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Abstract

Background: In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We
report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET).

Results: Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate
the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format.
The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective
genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10
tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we
retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within
known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as
Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then
compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated
datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated
with similar complex or Mendelian disorders.

Discussion: UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to
hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes
genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This
information can be critical in prioritization of candidate genes for sequence analysis.
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Introduction

The completion of the human genome, elucidation of most

protein coding genes, and development of new tools for the

assessment of genomic variation and regulation, have greatly

facilitated our ability to identify specific genes and gene variants

involved in diverse human traits. As information accumulates,

there is substantial promise that advances in biological under-

standing will come through integrative approaches that combine

genomic data acquired from many sources [1,2,3,4]. One of the

largest sources of information is derived from genome-wide gene

expression data made possible through academic and commercial

efforts [5,6].

Integrating whole genome linkage data with whole genome

expression data may help annotate and prioritize genes for

mutation analysis in disease linkage or genome wide association

study intervals [7,8]. Unlike information based approaches for

prioritizing genes in intervals such as peer reviewed literature

and Gene Ontology (e.g. Prospector [9], GeneWanderer [10],

SUSPECTS [11], PosMed [12], GeneSniffer [13], etc.), using

gene expression data may rank all the genes in an interval even

those with little characterization (e.g. novel genes). Current tools

(GeneDistiller [14] and Endeavor [15], ToppGene Suite [16]),

which incorporate whole gene expression data all use the well

annotated but limited discrete datasets like the well known Gene

Expression Atlas dataset from Novartis which includes a genome

wide expression survey of 40 normal tissues [17]. Although the

utility of gene-gene co-expression patterns to aggregate genes of

similar function has been demonstrated [18,19,20,21,22,23],

individual microarray studies frequently suffer from the lack of

statistical power because of the relatively small numbers of samples

observed relative to the number of genes measured [24] or the
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inability and great expense needed to capture all possible

biological states in one experiment. Thus, efforts at establishing

larger aggregates of data for meta-analysis have been pursued. For

instance, a large collection of cancer related microarray studies has

been organized at Oncomine Research [25], which has led to

novel gene discoveries not robustly identified in the individual

datasets [26,27]. Additionally, Genesapiens has pooled the largest

group of consistently well-annotated diverse microarray data in the

public domain. It contains both normal and disease tissue datasets

and can be queried for gene expression or gene-gene co-expression

networks that can be presented in graphical format. Though the

effort to annotate 17,330 human genes across 9,783 different

samples collected from the public domain is powerful, it remains

an incomplete dataset with many tissues, developmental states and

genes not present in the database. Other large gene expression

databases like Genelogic’s gene expression database may be more

robust but are unavailable to the public [28].

In general, the common wisdom within the genomics

community is that annotation information is key to the reuse of

these data [29,30,31]. While experimental annotation provides

additional power in data analysis, we believe that queries using

only small focused annotated datasets may be limiting. Therefore,

in exchange for complete absence of metadata we have created a

robust gene-gene co-expression network which we demonstrate

can outperform more focused, but smaller scale, experiments in

many cases. We constructed this network using filtered and co-

normalized data from Celsius, the largest data warehouse of

Affymetrix microarray data [32]. Celsius has accumulated more

than 150,000 co-normalized microarrays across the various

Affymetrix array designs, so is among the most powerful resources

for expression analysis. As an example of the scale, as of August

2008 more than 12,000 U133_2.0 arrays were available, which is

approximately four times larger than Genesapiens.

Here we describe the creation of a generic, web accessible tool

that we call UGET (UCLA Gene Expression Tool; http://

genome.ucla.edu/projects/UGET) that taps directly into the vast

amount of data within Celsius. In brief, we measure the

correlation of all genes with all genes within a given array

platform and provide a rapid search tool to retrieve signals of

interest. Three general examples of the use of this tool are

presented. First, UGET is used to identify a series of genes with

cartilage-selective expression, which are excellent candidates for

skeletal dysplasia mutation bearing genes extending previous work

[33]. This same approach can be implemented to identify gene

lists relevant to other disease/traits/tissue functions. Second, we

apply the large-scale human gene-gene correlation analysis to a

retrospective analysis of prioritization of individual genes for

mutation analysis within various linkage regions in five different

disease models: muscular dystrophy, microcephaly, Joubert

Syndrome, skeletal dysplasia, and neuropsychiatric disorders. We

compare these results to results obtained by other tools which also

use whole genome gene expression to prioritize genes. While we

demonstrate the successful use of the tool for humans, we note

that the tool includes data for 14 species on 41 different array

platforms.

Results

Our aim was to create a tool that permits scientists to explore

the data available within Celsius and demonstrate the utility of

these data in human disease gene identification as a general proxy

of the information within the dataset. To do this we created data

matrices of gene-gene correlations and demonstrate two methods

to simply mine the matrix of correlation coefficients. For these

demonstrations we use the Affymetrix HG-U133_Plus_2 array

design. We use in these analyses probeset ? gene symbol

mappings available from NetAffx [34] and probeset ? genome

alignments available from the UCSC Genome Browser [35] and

exclude all other information about the microarray experiments

that were performed. In the prediction of gene function we utilized

human-reviewed Gene Ontology (GO) Biological Process (BP)

codes, as available from Bioconductor [36,37]. In all cases,

metadata about the biological samples, sample treatments, and

other conditions of the original experiments were omitted from

our analyses in order to demonstrate the power of the approach in

the absence of annotation data.

The first step of the array processing demands some level of

removal of poorly performing arrays, as systematic high and low

signals that are highly correlated would dominate the results. As an

example of this filtering process, from 12,826 arrays available

within Celsius and performed on the HG-U133_Plus_2 arrays 711

arrays were removed as having signal that was 3 standard

deviations below the mean of the whole group and 15 were

removed for having signal 3 standard deviations above the mean

of the whole group. In addition, 464 arrays were removed as the

correlations between 62 probesets, which are intended to be

measuring the same doped-in transcript, had high variability

(Figure 1). Thus, 11,636 arrays remained for analyses, which were

processed for probeset intensities using RMA [38] as implemented

within Celsius as previously described [32]. From these 11,636

arrays we calculated the Pearson correlation coefficient for every

pair of 54,675 probesets yielding a 54,675654,675 correlation

matrix, denoted C’’. These data are stored online and are

accessible in bulk (http://genome.ucla.edu/u/projects/UGET/

matrices) or are searchable through a web application called

UGET. Each array platform was processed in a similar fashion.

The July 2008 freeze is used for all of the reported analyses here.

Figure 1. Regressions of control probesets reveal aberrant
arrays. Multiple regressions were performed for all 62 HG-U133_Plus_2
control probesets. Arrays (x-axis) are plotted versus the fraction of
observations with regression residual w3s (y-axis). A dashed horizontal
line indicates a cutoff above which arrays are omitted from analysis.
doi:10.1371/journal.pone.0008491.g001

UGET
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Functional Assignment of Genes
We first attempted to determine if the agglomerated data and

gene-gene correlation matrix could be applied to a well studied

and useful effort to identify genes with cartilage selective

expression, and identify novel genes not obvious in more directed

prior experimentation. Funari and colleagues compared gene

expression in developing cartilage with a set of non-cartilage

tissues to identify genes with a pattern of high expression in

cartilage and little or no expression in non-cartilage tissues [33].

These data have already been used for successful candidate gene

identification for skeletal dysplasias and facilitated identification of

genes causing two skeletal dysplasia phenotypes [7,8]. To illustrate

the use of UGET in this way, we attempted to expand the gene list

of a subset of cartilage-selective genes [23,33]. The original list of

161 genes was identified on three platforms and was enriched for

genes that when mutated lead to skeletal anomalies. A subset of

these genes (52 genes; 58 probesets) identified on the U133A

platform was selected to assess the utility and validity of UGET.

Gene-gene correlation data from the 58 probesets were median

centered in column and row to easily visualize differences, then

subjected to 2-way hierarchical clustering (Figure 2). Within the

11,636 arrays, genes from the original cartilage-selective list

clustered into three distinct groups, suggesting three different

patterns of gene expression [33]. Interestingly, one cluster of genes

(highlighted in blue in Figure 2) contains most of the well known

cartilage-specific proteins and mutations in 14/18 genes in this

cluster can cause skeletal anomalies in humans or mice. Of the

4/18 genes (LIF, CSPG4, EDIL3, and MATN4 ) not associated with

skeletal anomalies, two have not been characterized in mouse

models. They also contain the strongest correlations and therefore

most homogenous expression pattern. Therefore, genes with the

highest correlation at the center of this node were then used as a

primary seed to search for additional genes with the same

expression pattern. This first step in the assembly of the gene

expression patterns with Celsius is to identify the probesets with

the highest correlations of this seed list of known, related genes

(referred to as a profile). Next, the mean correlation coefficient to

the profile (�rr) was calculated for each gene across the genome that

was present on the array. Finally, we rank-ordered the set of all

probesets and the set of the initially selected probesets by �rr.

Using the default setting, the one hundred genes with the

highest correlation to the seed profile were returned (Table S1). 44

of these genes (56 probesets) were identified in a previous

supervised analysis in Funari, 2007 et. al., which used well-

annotated arrays. These genes are indicated by the column ‘‘CV

and fold change’’ in the Table S1. These results suggest that even

without metadata, the UGET analysis identifies a comparable

gene list. In fact, some of the differences among the lists may be

attributed to the stringent filtering in the supervised analysis, the

emphasis of the statistical approaches, the use of different

platforms, and the limited number of tissues and arrays surveyed

in the classical preliminary study. To illustrate this, when our list

was compared to the supervised 2-class SAM analysis performed

on the similar U133 2.0 platform, 76 probesets (59 genes) were

identified in the top 200 ranked probesets. Assuredly, there was a

dramatic enrichment of probes for genes that have already been

associated with skeletal defects in mouse or man using the UGET

provided hyperlinks for the associated genes in Online Mendelian

Inheritance in Man (OMIM) and Mouse Genome Database

(MGD) databases [39,40]. Although only 44/100 probesets were

associated with gene targeted mouse phenotypes, 23 of these were

associated with genes that appear to be involved in normal fetal

cartilage developmental in mice. Additionally, 10 more probesets

represented genes associated with skeletal defects but have not yet

been identified as associated with fetal cartilage development (e.g.

Bone, Adult Cartilage, other Skeletal phenotypes). Most of the

probesets (54) could not be associated with a single mouse model,

illustrating at least in part how relatively uncharacterized the

cartilage genome is. It is likely that many of these and other

skeletal probesets will later be associated with genes with critical

roles in cartilage development in man and/or mice. An example of

this is the lack of an obvious cartilage development phenotype in

TRPV4 targeted mice, however gain of function mutations in

TRPV4 can cause Brachyolmia in humans [7]. Additionally,

mutations in COL9A2 cause epiphyseal dysplasia [41], yet there

is not yet a targeted mouse model for this gene. Interestingly, the

gene-gene correlations identified 32 genes not previously defined

as cartilage-selective [33] (gene rows are highlighted in Table S1).

Some of these newly identified genes are well characterized as

cartilage-selective and associated with one of a variety of forms of

skeletal dysplasia (e.g., TRPV4, COL2A1, COMP, and CO-

L9A3). In fact, although TRPV4 was not identified as cartilage-

selective in the Funari et al. 2007 effort because of its low level of

expression in cartilage, Rock and colleagues have recently

characterized TRPV4 mutations as causative of brachyolmia [7].

To further validate these genes as cartilage-selective, qPCR was

used to survey a subset for expression level in normal fetal cartilage

and seven non-cartilage tissues (Table 1). Seven genes equally

distributed in the ranked list (ca. every 10 genes) for which little

functional annotation existed were used for validation. Top ranked

and cartilage-selective ACAN was used as a positive control to

illustrate a known cartilage-selective expression pattern while no-

template reactions served to assess specificity. In brief, three of the

seven genes appear to be relatively cartilage-selective, containing

minimal if any expression in other tissues. Gross abnormal skeletal

structure, decreased body length and growth retardation were

reported in FZD9 targeted mouse (Fzd9tm1Lex) [40], while no

functional characterization of SDK2 and FLJ41170 has yet been

performed. Importantly, all of the genes demonstrated a cartilage-

selective expression pattern, expressing on average 6.4 times more

of the transcript than any non-cartilage tissue with little if any

expression in non-cartilage tissues (,Ct = 33). The strength of this

tool is realized in this example. Unlike most of the well-

characterized extracellular matrix proteins (e.g. ACAN) with high

expression in cartilage (Ct = 24), this group of validated genes

represented low expression in cartilage (ca. Ct = 29). The

sensitivity of this analysis underscores the power of using a large

array dataset for gene-gene correlation measures. In effect, the

scale of the data reduces the otherwise substantial requirements for

a minimum fold change filter often used to circumvent false

positive detection when using small numbers of samples.

Finally, mouse often provides a good model for many diseases

and the findings from searching the human gene-gene correlations

should be supported in the available mouse data. The mouse

orthologues of the 14 human genes used as a profile of human

cartilage were also used as a profile for mouse cartilage.

Approximately, 50 percent of the human cartilage-selective genes

(44 genes [54 probes]) were also identified in mouse as cartilage-

selective. Within this group, twenty-two genes were identified

which cause skeletal defects in mice or humans, which is a high

enrichment of skeletal dysplasia genes. In aggregate, these results

demonstrate the power of the unannotated expression data to

identify genes of similar expression pattern and role in a disease

process, which were validated in silico and in vitro.

Disease Gene Identification
Typically, a genomic region is initially linked to Mendelian

disease through the observation of regional haplotypes shared in

UGET
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excess within affected pedigrees, delineating a single genomic

interval to be examined for causative mutations [42,43]. These

linkage regions are commonly up to 6–15 megabases (Mb) in size,

and thus typically contain on the order of 100–300 genes, many of

which lack any meaningful characterization. This complicates the

disease gene discovery processes, and can stall progress significantly.

Often there are one to several different genes (outside a linked

interval of interest) that, when mutated, lead to an identical or

highly similar phenotype. For instance, Joubert Syndrome (JBST)

is known to map to at least 7 different loci and Limb Girdle

Muscular Dystrophy Type 2 (LGMD2) maps to at least 11 loci,

and both will likely map to more. As additional disease genes for a

given condition are identified, it is commonly observed that all the

identified genes play critical roles in a shared biological process

(BP), and when any one of the components of this process is

disrupted it leads to the dysfunctional phenotype. Given that these

genes are involved in the same BP, it is reasonable to assume that

they will be co-expressed in similar tissues/cell lines or in response

to similar exogenous treatments of cells that have been performed

and assessed on genome-wide microarrays deposited in Celsius.

Figure 2. Analysis of cartilage-selective probesets previously identified on U133A platform using two-way clustering of gene-gene
correlation data. Gene-gene correlations were identified for all cartilage-selective probesets previously identified on the U133A platform [6].
Dendrograms from two-way clustering of the median-centered correlation data suggest three distinct expression patterns. The strongest node (blue)
was selected as a cartilage profile for further expansion by seeding the UGET.
doi:10.1371/journal.pone.0008491.g002

UGET
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Thus, we anticipate that there would be a net-positive correlation

of expression levels among the diverse set of disease causing genes

at different locations in the genome which all cause a similar

disease when mutated. To demonstrate this we retrospectively

assess known linkage intervals by rank ordering all genes over the

linkage interval by their correlation coefficient with known disease

causing genes (or a set of genes known to participate in the critical

BP).

Our method was to assemble a list of genes G known to be

associated with the disease or critical biological process. Each gene

identifier g [ G was mapped to the corresponding list of probesets

on the HG-U133_Plus_2 array design. The list is denoted Pg, and

we denote this mapping function as J gð Þ. For each probeset

pg [ Pg, the genomic position was retrieved using the UCSC

Genome Browser [35]. We then retrieved a list of probesets Qg,

which aligned to the candidate interval pg, and we denote this

mapping function as K pð Þ. Next, for each probeset q Q
gg
[ we

calculated the mean correlation coefficient �rrg to pg using C’’, and

we denote this as L(q,C0). Finally, we rank order each gene within

the interval by the maximum correlation coefficient of probes

mapping back to gene symbol (max �rr).

We first applied our method to LGMD2, which is genetically

heterogeneous. There are 11 genes known to be mutated that lead

to LGMD2: CAPN3, TCAP, TTN, SGCA, SGCB, SCGD, SGCG,

POMT1, FKRP, TRIM32 and DYSF [44]. In order to determine if

we could highlight the known gene of interest within the

approximate linkage interval by using a profile created from the

other known LGMD2 genes, we considered a 6 Mb interval

centered at each of the 11 named genes above. All probesets

designed to measure gene expression from the U133_2.0_Plus

arrays within the 6 Mb genomic region were included for analysis.

We calculated the mean correlation coefficient �rr to the 10-gene

LGMD2 profile for each probeset within each of the 11 regions, as

we excluded any probesets targeting the gene that maps within the

selected linkage region. For instance, in the titin (TTN ) interval, all

genes except TTN were used for the gene correlation calculation.

In 55% (6/11) of the cases max �rr corresponded to the causal gene

for LGMD2. In 2 of the 11 cases the causative gene was the

second most highly correlated with the LGMD2 gene set, for three

genes (FKRP, POMT1, and DYSF) there was poor correlation with

the LGMD2 gene set. The high frequency of the correlation of the

known causative gene with the overall LGMD2 gene set is highly

significant relative to the mean number of genes (n = 72) in each

6 Mb interval (p-value = 1.24e-09). As an example, �rr-values

surrounding the LGMD2J locus on 2q24 for which the known

mutated gene is TTN are shown in Figure 3, which demonstrates

the strongest correlation with TTN relative to all other probesets

mapping to the 6 Mb interval. Since most of the genes involved in

LGMD2 should be expected to play a role if expressed in muscle,

the positive correlation is largely based on co-expression within

muscle tissues and thus other muscle specific genes may also be

highly correlated and within the interval. It is important to note

that the success of UGET in identifying disease genes is inversely

related to the size of the candidate interval, as larger intervals are

more likely to contain multiple genes involved in the BP of interest

which to not contribute to the disease of interest.

We applied this method to see if the tool was able to highlight

genes involved in primary microcephaly, which is clinically

diagnosed when an individual has a head circumference more

than three standard deviations below the mean with no apparent

biological or environmental cause. From a review of the Online

Inheritance of Man [39], six loci have been mapped, and four

genes identified: ASPM, CENPJ, MCPH1, CDK5RAP2 thus far.

The purpose of this test was to confirm that the methods used in

our LGMD2 trial would effectively identify genes for a completely

different and highly genetically heterogeneous phenotype, as well

Table 1. Summary of qRT-PCR amplification of cartilage-
selective genes in fetal cartilage and seven non-cartilage
tissues.

Ct

Rank Gene Cart NCart Neg Fold

4 ACAN 24 34 6 1024

23 FZD9 29 6 Unique

32 SDK2 31 7 Unique

47 SLC39A14 25 28 8

64 PDE10A 31 33 3 4

67 SUSD5 29 32 2 8

83 TWSG1 28 31 8

93 FLJ41170 31 33 4 4

Representative genes are listed in rank order of similarity to the human
cartilage selective genes used in the seeding profile. Cart: mean Ct value for
cartilage samples. NCart: Mean Ct value for the 7 non-cartilage samples. Neg:
Number of non-cartilage tissues in which amplification was not detected at 35
cycles. Where no amplification was observed the maximum Ct value (i.e. 35)
was used for calculations. Fold difference (Fold) is calculated from the
difference in cartilage and non-cartilage Ct values.
doi:10.1371/journal.pone.0008491.t001

Figure 3. Gene correlations to a list of LMGD2-associated
genes within a 6 megabase region surrounding the location of
a known associated gene. The genomic position (x-axis) of
probesets within a 6 megabase region centered at the location of
TTN, a gene known to be associated with LMGD2, is plotted versus the
Pearson correlation coefficient r (y-axis) to a list of probesets targeting
other genes known to be associated with LGMD2 (excluding TTN)
across 11636 HG-U133_Plus_2 microarrays. Solid circles: probesets
targeting TTN, |: probesets that are for genes of unknown function
and, open circles: probesets for known genes in interval.
doi:10.1371/journal.pone.0008491.g003

UGET
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as to see if the method was robust enough to identify the known

gene given a much smaller profile for comparison. In 75% (3/4) of

cases the most correlated gene with the other known microcephaly

genes was correctly identified from a 6 Mb linkage region

surrounding that gene. Thus, for diseases that are genetically

heterogeneous, once a small number of the identified genes is

known, rank ordering other genes is a viable strategy.

We applied the scanning method to Joubert syndrome (JBTS),

which is a genetically heterogeneous neurodevelopmental disorder

characterized by the ‘molar tooth sign’ demonstrating hypoplasia of

the cerebellar vermis and associated with developmental delay and

various physical malformations. Eight linkage regions for Joubert

syndrome have been identified (JBTS1-JBTS8). Five of these have

had the associated gene in the region identified (JBST1 = INPP5E;

JBTS3 = AHI1; JBTS4 = NPHP1; JBTS5 = CEP290; JBTS6 =

TMEM67; JBTS7 = RPGRIP1L) [45,46,47,48,49,50,51,52,53,54]

while JBTS2 has so far only been linked to a 17 Mb centromeric

region of chromosome 11 [50,55,56,57], respectively. The purpose

of this third test was to provide another instance of reproducibility of

results and determine if we could make a prediction as to the

identity of the genes in remaining linked regions JBTS1 and JBTS2

for which a gene has not yet been identified. We were able to

correctly prioritize 67% (4/6) of the five genes known to be

associated with JBTS as the first ranking candidate in a 6 Mb

interval surrounding each. AHI1 was ranked fourth out of 89 genes

in its 6 Mb surrounding interval, and INPP5E was the 19th of 98

genes. Both are positively correlated with the other known genes,

but are not strongly highlighted indicating that the approach will

not always be successful. An example of a successful identification is

shown of the plot of �rr-values surrounding NPHP1 is given in

Figure 4A. We also show data from the Gene Expression Atlas [17]

for the same region in Figure 4B, demonstrating that NPHP1 could

not be identified merely by scanning this region for brain-specific or

even brain-expressed genes. Thus, similar to the increased numbers

of genes identified as cartilage-selective from the un-annotated

arrays, there are subtle gene expression signals that are possible to

identify simply from large scale data that preserve information

about the similarity of gene expression in a variety of conditions

(that are unknown to us) but remain informative for gene

characterization. We examined JBTS2, which is a centromere-

spanning 17 Mb region on chromosome 11 between markers

D11S1915 and D11S4191. The best candidate based solely on the

expression data for JBTS2 is AGBL2. However, this is a large region

and there are other highly correlated genes on both sides of the

centromere.

To assess the broader utility of UGET analysis, we examined

ten additional genes identified as contributing to neuropsychiatric

disorder within candidate genomic intervals. As autism is a widely

studied common neuropsychiatric disorder with high heritability

[58,59], we postulate the expression patterns of genes likely

contributing to autism [60] are broadly relevant neuropsychiatric

disorders due to shared biological processes (central nervous

system development and function). We thus used an autism-related

expression module to rank genes within candidate regions using

UGET (Table S1). In each case, the rank of genes within the

candidate genomic interval was highly correlated with the gene

known to contribute to the disorder, identifying the known gene as

the first or second most highly correlated gene in five out of ten

intervals (Table 2). Mean expression correlation scores for all ten

genes studied were greater than one standard deviation above the

mean for all genes, and greater than two standard deviations

above the mean for eight out of the ten genes. While this analysis is

Figure 4. Gene correlations to a list of Joubert syndrome-associated genes within a 6 megabase region surrounding the location of
an associated gene. A: The genomic position (x-axis) of probesets within a 6 megabase region centered at the location of a NPHP1, a gene known
to be associated with Joubert syndrome, is plotted versus the Pearson correlation coefficient r (y-axis) to a profile created from probesets of all other
genes known to be associated with Joubert syndrome (excluding NPHP1) across 11,636 HG-U133_Plus_2 microarrays. Solid circles: probesets
targeting NPHP1, |: probesets not designed to target a known gene, open circles: other probesets across interval for known genes. B: Probeset
positions in ascending genomic order (x-axis) versus tissue (y-axis) from the GNF Expression Atlas 2 are presented as a tissue-clustered, column-scaled
heatmap. Black = low expression, white = high expression. Black bars in the margin indicate brain tissue rows, and the column representing Joubert
syndrome-associated gene NPHP1.
doi:10.1371/journal.pone.0008491.g004

UGET
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not exhaustive, it strongly supports UGET as a powerful and

broadly applicable candidate gene prioritization tool for complex

disorders.

Using the 10 neuropsychiatric disorder intervals and the 3

skeletal dysplasia intervals mentioned above with the seed lists

mentioned in Tables S2 and S1, respectively, we attempted to

assess the relative efficacy of UGET compared other well used

gene expression prioritization tools (GeneDistiller and Endeavour).

The known disease gene was identified as a top 5 candidate gene

in 11/13 disorders using UGET, 10/13 disorders using GeneDis-

tiller, and 5/13 disorders using Endeavor. In the skeletal disorders,

where the gene defect is in a cartilage-selective gene expressed in a

rarely characterized tissue (i.e. cartilage growth plate), UGET

outperformed these other tools.

Human Disease Network
In order to determine the generality of the approach, we

selected human disorders from a broad array of disease classes

[61]. We selected 43 examples of disorders on the basis of the

largest number of genes affiliated with each trait, while attempting

to sample both Mendelian disorders and some more complex

disorders such as hypertension. We then compared the Pearson

correlation coefficients between all genes that are associated with a

given disorder (intra-disorder correlation) to the Pearson correla-

tion coefficients between these genes with all other genes in

U133_2.0 arrays (extra-disorder correlation), and the results are

shown in Table 3. In total, 36 of 43 (84%) had detectable

enrichment in intra-disorder correlation with a p-value less than

0.05. Seven disorders had no such enrichment including

Hirschsprung disease, Charcot Marie Tooth disease, Holoprosen-

cephaly, Long QT syndrome, Spondyloepiphyseal dysplasia, and

Nephronophthisis. This would indicate that the genes responsible

for these syndromes are generally not co-expressed across diverse

tissue types. Conversely, genes, mutations in which lead to

cardiomyopathy, are very highly correlated with each other

(p = 6.46102146) indicating that a restricted pattern of expression

is common for this group of disease genes. The strongest mean

intra-disorder correlation observed was for the genes causing

Complement Component Deficiency, Ehlers-Danlos Syndrome

and myopathy which all have mean intra-disorder correlation of

over 0.26, which are highly significant and also are consistent with

high expression in perhaps a restricted tissue or cell type. Included

in this analysis were several common and clearly genetically

complex disorders including obesity, hypertension, diabetes

mellitus, schizophrenia, rheumatoid arthritis, and asthma. In all

of these complex disorders genes that cause the disorder are

substantially more likely to be correlated with the other known

genes. This has the potential for providing important orthogonal

associative information about individual genes in complex

disorders in general, as genome wide association studies and rare

variant searches are highly prone to false positive detections. Thus,

there is strong evidence that genes that cause a given disorder are

likely to be more similarly co-expressed across diverse gene

expression experiments that UGET is detecting. To access this

Table 2. Evaluation of expression-based candidate gene prioritization tools.

Disease Gene Interval (Mb) Disorder & Evidence
Total
Genes UGET Endeavor GeneDistiller

Rank Genes Rank Genes Rank Genes

DOC2A chr16:29.5–30.2 Autism
Rare Variant [62]

30 2 22 7 26 1 29

SEZ6L2 chr16:29.5–30.2 Autism
Associated Variant [62]

30 5 22 1 26 2 29

CACNA1G chr17:20.1–46.1 Autism
Association [63]

452 14 396 129 357 24 324

DOCK4 Chr7:106.2–118.6 Autism
Association & CNV [64]

43 3 41 2 36 2 34

SYNJ1 chr21:30.5–46.9 Bipolar Disorder
Association [65]

176 1 133 1 115 2 115

CACNA1A chr19:4.9–18.2 FHM
Monogenic Sub-type [66]

341 2 306 1 230 8 233

NTRK3 chr15:83–96.3 MDD
Association [67]

63 1 58 15 45 4 61

ATP1A3 chr19:43.4–47.3 RDP
Monogenic Sub-type [68]

112 2 103 15 79 2 90

PRKCA chr17:54.9–68.4 Schizophrenia
Association & Rare Variants [69]

89 4 82 15 74 4 81

NOS1AP Chr1:156.2–161.8 Schizophrenia
Functional Common Variant [70]

110 5 88 3 78 2 66

TRPV4 chr12:107–119 ADB
IBD Linkage & Functional Evidence [7]

149 1 72 27 85 5 103

ACAN chr15:72–89.4 SEMD
IBD Linkage & Genetic Evidence [8]

269 1 173 1 148 4 128

Genes within 11 mapped genetic intervals for 10 neuropsychiatric and two skeletal disorders were retrospectively ranked by UGET, Genedistiller, Endeavor by gene
expression correlation to either known disease genes or genes which play important roles in an associated biological process. Grey boxes indicate that the disease gene
was ranked in the top five candidates using the tool. Abbreviations: IBD = Identity-by-decent; CNV = Copy Number Variant; FHM = Familial hemiplegic migraine;
MDD = Major Depressive Disorder; RDP = Rapid-onset dystonia Parkinsonism; ADB = Autosomal dominant brachyolmia; SEMD = Spondyloepimetaphyseal dysplasia;
ATD = Asphyxiating thoracic dystrophy; SRP = Short rib polydactyly syndrome.
doi:10.1371/journal.pone.0008491.t002
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Table 3. Disease genes within a classification are more strongly correlated with each other than with genes not linked to the
disease.

Disorder Name
No. of
Genes

No. of
Probesets

Mean Intra-disorder
Correlation

Mean Extra-disorder
Correlation

Signif. of
Enrichment

Epiphyseal_dysplasia 6 10 0.196 20.005 1.9E-05

Osteoporosis 6 23 0.059 20.007 1.3E-06

Amelogenesis_imperfecta 4 9 0.070 0.018 2.6E-02

Osteopetrosis 4 10 0.087 0.011 3.1E-03

Leukemia 37 162 0.024 0.016 5.0E-12

Colon_cancer 34 88 0.029 0.015 1.3E-08

Cardiomyopathy 25 68 0.155 0.009 6.4E-146

Hypertension 12 23 0.031 20.001 5.2E-07

Long_QT_syndrome 7 13 0.019 0.012 5.6E-01

Ehlers-Danlos_syndrome 9 31 0.270 20.018 7.5E-54

Rheumatoid_arthritis 8 25 0.075 0.021 2.4E-14

Epidermolysis_bullosa 11 25 0.236 0.002 6.5E-47

Ectodermal_dysplasia 8 18 0.096 0.016 6.9E-11

Holoprosencephaly 5 4 20.008 0.015 3.9E-01

Deafness 41 96 0.016 0.008 8.8E-05

Diabetes_mellitus 27 54 0.025 0.014 3.4E-04

Hirschsprung_disease 7 14 0.010 0.002 2.5E-01

Hemolytic_anemia 10 21 0.119 0.000 2.6E-15

CCD 13 19 0.321 20.010 3.4E-35

SCID 8 18 0.242 0.018 1.5E-30

Cent. Dis. Glycosylation 13 22 0.127 0.009 7.9E-17

Porphyria 6 26 0.073 0.008 3.5E-09

Fanconi_anemia 11 27 0.188 0.021 6.4E-37

Zellweger_syndrome 11 27 0.101 0.011 6.6E-27

Bardet-Biedl_syndrome 8 16 0.137 0.007 1.1E-08

Usher_syndrome 8 15 0.048 0.018 4.7E-03

Hermansky-Pudlak_synd 7 19 0.095 0.013 7.5E-11

Muscular_dystrophy 18 39 0.157 0.008 2.1E-66

Myopathy 10 15 0.264 0.005 2.8E-13

Mental_retardation 24 50 0.043 0.017 3.9E-10

Charcot-Marie-Tooth 18 36 0.018 0.008 9.0E-02

Spinocereballar_ataxia 13 27 0.061 0.022 3.8E-04

Leigh_syndrome 12 24 0.151 0.003 8.6E-18

Obesity 21 42 0.013 0.004 8.4E-04

Retinitis_pigmentosa 30 51 0.079 0.021 1.2E-26

Cataract 15 18 0.120 0.025 3.0E-09

Schizophrenia 9 20 0.082 0.012 1.2E-06

Renal_tubular_acidosis 5 11 0.034 0.002 4.3E-02

Nephronophthisis 4 12 0.006 0.010 8.1E-01

Asthma 13 24 0.039 0.004 4.0E-10

Cent_hypoventilation_syn 5 10 0.040 0.010 1.5E-02

Brachydactyly 5 10 0.011 20.003 5.5E-02

Spondyloepiphyseal_dyspl. 5 9 0.003 0.015 5.8E-01

No. of genes: total number of genes in U133_2.0 arrays identified that are associated with a disorder name (44); No. of probesets: total number of probesets mapping to
the genes; Mean Intra-disorder Correlation: mean Pearson correlation coefficient for all disease genes; Mean Extra-disorder Correlation: mean correlation between
disease genes and all other genes in U133_2.0 arrays; Significance of Enrichment: t-test p-value comparing intra-disorder correlation with extra-disorder correlation.
doi:10.1371/journal.pone.0008491.t003
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information more simply, a search tool which retrieves all of the

genes linked to a given disorder has been created on the UGET

website such that an investigator can select from the human

disorder names and retrieve those genes mapping to that disorder

for input into UGET.

Discussion

We describe here the creation of a new web-accessible gene-

gene correlation resource, and demonstrate the power and utility

of a large collection of gene expression microarray data for

functional gene discovery and for prioritizing genes for mutation

analysis within linkage regions.

We first expanded a list of known cartilage-selective genes in

mouse and humans. Within this process, 7 genes (out of 10) all

with poor or little annotation were validated and demonstrate

cartilage selective expression. Two novel genes tested, SDK2 and

FLJ41170, are very selectively expressed in fetal cartilage. The

power of a large dataset is realized with this example as rare tissues

(e.g.cartilage or fetal cartilage) and many novel genes (e.g.

FLJ41170) are not present in Genesapiens. In addition, it is

remarkable that despite the relatively small number of human fetal

cartilage gene arrays in the public domain (,14 vs. 10,000 arrays),

UGET is remarkably sensitive even when it comes to genes

expressed in few tissues. Similarly, UGET can be used iteratively

by scientists to identify genes with similar expression profiles for a

variety of patterns in order to identify genes that may be involved

in specific biological processes.

By simple use of UGET, the correct retrospective identification

of the known causal genes within linkage regions for several

unrelated disease phenotypes was demonstrated in the majority of

cases. This simple application of the tool is in itself a highly

powerful strategy because there are many more linkage regions

reported than causal genes, yet there are many disease genes

identified for a similar phenotype. Thus, we can effectively

leverage current knowledge to prioritize genes within the many

known linkage intervals. From our small number of examples, our

evidence would indicate that, if there are at least a few known

disease genes to use to create a profile of interest, the highest or

second highest correlated gene will be the mutant gene at up to

80% of the loci. This approach is broadly applicable to more

heterogeneous traits such as neuropsychiatric disorders, with 50%

of previously identified genes within candidate intervals ranking

either highest or second highest correlated gene using an autism-

related expression module. A subset of genetically heterogeneous

disorders however, has no strong correlation of expression between

the multiple genes causing specific traits (for example, Hirsch-

sprung’s Disease). We note that the general process of gene

prioritization applies to the entire genome and may point to

strategies in the absence of linkage knowledge as well for rare

Mendelian disorders. Likewise, the genetic causes of highly

complex disorders such as autism or schizophrenia are certain to

be numerous, but as true disease genes are identified in these

disorders and others, gene-gene correlation analyses should be

applied to prioritize additional genes in the absence of linkage or

genome-wide association signals. We expect the tool to be

generally useful in a wide variety of human disease areas and to

expedite the gene discovery process. While there are other gene

expression prioritization tools and other prioritization approaches

(e.g. via interactome data and literature based) that are also

successful, the data suggest that UGET is a robust tool especially

when the genes and biological processes are better defined in rare

or more complex datasets. In this regard, UGET takes advantage

of the vast Celsius database which provides additional insight not

possible using smaller, more discrete, but defined annotated

datasets.

The tool is web accessible and easily searchable by scientists

seeking to identify genome-wide gene-gene correlations. Data are

returned as html lists for rapid perusal or as tab delimited text files

available for download. The power and versatility of this resource

initially surprised us and will be able to grow in power as

microarray data accumulate. One of the powers of this approach is

that the entire pipeline of methods used to assemble the

correlation matrix is completely metadata independent – only

the genomic alignment of probe sequences and the quantitative

measurements made by the microarray were used. This results in a

dataset that is very heterogeneous reflecting the diverse set of

human experiments ongoing in the community. It is composed

from microarray data generated from thousands of individual

experiments by hundreds of individual scientists, with each

experiment using different biological materials and different

hybridization conditions and protocols. We conclude that the

volume of data assembled here is sufficient and does not appear to

have systematic biases based on site of origin of the data or

differences in the method of data generation to mask true gene-

gene correlations due to differences in microarray protocols.

A variety of analyses presented here have established that rank

ordering of genes within a linkage interval using UGET is a

successful approach in many cases. Generally, UGET is highly

successful in ranking candidates when the disease gene has an

expression pattern specific to the biological process being studied.

Alternatively, genes involved in multiple biological processes (or

genes not involved in the disease BP in normal individuals) may

not rank as highly. As an example, AHI1 was ranked fourth best

candidate gene out of 89 genes when UGET was used to

retrospectively identify known Joubert Syndrome ( JBST) genes.

AHI1 is expressed in both central nervous system tissue and

primitive hematopoietic cells, which diluted the strength of co-

expression correlation to other JBST genes. This demonstrates key

limitations in the application of the guilt by association approach

to disease gene identification. False negative results will occur in

such cases. This lessens the utility of UGET (and other methods

such as Endeavour and SUSPECTS) to providing a specific type of

biological insight. This limitation also leads to false positives

arising if genes within a candidate interval are specifically

expressed in the BP of interest but do not contribute to disease.

Despite these limitations, in the majority of retrospective cases

presented here (including AHI1), UGET analysis rank ordered

candidate genes such that sequentially sequencing the most highly

correlated genes would identify the known disease gene more far

efficiently than sequencing all genes within the candidate interval.

Thus, the limited scope of biological insight provided by UGET is

nonetheless highly informative for human disease gene discovery.

While we demonstrate the utility of this tool particularly for

human gene identification, the correlation matrices have been

constructed for the entire Celsius dataset and are available for

search within 14 different species across 41 different array designs.

We note that the scale available through this resource is

unprecedented and is the result of ignoring differences in

annotation approaches by scientists. In general the genomics

community has placed high value on the annotation information

such that publication policies typically require metadata to be

deposited concomitantly with assay measurements. However,

without truly representing the vast diversity of experiments

performed is daunting and not implemented yet. While annotation

is useful and in some cases necessary for some supervised analysis,

the practice of insisting on detailed metadata in the process of

making raw microarray data available may actually limit the
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amount of raw data deposited. For instance, scientists have no

strong motivation to provide annotation information on experi-

ments that do not become part of the published experiment and

thus these data will be excluded from repositories. In contrast to

the annotation-centric efforts of microarray repositories, the

Celsius database can import CEL data without annotation data

and the work shown here demonstrates the enormous potential

power of growing these data further. We recommend the

deposition of all CEL files into public repositories or directly into

Celsius to expand our ability to detect gene-gene correlations.

Materials and Methods

Data and Data Cleaning
We retrieved all RMA-processed gene expression data for the

HG-U133_Plus_2 array design (n = 12,826 arrays) from the

Celsius microarray data warehouse [17,32] and denote the

S = 12826 (arrays) | P~54675 (probesets) matrix as M. A

cursory examination of M revealed that there were aberrant

arrays present and that these arrays would have a negative impact

on any downstream analyses and thus needed to be removed in a

systematic manner. There appeared to be at least 3 groups of

aberrant arrays:

1. arrays with extremely high gene expression values across many

probesets.

2. arrays with extremely low gene expression values across many

probesets.

3. arrays with dissimilar expression values for two probesets

reputedly measuring the same gene.

We sought to systematically remove these arrays from the gene-

gene correlation calculations. Group 1 and 2 arrays were easiest to

identify for exclusion. We calculated the mean expression value of

all probesets for each array, then calculated the mean and

standard deviation of a 10% trimmed distribution of those means.

The trimmed means themselves had a mean of 231.1 and a

standard deviation of 21.0. There were 726 arrays with mean

expression value more than 3 standard deviations away from the

mean of trimmed means. These were primarily dim arrays

(n = 711) but there were also excessively bright arrays (n = 15).

These arrays were removed from further consideration, leaving

matrix M ’ with 12,100 arrays and 54,675 probesets.

Group 3 arrays were slightly more difficult to find. To identify

them, we exploited the fact that, via NetAffx [34], Affymetrix

publishes a probeset ? gene symbol mapping for their array

designs. We assumed that pairs of probesets designed to target the

same gene were more likely to be linearly related than randomly

selected pairs because they were targeting the same gene, and that

these relationships could be used as a starting point to identify

inconsistent arrays.

There are 19,632 unique gene symbols from the NetAffx

HG-U133_Plus_2 gene annotation. Of these, there is a subset G
(n = 10,433) for which there were two or more probesets. We

constructed G groups, each corresponding to a single gene symbol,

i.e.: g1 = pg1 1,…,pg1n,…,gG = pgG 1,…, pgGn. Then, for each g [ G,

we performed a linear regression of log10(signal) for all possible

probeset pairs pg A,pgB (n = 38,682). Examination of the probeset

pairs with the largest value of r2 revealed that the majority were

control probesets that targeted spike-in sequences that are added

as part of the microarray hybridization for quality control. Thus,

we concluded that using the built-in control probesets was a robust

way to identify aberrant arrays. We performed 62 multiple

regressions, allowing each control probeset to be the response

variable once. In the context of a single regression if an array’s

residual was, relative to all other arrays’ residuals, more than 3

standard deviations away from the line, we incremented a counter

for that array. After performing all 62 regressions, all arrays that

were observed more than 3 standard deviations more than 5% of

the time (n = 464) were removed from further consideration,

leaving a matrix M ’’ with 11,636 arrays and 54,675 probesets.

Outlier frequencies per array are shown in Figure 1.

Correlating Genes
Subsequent to filtering out aberrant arrays from out dataset, we

used the M ’’ matrix to calculate C’’, a 54675 | 54675 matrix of

Pearson correlation coefficients for every pair of probesets

(Equation 1). C’’ was used in all results presented in Section 4.

C’’~cor MT ’’� �
ð1Þ

Annotating Genes
For each probeset p [ P on the HG-U133_Plus_2 array design,

we retrieved and sorted in descending order r = C0p. We took r’,
the derivative of r, and used the R Bayesian Change Point bcp to

identify d, the index of the largest value of r’ that preceded a

mostly-linear portion of the curve. The subset of probesets where

rwd were defined as Q, and used as input to the hyperGTest

function of the GOstats package of Bioconductor [36] to test for

enrichment of Gene Ontology (GO) Biological Process (BP)

annotations in a gene set. hyperGTest produced a set of predicted

gene annotations Np for each p [ P based on the annotation of

neighbors Q. We applied Bonferroni correction to the p-values

associated with each prediction by multiplying each p-value by the

total number of predictions made for the corresponding probeset.

We used these corrected p-values from predicted annotations Np

that were known to be non-computationally assigned from the

hgu133plus package of Bioconductor [36] to establish a conserva-

tive cutoff, below which predicted annotations should all be high

quality.

Analyzing Linkage Regions
For a given phenotype, a group of known genes G for which

mutations have been described that lead to a specific phenotype

were retrieved from previous publications and online databases.

The list of genes was transformed to a list of probesets P present on

the HG-U133_Plus_2 array design using the gene symbol ?
probeset mapping available from NetAffx [34]. All disease causing

probesets P mapped to a unique location in the genome within a

6 Mb interval termed A around the known causative gene were

identified by finding the center point of each probeset’s alignment

to UCSC March 2006 (hg18) version of the human genome [25].

Each region in A was then mapped to a list of all HG-

U133_Plus_2 probesets Q aligned to that region. Then, for each

p [ P, a QxG(GEg)lab was retrieved from C’’ (Section 3.1.3), and

row-summarized to produce a Q-length vector
?
�rr of mean

correlation coefficients to G ] g.

Analysis of Human Disease Genes
Genes for LGMD2, Joubert Syndrome, and Microcephaly were

selected based on literature search/OMIM classifications as of

September 2008. Disorder-gene mapping relied on affiliation [61].

All genes identified as causing 43 disorders, were first mapped to

the Affymetrix U133_2.0 array to determine if a probeset existed

for each gene. All probesets mapping to each gene were retrieved
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based on information at NetAffx. For each disorder, gene-gene

correlation coefficients within a disorder causing gene list were

calculated as described above except that for genes with multiple

probesets, the correlation coefficients between the probesets of the

same gene were excluded. We name them Intra-disorder

correlation. As a general rule of thumb, probes with a mean

Intra-disorder correlation $0.1 are considered nominally corre-

lated. Gene-gene correlation coefficients between this gene list and

all other genes in U133_2.0 arrays were also calculated. We name

them Extra-disorder correlation. A two sample t-test was then

performed comparing these two groups of correlation coefficients.

qRT-PCR
One microgram of RNA from seven tissues (adipose, brain,

kidney, ovary, heart, small intestine, and liver) in the FirstChoiceH
Human Total RNA survey panel (Ambion) was reverse tran-

scribed using a high-capacity cDNA archive kit (ABI) and random

primers. For cartilage, RNA from three independent cartilage

samples was pooled and reverse transcribed. Amplification

reactions were performed in duplicate using 50 ng of each cDNA.

Thirty-five cycles of amplification were carried out in an ABI 7300

using the validated QuantiTect Gene Expression Assays and

SYBR Green PCR kit (Qiagen). To assess specificity, amplification

products were subjected to melting curve analysis and gel

electrophoresis. The 2- [delta] [delta]Ct method was employed

to calculate relative amplification. This was performed using an

average of endogenous references (18S, GAPDH, and HPRT1) to

improve normalization across the panel of tissues used. For genes

where no amplification was detected in a tissue, a Ct value of 35

was assigned, reflecting the maximum number of cycles carried

out.

Supporting Information

Table S1 Representative genes are listed in rank order of mean

similarity to the human cartilage-selective seeding profile identified

in Figure 1 and represented in Column 1. Column 6 identifies

genes, labeled with an X, which can result in skeletal abnormalities

in humans [32]. Column 7 identifies associated mouse phenotypes

summarized from Mouse Genome Database [33] (‘‘N/A’’

indicates targeted model not available; ‘‘-’’ targeted mouse model

has no skeletal phenotype yet). Column 8 indicates genes that were

similarly identified in the mouse from Affy 430 2.0 whole genome

array data as being in the top 100 cartilage selective genes.

Column 8 indicates genes which are previously identified in Funari

et al., 2007 et. al. as cartilage-selective. Column 9 indicates genes

identified in Funari et al., 2007 as enriched in cartilage using data

from the U133 2.0 platform and the first 200 ranked genes with a

false discovery rate of zero using Significance of Microarray (SAM)

analysis.

Found at: doi:10.1371/journal.pone.0008491.s001 (0.04 MB

XLS)

Table S2 To identify an autism-related expression model, the 26

genes identified as ‘‘probable’’ or ‘‘promising’’ in a recent review

of autism genetics were used as both ‘training’ and ‘test’ sets in

UGET. An expression module of 25 probes representing 13 genes

(listed in this table) was identified as both highly inter-correlated

and highly correlated to the total list of 26 ‘‘probable’’ or

‘‘promising’’ autism genes, and is thus deemed ‘autism-related.’

This module was used as a training set to assess the mean co-

expression correlation between the module and all 54,613 probes

on the Affymetrix U133A_2.0 Human Gene Expression Micro-

array. The most highly correlated probe mapping to a given gene

was selected as representative for that gene.

Found at: doi:10.1371/journal.pone.0008491.s002 (0.04 MB

DOC)
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10. Köhler S, Bauer S, Horn D, Robinson P (2008) Walking the interactome for

prioritization of candidate disease genes. Am J Hum Genet 82: 949–958.

11. Adie E, Adams R, Evans K, Porteous D, Pickard B (2006) SUSPECTS: enabling

fast and effective prioritization of positional candidates. Bioinformatics 22: 773–774.

12. Kobayashi N, Toyoda T (2008) Statistical search on the Semantic Web.

Bioinformatics 24: 1002–1010.

13. Thornblad T, Elliott K, Jowett J, Visscher P (2007) Prioritization of positional

candidate genes using multiple web-based software tools. Twin Res Hum Genet

10: 861–870.

14. Seelow D, Schwarz J, Schuelke M (2008) GeneDistiller–distilling candidate

genes from linkage intervals. PLoS One 3: e3874.

15. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, et al. (2006) Gene

prioritization through genomic data fusion. Nat Biotechnol 24: 537–544.

16. Chen J, Bardes E, Aronow B, Jegga A (2009) ToppGene Suite for gene list enrichment

analysis and candidate gene prioritization. Nucleic Acids Res 37: W305–311.

17. Su A, Wiltshire T, Batalov S, Lapp H, Ching K, et al. (2004) A gene atlas of the

mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A

101: 6062–6067.

18. Nagarajan R, Le N, Mahoney H, Araki T, Milbrandt J (2002) Deciphering

peripheral nerve myelination by using Schwann cell expression profiling. Proc

Natl Acad Sci U S A 99: 8998–9003.

19. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, et al. (2006) TOM: a web-

based integrated approach for identification of candidate disease genes. Nucleic

Acids Res 34: W285–292.

20. Carlson M, Zhang B, Fang Z, Mischel P, Horvath S, et al. (2006) Gene

connectivity, function, and sequence conservation: predictions from modular

yeast co-expression networks. BMC Genomics 7: 40.

21. Horvath S, Zhang B, Carlson M, Lu K, Zhu S, et al. (2006) Analysis of

oncogenic signaling networks in glioblastoma identifies ASPM as a molecular

target. Proc Natl Acad Sci U S A 103: 17402–17407.

UGET

PLoS ONE | www.plosone.org 11 December 2009 | Volume 4 | Issue 12 | e8491



22. Shyamsundar R, Kim Y, Higgins J, Montgomery K, Jorden M, et al. (2005) A

DNA microarray survey of gene expression in normal human tissues. Genome
Biol 6: R22.

23. Greco D, Somervuo P, Di Lieto A, Raitila T, Nitsch L, et al. (2008) Physiology,

pathology and relatedness of human tissues from gene expression meta-analysis.
PLoS One 3: e1880.

24. Wang Y, Miller D, Clarke R (2008) Approaches to working in high-dimensional
data spaces: gene expression microarrays. Br J Cancer 98: 1023–1028.

25. Rhodes D, Yu J, Shanker K, Deshpande N, Varambally R, et al. ONCOMINE:

a cancer microarray database and integrated data-mining platform. Neoplasia 6:
1–6.

26. Wilson B, Giguère V (2007) Identification of novel pathway partners of p68 and
p72 RNA helicases through Oncomine meta-analysis. BMC Genomics 8: 419.

27. Rhodes D, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, et al.
(2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000

cancer gene expression profiles. Neoplasia 9: 166–180.

28. Liang S, Li Y, Be X, Howes S, Liu W (2006) Detecting and profiling tissue-
selective genes. Physiol Genomics 26: 158–162.

29. Whetzel P, Parkinson H, Causton H, Fan L, Fostel J, et al. (2006) The MGED
Ontology: a resource for semantics-based description of microarray experiments.

Bioinformatics 22: 866–873.

30. Spellman P, Miller M, Stewart J, Troup C, Sarkans U, et al. (2002) Design and
implementation of microarray gene expression markup language (MAGE-ML).

Genome Biol 3: RESEARCH0046.
31. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, et al. (2001)

Minimum information about a microarray experiment (MIAME)-toward
standards for microarray data. Nat Genet 29: 365–371.

32. Day A, Carlson M, Dong J, O’Connor B, Nelson S (2007) Celsius: a community

resource for Affymetrix microarray data. Genome Biol 8: R112.
33. Funari V, Day A, Krakow D, Cohn Z, Chen Z, et al. (2007) Cartilage-selective

genes identified in genome-scale analysis of non-cartilage and cartilage gene
expression. BMC Genomics 8: 165.

34. Liu G, Loraine A, Shigeta R, Cline M, Cheng J, et al. (2003) NetAffx: Affymetrix

probesets and annotations. Nucleic Acids Res 31: 82–86.
35. Zhu J, Sanborn J, Benz S, Szeto C, Hsu F, et al. (2009) The UCSC Cancer

Genomics Browser. Nat Methods 6: 239–240.
36. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol 5: R80.

37. Harris M, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The Gene

Ontology (GO) database and informatics resource. Nucleic Acids Res 32:
D258–261.

38. Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, et al. (2003) Summaries of
Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

39. McKusick V (2007) Mendelian Inheritance in Man and its online version,

OMIM. Am J Hum Genet 80: 588–604.
40. Bult C, Eppig J, Kadin J, Richardson J, Blake J (2008) The Mouse Genome

Database (MGD): mouse biology and model systems. Nucleic Acids Res 36:
D724–728.

41. Muragaki Y, Mariman E, van Beersum S, Perälä M, van Mourik J, et al. (1996)
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