder in the presence of mitogen-

activated protein kinase kinase (MEK) and glycogen synthase kinase

3 (GSK3b) inhibitors (PD0325901 and CHIR99021, respectively).

Rat iPS cells derived from our optimized procedure exhibited ESC-

like properties by morphological, gene expression, epigenetic status,

proliferation, and differentiation criteria. In particular, we show that

these rat iPS cells can efficiently differentiate to multiple neuronal

lineages including midbrain-like dopaminergic neurons which will

serve as invaluable platform for bioassay and cell transplantation

studies of PD.

Materials and Methods

Cell Culture
We employed neural precursor (NP) cell culture from micro-

dissected cortices from rat embryonic day 14 (day of concep-

tion = day 0). Time-pregnant Sprague-Dawley (SD) rats were

purchased from Charles River Laboratories. INC. (Wilmington,

MA). All animal procedures were performed in accordance with

National Institute of Health guidelines and were approved by the

Animal Care and Use Committee (IACUC) at McLean Hospital,

Harvard Medical School.

Embryonic cortices were dissected from rat embryos and

mechanically dissociated in Ca2+/Mg2+-free Hank’s balanced salt

solution (CMF-HBSS). Cells were plated at 8000 cells/cm2 on

10 cm tissue culture dishes pre-coated with poly-L-ornithine

(PLO; 15 mg/ml) at 37uC two hours followed by fibronectin

(FN; 1 mg/ml) overnight. NPs were allowed to proliferate in the

presence of 20 ng/ml basic fibroblast growth factor (bFGF; R&D

Systems, Minneapolis, MN) in serum-free medium (N2) for 4–6

days [19,20]. For rat embryonic fibroblast (REF) isolation, uteri

isolated from 14-day-pregnant SD rats were washed with

phosphate-buffered saline (PBS). The head and visceral tissues

were removed from isolated embryos. The remaining bodies were

washed in fresh PBS, transferred into a 0.1 mM trypsin/1 mM

EDTA solution, and incubated for 20 min. After incubation, REF

culture medium (DMEM containing 15% defined FBS) was added

and cells were dissociated by pipetting. We used REFs at passage

two for reprogramming experiments and for feeders. For mouse

embryonic fibroblast (MEF) cells, 13-day-pregnant CD1 mice

were used under the same isolation and culture methods.

Induced pluripotent stem (iPS) cells were generated and

maintained in ES medium, Dulbecco’s modified Minimal Essential

Medium (DMEM, Invitrogen, Carlsbad, CA), supplemented with

2mM L-glutamine (Invitrogen, Carlsbad, CA). 1mM b-mercapto-

ethanol, 1x non-essential amino acids (NEAA; Invitrogen,

Carlsbad, CA), 15% fetal bovine serum (FBS, Sigma-Aldrich, St.

Louis, MO), 100 U/ml penicillin, 100 mg/ml streptomycin

(Invitrogen) and 2000 U/ml leukemia inhibitory factor (LIF;

Chemicon, Termecula, CA) supplemented with signal inhibitors,

CHIR99021 (3 mM; Axon Medchem, Groningen, Netherland)

and PD0325901 (0.5 mM; Axon Medchem). IPS cells were

maintained on feeder layers of mitomycin C (10 mg/ml media,

Sigma-Aldrich)-treated REF cells. For picking and passaging,

rat iPS cells were washed once with ES medium and then

mechanically picked (until passage 10) or incubated with 1 mg/ml

collagenase type IV (Stem cell Technology, INC., Vancouver,

Canada) for 10 min. An appropriate volume of the medium was

added, and the contents were transferred to a new dish on REF

feeder cells. The split ratio was 1:1 (until passage 5) and after

routinely 1:3. For feeder-free culture of iPS cells, the plate was

coated with gelatin (Stem cell Technology, INC.).

Making cell extracts and streptolysin O (SLO)-mediated
permeabilization and cell extract treatment

Mouse ESCs (J1) were propagated in vitro using feeder-free

conditions without signal inhibitor supplementation. ESC-extracts

were prepared when cultures reached 70–80% confluence. To

prepare ESC-extracts, cells were washed with PBS once followed

by one wash with cell lysis buffer (100 mM HEPES, pH 8.2,

50 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol, and protease

inhibitors), followed by sedimentation at 400 g, suspension in 1

volume of cold cell lysis buffer, and incubated for 30–45 min on

ice. Cells were sonicated. The supernatant was aliquoted, frozen

and stored at 280uC. Lysate from 10 million J1-ESCs was used to

generate 100 ml of extract. Control NP or pluripotent factors

infected NP cells were washed in cold PBS and in cold CMF-

HBSS. Cells were suspended in aliquots of 100,000 cells/100 ml of

HBSS, and centrifuged at 2,500 g for 5 min at 4uC. Sedimented

cells were suspended in HBSS, and streptolysin-O (SLO; Sigma)

was added to a final concentration of 400 ng/ml. Permeabilization

was assessed by monitoring uptake of FITC-labeled F(ab’)2-

antibodies from a separate sample 24 h after resealing and

replating the cells. After permeabilization, cells were suspended at

1000 cells/ml in 100 ml of ESCs extract containing an ATP-

regenerating system (1 mM ATP, 10 mM creatine phosphate, and

25 mg/ml creatine kinase), 100 mM GTP (Sigma-Aldrich), and

1 mM each nucleotide triphosphate (NTP). The tube containing

cells was incubated horizontally for 1 h at 37uC in a CO2-

incubator with occasional agitation. After dissociation, cells were

plated into gelatin-coated plates for clone formation with N2/ES

media (1:1 volume mixture) containing bFGF (1 ng/ml). To reseal

plasma membranes, we add 2 mM CaCl2 to the culture media.

Retroviral infection
The cDNA encoding hOct4, hSox2, hKlf4, hNanog and hc-

Myc (Open Biosystems) were subcloned into the pCL retroviral

expression vector [21]. The nucleotide sequences for the cloned

genes were confirmed by sequence analysis. Each recombinant

plasmid was introduced into the 293gpg retrovirus packaging cell

line [21] by transient transfection, followed by harvesting.

For viral transduction, NP or REFs cultured in vitro were

incubated with the viral supernatant containing polybrene

(hexadimethrine bromide; 1 mg/ml; Sigma) overnight. After

infection, cells were incubated six more days in ES culture media.

At day six of infection, cells were replated on REF-feeder plate

with or without ESC-extracts treatment.

RT-PCR analysis for marker genes
Total RNA was purified with Trizol reagent (Invitrogen), five

micrograms of total RNA were used for reverse transcription reaction

with SuperScript II (Invitrogen) and oligo-dT primer, according to

the manufacturer’s instructions. PCR reaction conditions were

optimized to determine the linear amplification range. Amplification

products were identified by size. Primer sequences were: glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH)

(59-TGACATCAAGAAGGTGGTGAAGC-39, 59-CCCTGT-

TGCTGTAGCCGTATTG-39); endogenous rat specific Oct4

Reprogramming of Rat NP & REF
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(59-CCGAGGGCCAGGCAGGAGCACGAG-39, 59-CCCTGG-

GAAAGGTTTCCCGCG-39); endogenous rat specific Nanog (59-

AGGGTCTGCTACTGAGATGCTCTG-39, 59-AGGTCTGA-

CTGCCCCATACTGG-39); transgenic Oct4 (59-GAAGGAT-

GTGGTCCGAGTGT-39, 59-CATCTGTTCTTGGCCCTGA-

G-39); transgenic Klf4 (59-CCCACACAGGTGAGAAACCT-39,

59-CATCTGTTCTTGGCCCTGAG-39); transgenic Sox2 (59-

TACCTCTTCCTCCCACTCCA-39, 59-CATCTGTTCTTGG-

CCCTGAG-39); embryonic cell-activated transcpript 1 (Ecat1)

(59-AGGTCAACGAGGCTGCCA-39, 59-GGGTCTCCCACT-

CAAAAACC-39); embryonic cell-specific gene 1 (ESG1) (59-

TCCAGAAGTATTCCAGGTCCA-39, 59-CTCCAGGGTCT-

TCATGGATT-39); reduced expression 1 (REX1) (59-AGGA-

TGGCCGGAAGGAGAA-39, 59-TGCCCGTCCACATTGTC-

TT-39); fibroblast growth factor 4 (FGF4) (59-CAGCGGGG-

CAGGGGACTA-39, 59-CTTGGTCCGCCCGTTCTTAC-39);

forkhead box A2 (FOXA2) (59-GCAAGCAAGGAAGCCTA-

TCTT-39, 59-GGTGCAGCACTGATCTACAA-39); Brachyury

(59-AGTACGAACCTCGGATTCAC-39, 59-CTGAGACTTG-

TAGACAACTGG-39); and bIII-tubulin (Tuj1) (59-TGGAC-

AGTGTTCGGTCTGG-39, 59-CCTCCGTATAGTGCCCTT-

TGG-39).

Alkaline phosphatase staining and
immunocytochemistry

Alkaline phosphatase (AP) staining was performed using the

Alkaline phosphatase staining kit II (Vector Vector Laboratories,

Burlingame, CA).

For immunocytochemistry, cells were fixed with 4% parafor-

maldehyde for 20 min at room temperature. After washing with

PBS, cells were treated with PBS containing 10% normal goat

serum and 0.1% Triton X-100 for 35 min at room temperature.

Primary antibodies included SSEA1 (monoclonal, 1:100, Devel-

opmental Studies Hybridoma Bank, Iowa, IA), Nanog (polyclonal,

1:300, Abcam, Cambridge, MA), Rex1 (polyclonal, 1:200,

Abcam), smooth muscle actin (SMA; monoclonal, 1:400, Dako,

Glostrop, Denmark), anti-bIII tubulin (Tuj1; monoclonal, 1:500,

Covance, Richmond, CA), GFAP (polyclonal, 1:500, DAKO),

Sox17 (monoclonal, 1:200, SantaCruz Biotech.), tyrosine hydrox-

ylase (TH; rabbit or sheep polyclonal,1:1,000, Pel-Freez, Rogers,

AR), serotonin (5-HT; polyclonal,1:2000, Sigma), GABA (poly-

clonal, 1:700, Sigma), choline acetyl transferase (ChAT; polyclon-

al, 1:700, Sigma), nestin (monoclonal, 1:1,000, BD Sciences,

Franklin Lakes, NJ), Ki67 (monoclonal, 1:500, Novocastra

laboratories Ltd., United Kingdom), Ptx3 (polyclonal, 1:200,

Zymed), Engrailed-1 (En-1; monoclonal, 1:100, Developmental

Studies Hybridoma Bank), collagen type I (monoclonal, 1:100,

Developmental Studies Hybridoma Bank), Fibronectin (monoclo-

nal, 1:5, Developmental Studies Hybridoma Bank). For detection

of primary antibodies, fluorescence-labeled (Alexa fluor 488 or

568; Molecular Probes, Eugene, OR) secondary antibodies were

used according to the specifications of the manufacturer. Cells

were mounted in Vectashield containing 49,6-diamidino-2-pheny-

lindole (DAPI; Vector Lab.) and analyzed under a fluorescent

microscope.

In vitro differentiation of iPS cells
Cells were harvested by trypsinization and transferred to

bacterial culture dishes in ES medium without LIF. Total RNA

derived from EB on day 4 was used for RT-PCR analysis. After 5

days, aggregated cells were plated onto tissue culture dishes and

incubated for another 8,10 days with serum-free ITSFn medium

[22]. These differentiated cells were stained with antibodies

specific for the three germ layers. For neural induction, the 5-

staged method [22] was used with simple modifications. Briefly,

iPS cells were dissociated and EBs were allowed to form for five

days after plating of iPS cells in bacterial dishes in ES medium

without LIF (EB media; stage 2). EBs were attached to tissue

culture dishes and neural precursor were then selected for by

incubation in serum-free ITSFn medium (DMEM/F12 media

containing apotransferrin (50 mg/ml), insulin (5 mg/ml), sodium

selenite (30 nM), fibronectin (250 ng/ml), 100 U/ml penicillin,

100 mg/ml streptomycin ) for 4–6 days (stage 3). Cells were

subsequently dissociated by trypsin (0.05%) and neuronal

precursors expanded and patterned for four days after plating

onto PLO/FN-coated plates at a density of 50,000 cells/cm2 in

DMEM/F-12 media with apotransferrin (100 mg/ml), insulin

(5 mg/ml), sodium selenite (30 nM), progesterone (20 nM),

putrescine (100 nM), 100 U/ml penicillin, 100 mg/ml streptomy-

cin, 1 mg/ml laminin (N3 media) with bFGF (20 ng/ml), at day 3,

Shh (500 ng/ml) and FGF8 (100 ng/ml ; all from R & D Systems)

were added (stage 4). The cells were subsequently differentiated in

N3 media with ascorbic acid (AA; 200 mM) for 7 days (stage 5).

Teratoma formation
Rat NP-iPS cells (#2 and #4) and RES-iPS cells (#3 and #4)

were suspended in DMEM containing 10% FBS. Nude mice were

anesthetized and the cell suspension was injected subcutaneously

into the kidney capsule. Four to six weeks after the injection,

tumors were surgically dissected from the mice. Samples were

weighed, fixed in PBS containing 4% formaldehyde, and

embedded in paraffin. Sections were stained with hematoxylin

and eosin.

Bisulfite genomic sequencing
Genomic DNA from cells was performed with the DNeasy

Tissue Kit (Qiagen, Valencia, CA). Bisulfite treatment was done

using the EpiTect Kit (Qiagen) following the manufacturer’s

instruction. Bisulfite treated DNA was amplified using primers

designed for methylation PCRs (http://www.urogene.org//

methprimer/index.html): the forward primer 59-AGT TTT

GAG GTG TTT AGG GAT TTA T-39 and reverse primer 59-

CCC CAC CAA ATA AAA ATA AAA AAA-39 for Oct4, and the

forward primer 59-GGG TTT GGT AGG AGG GAT TAA T-39

and reverse primer 59-TCA ACC TAT CTA AAA ACC AAC

AAC TC-39 for Nanog. For more products, semi-nested PCR was

performed using the forward primer 59-GAA AAT GAA GGT

TTA TTT GGT TGT-39 for Oct4 and 59-TTT GGT AGG AGG

GAT TAA TTG TG-39 for Nanog, respectively and in reverse as

above. The resulting amplified PCR products were gel-purified,

subcloned into the T vector (Promega, Madison, WI) and

sequenced.

Karyotyping analysis
Standard G-band chromosome analysis was performed by Cell

Line Genetics (Madison, WI).

Results and Discussion

Introduction of ESC-extracts into rat NPs resulted in
partial reprogramming but failed to generate iPS cells

Based on previous studies showing that fusion of ESCs with

somatic cells induce nuclear reprogramming [23,24,25], we

hypothesized that introduction of ESC total proteins into rat

somatic cells may reprogram them to a pluripotency. To address

this, we attempted to generate rat iPS cells by introducing total

ESC-extracts into permeabilized rat NP cells. Toward this goal,

we dissected NPs from E14 rat cortices and expanded them in the

Reprogramming of Rat NP & REF
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presence of basic-fibroblast growth factor (bFGF). The great

majority of these expanded NP cells (.98%) were positive for

nestin and the active mitotic marker Ki67 (Figure S1). 56104 NP

cells were treated with mouse ESC-extracts following streptolysin

O-mediated permeabilization. Fifteen days following ESC extract

treatment, approximately 10 colonies appeared, while no colonies

were observed in the absence of treatment or when treated with

293T cell extracts. These colonies were flat, adherent and non-

granulated (Figure S2a). When they were picked up and replated

onto mitomycin C-treated mouse embryonic fibroblast (MEF)

feeders, they did not exhibit large nucleoli and appeared different

from typical dense ESC-like morphology. Approximately 20% of

these clones expressed Nanog, but none of them expressed other

pluripotent markers such as Oct4 or were positive for alkaline

phosphatase (AP) (Figure S2b; data not shown). Following

maintenance under neural culture condition and in vitro

differentiation, these clones could generate neurons and astrocytes

(Figure S2c). In contrast, NP cells that were maintained without

ESC extract treatment mostly differentiated into astrocytes (Figure

S2c, d). Together, our results show that introduction of ESC-

extracts into permeabilized NP cells induced partial reprogram-

ming but failed to generate iPS cells.

Generation of ESC-like iPS cells from rat NPs and
fibroblasts

Next, we tested if retroviral transduction of the five (Oct4, Sox2,

Klf4, c-Myc, and Nanog: OSKMN) and/or four factors (OSKM)

could reprogram rat NPs and fibroblasts to generate iPS cells.

Monitoring infection efficiency with the GFP-expressing pCL-

retroviral vector, revealed that the majority of rat NPs (.95%)

could be transduced (data not shown). The time schedule for rat iPS

cell induction is summarized in Figure 1a. First, we examined the

formation of colonies after retroviral transduction to express the five

or four factors. Six days post retroviral transduction NPs were

Figure 1. Generation of iPS cells from rat neural precursor cells (rNP) and embryonic fibroblast cells (REF). (a) Schematic time schedule
of rat-iPS generation. (b) Clone formation after pluripotent factors induction with or without ESC-extract treatment. Shown are alkaline phosphatase
(AP)-positive clone numbers (black columns) from the total numbers of colony (white columns) at 20 days after transduction. (Each column from
n = 14 of 6 independent experiments, error bars indicate S.E.; *OSKMN: Oct4, Sox2, Klf4, c-Myc, Nanog) (c) Colonies with ESC morphology could be
maintained in the presence of MEK inhibitor, PD0325901 (0.5 mM) and GSK3b inhibitor, CHIR99021 (3 mM) (right). Colonies under conventional ES
culture condition lost AP-positive character and kept differentiating (left). (d) Rat embryonic fibroblast (REF)-derived feeders are necessary for
maintaining ESC-like character. After several passages, ESC-like colonies lost AP activity on mouse embryonic fibroblast (MEF)-derived feeders
combined with 2 inhibitors, PD0325901 and CHIR99021. (e) Phase-contrast micrograph of rat embryonic NP and fibroblast (far left). Isolation of rNP-
iPS and REF-iPS cells based on morphology, pictures on the right show rNP-iPS #2 clone and REF-iPS #3 formation, respectively. P0 image shows the
representative clone formed at 20 days after infection (P0: passage 0) and image P1 was taken at 7 days after picking (passage 1). Examples of
homogeneous colonies from images on the left at passage number 10 (P10) and on the right at passage number 20 (P20).
doi:10.1371/journal.pone.0009838.g001
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replated on mitomycin C-treated feeder cells. For control, the same

titer of pCL empty virus or GFP-expressing virus was used for

transduction. Colonies started to appear from five and four factor-

transduced NPs at day 13 to 16 post-infection, but not from empty

vector-or GFP vector-transduced cells. These colonies were highly

proliferative and adopted a morphology distinct from those formed

by ESC extract treatment (Fig. 1c). Some of these clones exhibited

granulation and AP activity. We first tested if rat NP-derived ESC-

like colony formation is influenced by feeder variants, i.e., MEF vs.

rat embryonic fibroblast (REF) feeders. Interestingly, we found that

AP-positive colonies were generated with significantly higher

efficiency on REF than on MEF. For instance, 51 AP-positive

colonies (out of total 93 colonies) were formed from 56104 NPs by

treatment with 5 factors on REF, while 36 AP+ colonies (out of total

53 colonies) were formed on MEF feeder (Figure S3). In the case of 4

factors (OSKM) transfection, 43 AP-positive colonies (out of 67 total

colonies) and 20 AP-positive (out of 34 total colonies) were formed

on REF and MEF, respectively. Approximately 20% of these AP-

positive colonies exhibited ESC-like morphology and approximate-

ly 40% of AP-positive clones were SSEA1 positive (Figure S4B; data

not shown).

We next tested whether retroviral transduction of 3 factors

(Oct4, Sox2, and Klf4: OSK) without c-Myc can also generate

ESC-like colonies. Although the efficiency was lower than 5 and 4

factors transduction, AP-positive ESC-like colonies could be

generated by 3 factors without c-Myc (Figure S3). Again, REF

was significantly better than MEF for generation of reprogrammed

colonies by 3 factors. Furthermore, we could generate ESC-like

colonies by 5, 4, and 3 factor transduction from REF cells as the

starting cells (Figure S4). Interestingly, similar to generation of

ESC-like colonies from NP cells, REF was significantly better than

MEF as feeder for generation of ESC-like colonies from REF (data

not shown). Thus, in this case, rat embryonic fibroblasts were used

as both starting cells and feeders for reprogramming.

Notably, these NP or REF-derived ESC-like colonies lost ESC-

like morphology and AP activity when maintained under

conventional murine ESC culture condition (Fig. 1c, left). Based

on recent studies showing that inhibition of differentiation

inducing signals is essential for derivation and establishment of

rat ESCs [14,15], we speculated that the same treatment may be

necessary for rat iPS cell maintenance. Indeed, we found that

treatment with MEK inhibitor (PD0325901; 0.5 mM) and GSK3b
inhibitor (CHIR99021; 3 mM) significantly improved the mainte-

nance of both NP- and REF-derived ESC-like cells for their

morphology and AP activity (Fig. 1c, right). Notably, even in the

presence of these two inhibitors, these NP or REF-derived ESC-

like cells subsequently differentiated and lost their ESC-like

morphology on MEF feeders (Fig. 1d), again emphasizing the

importance of REF as feeder cells.

Using our established procedure, we further tested if combina-

tion of retroviral transduction and ESC extract treatment can

improve the efficiency of reprogramming. Toward this end, NPs

were permeabilized and treated with ESC-extracts six days post

retroviral transduction (Fig. 1a). Interestingly, the efficiency to

generate AP-positive colonies was significantly higher (Fig. 1b).

When retroviral transduction was combined with ESC-extracts

treatment, the efficiency AP-positive colonies was .0.2%, in the

case of five factor transduction plus ESC extract treatment

(Fig. 1b). Notably, this combined treatment resulted in accordingly

enhanced generation of ES-like morphology clones (.2.5-fold);

while 9 ES-like colonies out of 48 AP+ clones were generated by

retroviral four factor transduction, 24 ES-like colonies out of 102

AP+ clones were formed by combined treatment of retroviral 4

factor transduction and ESC-extract treatment (data not shown).

Putative rat iPS cells exhibit ESC-like properties in
proliferation, gene expression of ESC markers, and
epigenetic status

For further analyses, we selected 11 iPS-like clones derived from

NP (5 by OSKMN, 3 by OSKM, and 3 by OSK) and 9 clones

derived from REF (3 by OSKMN, 2 by OSKM, and 4 by

OSK)(Fig. 1e). These clones formed tightly packed colonies and

exhibited morphology almost identical to that of murine ESCs,

characterized by large nucleoli, scant cytoplasm and round shape

(Fig. 2a). Among these clones, we cultured and propagated 4 NP-

derived clones (rNP-iPS#1-#3 by OSKMN and rNP-iPS#4 by

OSK) and 4 REF-derived clones (REF-iPS#1 by OSKMN, REF-

iPS#2 by OSKM, REF-iPS#3, #4 by OSK) in ESC media

supplemented with 2 inhibitors on REF feeders for more than 25

passages. During this process, ESC-like morphology and growth

characteristics were consistently maintained in all 8 clones. These

ESC-like morphological and proliferative properties have been

maintained for at least 5 months with normal karyotypes (Fig. 2c,

Figure S5). These results strongly suggest that stable rat iPS cell

lines can be generated from rat NPs and REFs by retroviral

transduction of 5 (OSKMN) and 4 (OSKM) factors, as well as 3

(OSK) factors without c-Myc. We next examined these iPS cell

lines’ ESC marker gene expression. Immunocytochemical analyses

showed that all eight clones expressed endogenous ESC-specific

markers such as AP, Nanog, the surface antigen SSEA-1 (Fig. 2b),

and reduced expression 1 (REX1) (Figure S6a and data not

shown). Furthermore, RT-PCR analysis revealed that these

iPS clones expressed all rat endogenous ESC markers tested,

including Oct4, Nanog, embryonic cell-activated transcript 1

(Ecat1), embryonic cell-specific gene 1 (ESG1), REX1, and

fibroblast growth factor 4 (FGF4) (Fig. 2d), further supporting

that these clones show marker gene expression pattern that is

indistinguishable from ESCs. We next tested whether the

exogenous retroviral transgenes are efficiently suppressed in these

iPS cells. As shown in Figure S6b, six rat iPS clones tested by semi-

quantitative PCR analyses using specific primers demonstrated

that exogenous transgenes are undetectable or only marginally

expressed while endogenous genes are robustly induced. These

observations strongly suggest that retroviral-coded genes are

efficiently suppressed in these rat iPS cells.

The above gene expression of ESC markers strongly suggests

that epigenetic reprogramming has occurred in these rNP-iPS and

REF-iPS cells. To address this possibility, we next investigated the

epigenetic status of the Oct4 and Nanog gene promoters in rat iPS

cells (Fig. 2e). In order to investigate the basic stable methylation

pattern in rat somatic cells, we analyzed the methylation status of

both loci by bisulfite sequencing. As shown in Fig. 2e, the

promoter regions of Oct4 and Nanog genes were densely

methylated in REF cells (93%), suggesting that their chromosomes

represent the differentiated stage. Then we further performed

bisulfite sequencing with genomic DNAs extracted from NPs and

rNP-iPS cells. Interestingly, we found that promoter regions of rat

Oct4 and Nanog were much less methylated in NP isolated from

E14 rat cortex (54% and 63%, respectively). In rNP-iPS#2 cells,

both promoter regions of the rat Oct 4 and Nanog genes were

almost completely demethylated (3.6% and 2.5%, respectively).

Rat iPS cells differentiate into all three germ layers both
in vitro and in vivo

To analyze the differentiation potential of these rat iPS cells in

vitro, we used floating culture to induce EBs. After suspension

culture, ball-shaped EB structures were generated from all rat-iPS

clones. We attached these EB-like structures to tissue culture plate

Reprogramming of Rat NP & REF
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and maintained them for 8 to 10 days in ITSFn media [22].

Attached cells showed various types of morphologies, such as those

resembling neural cells, muscle cells, and definitive endodermal

cells (Fig. 3a). RT-PCR analysis confirmed that these differentiated

cells express mRNAs for forkhead box A2 (FOXA2, endoderm

marker), Brachyury (mesoderm marker), and bIII-tubulin (Tuj1,

ectoderm marker) (Figure S7a). In addition, immunocytochemistry

analyses identified cells positive for SRY-box containing gene 17

(SOX17, endoderm marker), a-smooth muscle actin (a-SMA,

mesoderm marker), Desmin (mesoderm marker), glial fibrillary

alkaline phospatase (GFAP, ectoderm marker) and Tuj1 (ectoderm

marker) (Fig. 3a, Figure S7b). Taken together, our gene expression

analyses and immunostaining assays of in vitro differentiated cells

demonstrate that all rNP-iPS and REF-iPS cell lines tested here

are pluripotent and are able to differentiate into all three germ

lineage cells in vitro.

To test in vivo pluripotency, we transplanted two rNP-iPS

clones (#2 and #4) and two REF-iPS clones (#3 and #4) into the

kidney capsule of nude mice. In all four cases, teratoma formation

was observed in the kidney capsule at four to six weeks after

injection (Fig. 3b, Figure S7c). These rat-iPS-derived teratoma

were further analyzed by histological examination and found to

contain all three germ layer tissues including pigment retinal

epithelium (ectoderm), epidermal tissues (ectoderm), neural tube

(ectoderm), cartilage (mesodermal), striated muscle (mesoderm),

adipose tissue (mesoderm), intestinal epithelium (endoderm),

respiratory epithelium (endoderm) and cornea-like epithelial

tissues (endoderm) (Fig. 3b, Figure S7c; data not shown).

Rat iPS cells can efficiently differentiate into
dopaminergic neurons in vitro

We examined the differentiation potential of rNP-iPS and REF-

iPS cells to specialized neural lineage cell types including

dopaminergic neuronal fate, based on the five stage in vitro

differentiation method [22] with minor modification (Fig. 4a). Six

days following withdrawal of the mitogen bFGF (at day 21 in

Fig. 4a), immunocytochemistry analysis demonstrated that these

rat iPS cells could differentiate into all neural lineage phenotypes,

as examined by specific markers for NPs (nestin), neurons (Tuj1),

or astrocytes (GFAP) (Fig. 4b). Various subtype neuronal markers

were detected for dopaminergic (tyrosine hydroxylase; TH),

serotonergic (5HT), GABAergic (GABA) and cholinergic neurons

(choline acetyltransferase; ChAT) (Fig. 4b, c). In particular, we

found that in vitro differentiation of REF-iPS#2 cells in the

presence of sonic hedgehog (SHH), FGF8, and ascorbic acid

resulted in high yields of neurons (81.962.8% of total cells) and

dopaminergic neurons (9.263.7% of neurons) (Fig. 4d). In

addition, we confirmed that other rat iPS clones (e.g., rNP-iPS

#4 and REF-iPS #2 and 3) also showed efficient in vitro

Figure 2. Rat neural precursor cell and fibroblast derived-iPS cells (rNP-iPS and REF-iPS) share ESC characters. (a) Representative high
magnified image of rat iPS cells grown on feeder. (b) Both rNP-iPS and REF-iPS cells exhibited strong alkaline phosphatase (AP) activity and were
homogeneously labeled with antibodies against SSEA1 (green) and Nanog (red). (c) No karyotypic abnormalities were observed in REF-iPS #2. (d) iPS
clones derived from rat neural precursor (rNP-iPS #1,#4) and fibroblast (REF-iPS #1,#4) express ESC markers. RT-PCR analysis of ES marker genes,
Oct4, Nanog, ECAT1, ESG1, FGF4 and REX1. Rat neural precursor cell (rNP) and rat embryonic fibroblast cells (REF) were used as negative control.
GAPDH was used as a loading control. (e) DNA methylation status upstream of Nanog and Oct4 in rat PC12, rat NP, and rNP-iPS clone (#2) using
sodium bisulfite sequencing. The top panel indicates the CpG dinucleotide position of the Nanog and OCT4 promoter regions and the numbers show
positions of CpGs relative to the translation start site. Each PCR product was subcloned and subjected to nucleotide sequencing analysis. Eight
representative sequenced clones are depicted by open (unmethylated) and filled (methylated) circles for each CpG site.
doi:10.1371/journal.pone.0009838.g002
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differentiation to dopaminergic neurons (data not shown).

Furthermore, these TH-positive neurons appear to have midbrain

dopaminergic phenotype because they co-express midbrain-

specific transcription factors, Ptx3 and En-1 (Fig. 4c).

The rat animal model is a critical experimental system for

disease modeling, physiological, pharmacological, and behavioral

studies of human [26]. Availability of germ line competent rat ES

and iPS cells will greatly facilitate and expand the usefulness of the

rat animal model for biomedical and translational research. Here,

we established an efficient procedure to generate rat iPS cells from

primary rat tissues. Our results demonstrate that iPS cells can be

reliably generated without drug selection from primary rat tissues

(both NP and REF) by retroviral transduction of the five (Oct4,

Sox2, Klf4, c-Myc, and Nanog: OSKMN), four (OSKM), or three

(OSK) reprogramming factor genes.

Salient features of this study are as follows. First, our optimized

procedure generated multiple rat iPS clones from both NP and

embryonic fibroblasts with similar efficiencies without genetic

selection suggesting that it may be generally applicable to diverse

rat primary tissues. Second, as shown in recent studies to derive rat

Figure 3. In-vitro and in-vivo differentiation of rat fibroblast derived iPS cells (REF-iPS #2 and #3). (a) Embryoid body (EB) mediated in
vitro differentiation of rat iPS clones. Upper panel show phase contrast images of differentiated cells at 10 days after EB attachment. Definitive
endoderm-like (left), contracting muscle-like (middle) and neuronal-like (right) cells are shown. Immunocytochemical analysis for the three germ layer
differentiation was performed 10 days after EB attachment (Lower images). Sox17 (green, endodemal; left), smooth muscle actin (SMA, red,
mesodermal; middle) and Tuj1 (green, ectodermal; right). Nuclei were stained with DAPI (blue). (b) Hematoxylin and eosin staining of teratoma
derived from rFC-iPS cells (#2 and #3). Cells were transplanted into the kidney capsule of three SCID mice. A tumor developed from one injection
site. Images are from a teratoma containing intestinal epithelium, respiratory epithelium (both endodermal); cartilage, muscle (both mesodermal);
neural tube, epidermis (both ectodermal).
doi:10.1371/journal.pone.0009838.g003
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ESCs [14,15], inhibition of differentiation-inducing signals, MEK

and GSK3b, with chemical inhibitors PD0325901 and

CHIR99021, was critical for stable maintenance of rat iPS clones.

In addition, LIF was also necessary for rat iPS cell maintenance;

rat iPS cells spontaneously differentiated without it even in

the presence of PD0325901 and CHIR99021. Third, we found

that REF cells were significantly superior to MEF for stable

maintenance of rat iPS clones. When maintained on MEF, rat iPS

cells significantly lost their ES-like morphology, even in the

presence of differentiation signal inhibitors, PD0325901 and

CHIR99021, and LIF. In contrast, rat iPS cells could be stably

maintained on REF feeders in the presence of two inhibitors and

LIF. Li et al. (2008) found that rat ESCs could be stably

maintained as adherent cells, without differentiation, when grown

on L cells derived from adult C3H/An mouse connective tissues. It

will be of great interest to know if rat ESCs can be stably

maintained on REFs. Given that both mouse and rat iPS cells are

shown to be stably maintained on feeder cells originated from the

same species, as shown in mouse [2] and rat iPS cells (this study), it

will be interesting to learn whether human iPS cells can also be

maintained on appropriate human feeder cells. Indeed, a recent

study by Yamanaka and his colleagues demonstrated that human

iPS cells can be established and maintained on isogenic parental

feeder layers [27]. Forth, our results demonstrate that multiple rat

iPS cell lines can be generated from both NP and embryonic

fibroblasts by three (OSK) genes without c-Myc although the

efficiency was approximately half of that by the four genes.

Previous work showed that four factor-derived mouse iPS cells can

cause tumor formation in chimeras and progeny mice upon

reactivation of c-Myc [28]. Furthermore, iPS cells derived without

c-Myc did not develop tumors, strongly suggesting that the

presence of c-Myc gene is a serious problem for their biomedical

and clinical application. Thus, our successful generation and

characterization of cMyc-free rat iPS cells may be important for

the future application of rat iPS cells. Fifth, we optimized and

established an in vitro differentiation procedure allowing efficient

in vitro neurogenesis such that the majority of the differentiated

cells become neurons (.80% of total cells) and midbrain-like

dopamine neurons can be produced from these rat iPS cells with

high efficiency (approximately 10% of total neurons).

Based on previous studies showing that somatic cell fusion with

ESCs induced epigenetic reprogramming of somatic chromosomes

[23,25,29], we also tested if it is possible to generate rat iPS

cells by introducing ESC-extracts after streptolysin O-mediated

Figure 4. Rat fibroblast derived-iPS cells (REF-iPS#2 cells) progressively induced into dopaminergic neurons. (a) Scheme of the rat iPS
differentiation method used to induce dopaminergic neurons from rat iPS cells. Bottom pictures (i,v) show representative image of each stage. (b)
The five-stage neuronal differentiation method induced diverse neural differentiation in rat iPS cells. Six days after withdrawal of the mitogen bFGF at
day 21 of the differentiation procedure, expression of nestin (b, left, red), Tuj1 (b, left, green; b, right, red) and GFAP (b, right, green) confirmed the
neural identity of the REF-iPS derived neural differentiation. (c) Diverse subtypic neurons are expressed during rat iPS derived neuronal induction.
Serotonergic (5-HT, red, left), GABAnergic (GABA, red, middle) or cholinergic (ChAT, red, right)/Tuj1 (green)-positive neurons were induced. Images
were taken from REF-iPS#2 derived neuronal cells at day 21. (d) Dopaminergic neuronal differentiation from rat iPS#2-derived neuronal induction at
day 21. Representative images of TH (red)/Tuj1 (green)-positive neurons derived from rat iPS cells (Inset, DAPI nuclear staining of the same field). The
bottom table shows dopaminergic neuronal differentiation efficiency of rat fibroblast derived iPS cells (REF-iPS #2; from nine independent
experiments, mean 6 S.E). Indicated are the percent of neuronal (Tuj1+) cells per total (DAPI) cells or dopaminergic (TH+) cells per neurons (Tuj1+) at
neuronal induction day 21.
doi:10.1371/journal.pone.0009838.g004
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permeabilization. We observed partial reprogramming of rat NP

cells as indicated by colony formation, Nanog expression in some

colonies, and more potent neural differentiation, compared to

non-treated cells (Figure S2). However, we failed to generate iPS

colonies by this method. Compared to the in vivo cell fusion

approach, our in vitro procedure may allow very limited amount

of proteins to be transported inside cells, resulting in only partial

reprogramming. Interestingly, the combination of ESC-extract

treatment and retroviral transduction of reprogramming factors

significantly increased the efficiency of generation of iPS-like

colonies, indicating that at least some reprogramming factors may

be transported into cells in their active forms.

Taken together, our results demonstrate that AP-positive

colonies can be efficiently generated from NP and REF cells

(approximately 0.2%) and approximately 20% of them became

iPS-like colonies with the ESC morphology. Using our optimized

procedure, we established 20 rat iPS clones (11 from NP and 9

from REF) and extensively characterized 4 NP-derived and 4

REF-derived clones in this study. Among them, three iPS clones

(rNP-iPS#4, REF-iPS#3 and #4) were generated without c-Myc.

All eight clones exhibited the molecular and cellular properties of

fully reprogrammed iPS cells such as ESC-like morphology, cell

proliferation, endogenous gene expression patterns, epigenetic

status, in vitro and in vivo pluripotency. These clones were stably

maintained for at least 25 passages with normal karyotype. Thus,

our results strongly suggest that ESC-like iPS cells can be derived

from genetically unmodified rat tissues including NPcells and

fibroblasts. We previously presented some results of this study

[30,31]. While this work was in progress, two groups reported

successful generation of rat iPS clones using significantly different

procedures. Liao et al. (2009) reported derivation of rat iPS cells

from primary ear fibroblasts and bone marrow cells by

introduction of the four factors (OSMK). Notably, these iPS cells

could be generated and maintained without differentiation signal

inhibitors and LIF, which is quite different from our results. One

possible explanation is that these rat iPS cells may have different

cellular properties because they are generated by lentiviral

transduction. Consistent with this possibility, this study reported

that iPS cells could not be generated by retroviral transduction. In

addition, Li et al. (2009) established rat iPS cell lines from a liver

progenitor cell line, WB-F344, by retroviral transduction of the

same four factors. Similar to our results, this study showed that

differentiation signal inhibitors, PD0325901 and CHIR99021, and

LIF are essential for the maintenance of rat iPS cells. Taken

together with these rat iPS cell derivation reports, our results

demonstrate that iPS cells can be efficiently generated and

maintained from genetically unmodified various rat tissues with

different sets of factors. These rat iPS clones will provide useful

research tools to study rat developmental biology and rat-based

models of various human diseases such as 6OHDA-lesioned rat

model of PD.

Supporting Information

Figure S1 Neural precursor (NP) cells isolated from rat E14

cortices are homologous cell populations and are actively mitotic.

NP cells were plated at 10,000 cells/cm2 and expanded 3 days

with bFGF (20 ng/ml) prior to immunocytochemical analyses.

Left, a representative image of cells that are mostly positive for

nestin (NP marker; red). Only a minor fraction of cells (typically

,2%) are positive for TuJ1 (neuronal marker; green). Right,

nestin-positive NP cells (green) were double labeled with the

proliferation marker, Ki67 (red).

Found at: doi:10.1371/journal.pone.0009838.s001 (0.22 MB TIF)

Figure S2 Analysis of clones obtained from cortical NP cells by

treatment with ESC-extracts. (a) Representative morphology of

clones that are obtained at 2 weeks after treatment with ESC-

extracts (right) and untreated NP cells (left). (b) RT-PCR analysis of

mRNAs isolated from clones that are generated by treatment with

ESC extracts and untreated controls. Some of these clones

(approximately 20%) expressed Nanog, but none of them expressed

Oct4. (c,d) Differentiation potential of these partially reprogrammed

clones. NP cells without ESC treatment became almost completely

astrogenic and only differentiated to astrocytes (c, left). In contrast,

most clones obtained from ESC-extracts treated NPs, differentiated

to astrocytes and neurons with comparable efficiencies (c, right).

Differentiated cells were analyzed by immunostaining with anti-

bodies against the neuronal marker, Tuj1 (green) and astrocytic

marker, GFAP (red). Quantitative analyses of the differentiation

potential of clones obtained from treatment with ESC-extracts (d).

Results are presented as the mean 6 SEM of % GFAP+ and TuJ1+
cells in the total cell population. (n = 15 from three independent

experiments, *P,0.001).

Found at: doi:10.1371/journal.pone.0009838.s002 (0.38 MB TIF)

Figure S3 Efficiencies of colony formation by feeder variants.

Rat NP-derived ESC-like colony formation is influenced by feeder

variants, i.e., mouse embryonic fibroblast (MEF) vs. rat embryonic

fibroblast (REF) feeders after treatment with the five, four or three

factors. Twenty-days post retroviral transduction analysis showing

alkaline phosphatase (AP)-positive clones, on MEF (white) and

REF (black) feeder (*P,0.001).

Found at: doi:10.1371/journal.pone.0009838.s003 (0.05 MB TIF)

Figure S4 (a) Efficiencies of colony formation after treatment

with the five, four or three factors from fibroblasts (REF) and

neural precursor cells (NP). Twenty-days post retroviral transduc-

tion analysis showing alkaline phosphatase (AP)-positive clones, in

black and the total numbers of colonies in white. (Each column

from n = 12 (FC) or 14 (NSC) of 6 independent experiments, error

bars indicate S.E.) (b) Efficiencies of AP-positive clones (black bar)

and SSEA1 and AP double positive clones (patterned bar). These

clones are derived from 50,000 NPs by treatment with 4 factors

(O,S,K,M) or 3 factors (O,S,K) at 20 days post transduction.

Found at: doi:10.1371/journal.pone.0009838.s004 (0.06 MB TIF)

Figure S5 Karyotypic analysis of rat neural precursor cells

derived iPS clone #4. No karyotypic abnormalities were observed.

Found at: doi:10.1371/journal.pone.0009838.s005 (0.09 MB TIF)

Figure S6 (a) Representative image of REF-iPS cells exhibited

strong Rex1 (red; middle) activity. (b) Semi-quantitive RT-PCR

analysis of endogenous (endo-) and transgenic (trans-) retroviral

Oct4, Klf4 and Sox2 expressions in rat-iPS clones derived from rat

neural precursor (rNP-iPS #1, 2 and 4) and fibroblast (REF-iPS

#1, 3 and 4). All lines were at passage 10,14. Expression of

endogenous ES marker gene, Rex1, was used as control.

Found at: doi:10.1371/journal.pone.0009838.s006 (0.17 MB TIF)

Figure S7 In-vitro and in-vivo differentiation of rNP-iPS clones

(#1,#4). (a) RT-PCR analysis of embryoid bodies (EBs) for three

germ layer differentiation markers, endoderm (Foxa2), mesoderm

(Brachyury) and ectoderm (bIII-tubulin, Tuj1). (b) Immunocyto-

chemical analysis for differentiation to the three germ layer was

performed 10 days after EB attachment. Sox17 (green, endode-

mal; left), desmine (green, mesodermal; middle), and GFAP (green,

ectodermal; right). Nuclei were stained with DAPI (blue). (c)

Teratoma derived from rNP-iPS cells. Hematoxylin and eosin

staining of teratoma derived from rNP-iPS cells (#2 and #5).

Cells were transplanted into kidney capsule of three SCID mice.

A tumor developed from one injection site. Each image shows
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formed teratoma (up/left), cornea-like epithelium (endodermal;

down/left), adipose tissue (mesodermal; up/middle), muscle tissue

(mesodermal; down/middle), epidermis (ectodermal; up/right)

and pigmented retinal epithelium (ectodermal; down/right).

Found at: doi:10.1371/journal.pone.0009838.s007 (0.64 MB TIF)
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