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Abstract

Background: The investigation of the interconnections between the molecular and genetic events that govern biological
systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray
and next-generation sequencing technologies have the potential to provide this information. However, taking full
advantage of these approaches requires that biological connections be made across large quantities of highly
heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is
fast becoming one of the key challenges in the research community today.

Methodology/Results: We have developed a novel data mining framework that enables researchers to use this growing
collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular
states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a
combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality
concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using
multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining
approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression
datasets.

Conclusions: Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale
genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven
analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing
hypothesis.
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Introduction

High-throughput technologies have become essential tools for

biological researchers. The advent of ‘‘open biology’’ has led to

an exponential growth of high-throughput data in publicly

shared repositories, such as NCBI GEO, EBI Array Express,

and the Stanford Microarray Database (SMD) [1]. The billions

of data points collected within these repositories provide an

unprecedented opportunity for exploring and comparing

molecular portraits of different biological states. However, the

complex and heterogeneous nature of this exponentially

growing amount of data has created a new and daunting

challenge for a community wishing to explore it in a systematic

and easy way.

A number of meta-analysis studies across multiple sets of gene

expression data have led to important discoveries, such as: i) the

identification of consistently and significantly deregulated genes

in prostate cancer [2], ii) the derivation of candidate biological

pathways that underlie mechanisms of carcinogenesis [3], and

iii) the identification of lung adenocarcinoma genetic markers

that correlated with patient survival [4], among others [5–10].

These studies typically focused on a single phenotype and

identified significant differentially expressed sets of genes across

multiple datasets. Conversely, an investigator-generated gene

signature can be applied across large collections of high-

throughput data to look for associations with various diseases,

tissues, and treatments. In the landmark study by Lamb et al., the

connections between disease-associated gene expression ‘‘foot-
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prints’’ and gene expression profiles of different cell lines treated

with diverse compounds were explored through meta-analysis of

data generated on a highly standardized, single microarray

platform [11]. The authors created a map that linked disease to

relevant compounds by computing enrichment-based ‘‘connec-

tivity’’ scores between their corresponding gene expression

signatures. Public repositories, however, contain thousands of

independent studies with highly heterogeneous data from

different labs, platforms, and organisms. The high level of

complexity makes it difficult to use by the broader scientific

community.

Here we report the development of a novel strategy to

explore the biological properties of gene sets found in global

collections of public or proprietary large-scale experimental

data. The size of gene sets queried can range from the tens (e.g.,

the results of qPCR experiments) to hundreds or even

thousands (e.g., the gene signature results from microarray or

next generation sequencing experiments). Using a unique

combination of rank-based enrichment algorithms, ontologies,

and meta-analysis techniques, we compute correlation scores

between a given gene set and thousands of public studies. The

output provides a ranked set of signatures and ‘‘meta-concepts’’

representing diseases, normal tissues, compound treatments,

and genetic perturbations (gene mutations, knockouts, siRNA

knockdowns) that have strong association with a gene set of

interest. We applied our strategy to develop NextBio (www.

nextbio.com) – a data mining framework that integrates and

correlates global public datasets with the user’s own experi-

mental data. As a demonstration, we used NextBio to detect

and explore the biology of brown fat, to compare its expression

profile to those of other tissues and cell types, and to discover

connectivities with different disease states and chemical and

genetic perturbations.

Results

Data pre-processing and correlation overview
Our data mining strategy can be divided into two parts. In the

first part (Figure 1), semi-automated crawlers collected public data

from diverse sources, such as NCBI GEO [12], Array Express

[13], SMD [14], Broad Cancer Genomics [15], Cancer Biomed-

ical Informatics Grid (caBIG), and other repositories (Table S1). A

data analysis step produced sets of differentially expressed gene

signatures associated with each experimental or clinical compar-

ison, such as disease versus normal (Methods). In the final step of

part one, all signatures were tagged with relevant ontology terms

(Figure 1) that reflected associated tissue types, disease/phenotype,

compound treatment, or genetic perturbation (e.g., gene mutation,

knockout, siRNA knockdown). In the second part, rank-based

enrichment statistics were applied to compute pairwise correlation

scores between all signatures (Figures 2 and 3) followed by a meta-

analysis to compute individual signature-ontology concept corre-

lation scores (Figure 4).

To ensure that data were comparable across different

platforms and species, gene signature identifiers were translated

using both a universal gene dictionary to map them to a standard

NCBI gene reference and a cross-organism dictionary to assign

them to precomputed ortholog clusters (Methods). Gene

annotations and probe definitions were regularly revised to

ensure that they are up-to-date with manufacturer specifications.

While issues have been reported with microarray spot definitions

[16–18], we believe that our meta-analysis approach mitigated

the effects of errors that occur on a single platform since the

strength of an association was weighted by its consistency across

multiple studies and platforms.

We collected and analyzed over 6,000 individual experiments

from different public sources of large-scale experimental data.

Figure 1. Public data processing and analysis pipeline diagram. The steps for turning public datasets into processed gene signatures include:
raw data collection, sample annotation curation, data quality control, automated analysis, and manual tagging of resulting signatures with disease,
tissue, compound ontology, and gene perturbation terms (tags). Curation of sample annotation includes a systematic analysis of all sample attributes
that should be processed for differential expression. The data processing step converts original raw data into processed results – gene expression
signatures representative of a given biological condition. The final tagging step ensures that key biological conditions associated with each signature
are captured with standardized vocabulary terms, enabling downstream meta-analysis.
doi:10.1371/journal.pone.0013066.g001

Public Data Meta-Analysis
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Within this collection were more than 140,000 individual samples

profiled on gene expression microarrays. Out of 6,000 experi-

ments, only 4,000 passed our extensive quality control (QC)

criteria. Approximately 60% of the disqualified studies were

excluded from processing due to insufficient replicates, lack of

control samples, or unsupported platforms (e.g., platforms that do

not cover more than half the number of genes for an organism).

Approximately 25% of the disqualified studies were duplicated

(e.g. part of an already processed super-series), and 15% were

excluded for failing QC metrics during pre-processing and

differential expression analysis (Table 1, Methods).

After applying a statistical analysis to identify differentially

expressed genes in each experiment, we obtained a total of 25,000

gene signatures (a typical study produces multiple results). Each

signature was tagged with relevant ontology terms. This

annotation step identified a total of 120 unique normal tissue

concepts, 700 disease, 1,430 compound, and 135 genetic

perturbation concepts (including gene mutations, knockouts, and

Figure 2. Computing pairwise signature correlation scores. The algorithm represented by this schematic computes an enrichment score and
p-value between two ranked gene signatures. Dark red and blue colored boxes indicate genes present in both signatures; light red and blue colored
boxes represent genes present in only one of the signatures. Dark lines connecting genes in each signature represent connections between genes
with the same direction of regulation in both signatures. Light lines connect genes with opposite direction in two signatures.
doi:10.1371/journal.pone.0013066.g002

Public Data Meta-Analysis
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siRNA knockdowns). The final dataset contained a high-

dimensional space of gene signatures with ranked genes and

associated ontology concepts (tags) for diseases, tissues, com-

pounds, and genetic perturbations (Table 1).

Computing pairwise signature correlation (enrichment)
scores

A number of factors must be considered when performing a

comparative analysis of highly heterogeneous data from different

sources, platforms, and technologies. We applied statistical

methods to compensate for differences in platforms and their

probe content, in organisms studied, and in signature sizes that

could arise from choices of analysis stringency (e.g. p-value cutoffs).

In addition, directional information (up- or down-regulation) is

important for assessing connectivity between different gene sets

derived from gene expression data. Our rank-based directional

enrichment analysis enabled us to statistically assess pairwise

correlations between any two gene signatures and to use this

information to rank connectivity between different biological

states.

We applied our algorithm to compute pairwise correlation

scores between all signatures in our system (Figure 2). The

magnitude of the pairwise correlation score reflected the similarity

of the two signatures, which is measured by the extent that the

genes in one signature set are enriched at the top ranks of the other

signature set, and vice versa. Each signature consisted of a list of

Figure 3. Computing directionality and final correlation scores between two signatures. The directional subsets are formed for both b1
and b2, and subset-subset enrichment scores are Computed for b1+b2+, b1+b22, b12b2+, and b12b22. Pairwise correlation scores for the directional
subsets are positive where subsets are of the same direction and negative sign otherwise. The correlation scores of the subsets are summed up to
give the final score for full set b1 versus full set b2.
doi:10.1371/journal.pone.0013066.g003

Figure 4. Gene signature query against all other signatures within the system. First, pairwise gene signature correlation scores (using rank-
based enrichment statistics) are computed, followed by meta-analysis of individual score-tag pairs to compute overall tag scores. This two step
process results in computation of direct correlations between user’s defined signature and diverse biological conditions representing normal tissues
and cell types, diseases, and compounds. Furthermore, overall positive or negative correlation between a signature and a concept is computed based
on individual pairwise signature correlation scores. A positive correlation implies a similar up- and down-regulation of genes in each signature or
signature-tag pair, while a negative correlation implies the opposite trend.
doi:10.1371/journal.pone.0013066.g004
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genes that passed a select fold change, p-value, or other test

statistic threshold. Thresholds might vary between different

researchers, types of studies, and analytical methods, and thereby

result in different signature sizes. To capture the key enrichment

signal, even among very short or very long signatures, we

developed a non-parametric rank-based statistical approach.

The general design of the algorithm, which we call ‘‘Running

Fisher’’ (see Methods), is analogous to the Gene Set Enrichment

Analysis (GSEA) method [11,19]. As with GSEA, Running Fisher

dynamically detects the most significant enrichment signal in a

ranked signature, allowing the signature to contain a relatively

more comprehensive collection of genes than would otherwise be

required when using a stringent statistical cutoff. This ‘‘dynamic’’

enrichment detection approach overcomes the limitations of a

more commonly used ‘‘selection’’ approach where a too stringent

cutoff might lead to potential loss of significant information, and a

too relaxed cutoff might include insignificant data into the

evaluation [20]. The Running Fisher algorithm differs from

GSEA in the assessment of the statistical significance, where p-

values are computed by a Fisher’s exact test rather than by

permutations (see Methods for details). Overall, this approach

provided us the flexibility to compute correlation scores for data of

different sizes and filter thresholds, as well as the ability to use

ranks in both query and target signatures.

The directional relationship between the two signatures was

captured by the sign of the correlation score. The up-regulated

genes and the down-regulated genes were separated into

directional subsets, and correlation scores were computed for

each directional subset from one signature against each subset

from the other signature (Figure 3). A positive sign was given to a

subset pair that changed expression in the same direction, and a

negative sign was given to a subset pair that changed in opposite

directions. The overall correlation score was the sum of directional

subset scores, and the sign of the sum determined whether the two

signatures were positively or negatively correlated (see Methods for

details). Using this strategy, we computed pairwise correlation

scores between all 25,000 signatures, resulting in over 625 million

pairwise scores.

Meta-analysis to compute signature-ontology
correlations

Currently, our system contains tens of thousands of datasets

representing diverse types of biological conditions. With the

development of new sequencing technologies we anticipate

hundreds of thousands of public datasets to be available for the

research community in the near future. To systematically

interrogate these huge quantities of data, we have to abstract

our analysis to the level of biological conditions those datasets

represent. Researchers can then look at the connections between

their own data and the potentially thousands of individual datasets

with matching tissues, diseases, compounds, or genetic perturba-

tions. Ontology-based meta-analysis is designed to accomplish that

goal by computing an overall correlation score between a given

gene set and an ontology concept (e.g. disease). The meta-analysis

algorithm statistically assesses ‘‘reproducibility’’ of significant

findings, thus minimizing the chance of random correlations and

poor-quality data affecting the final results.

The meta-analysis algorithm aggregated scores for various

ontology terms associated with the correlated signatures, weighted

by the strength of the correlation score (Figure 4, Methods). This

was computed separately for tissue, disease, compound, and

genetic perturbation categories. The algorithm considered any

available hierarchical relationships of ontology terms and

propagated enrichment scores to more general concepts accord-

ingly. Concepts that may have had lower scores than their parent

concepts were clustered under the parent. A ranked structure of

the most relevant tissues, diseases, and compounds was thus pre-

computed for each signature. The advantage of this strategy is that

related ontology tags could be associated with each signature

semantically. For example, ‘‘heart’’ and ‘‘left heart ventricle’’ can

both contribute to the ‘‘heart’’ concept meta-analysis score since

‘‘heart’’ is the parent concept of ‘‘heart ventricle’’.

As each new signature was added, the meta-analysis computa-

tions for existing signatures in the system were also updated. This

ongoing process ensured that at a given time the most up-to-date

results of the meta-analysis given the current state of the

knowledge base were produced. When a query with a given set

of genes was performed a total collection of meta-categories, as

well as individual signatures were scanned to identify top-ranking

normal tissues, diseases, and compounds (Table 1).

Use Case 1: Comparative Analysis across Normal Tissue
and Cell Type Data

Analysis of the molecular similarity between brown fat

and other normal tissues. A large number of experiments in

the public domain provide a great resource for exploring normal

tissue biology. It is virtually impossible to create a single

comprehensive dataset with gene expression profiles of all tissues

and cell types of interest. However, normal tissue datasets from

hundreds of independent studies can be scanned using gene sets of

interest to identify similarities. This can further our understanding

of the relationships between different tissues, different stem cell

lineages, as well as mechanisms governing normal and aberrant

developmental pathways.

Table 1. Summary of all data associated with normal tissues, diseases, drug treatments, and genetic perturbations.

Concept Type Total Studies Total Signatures Total Samples Total Concepts

Normal Tissues 450 2,120 14,500 120

Diseases 1,390 5,880 54,600 700

Compounds 990 10,830 45,420 1,430

Genetic Perturbations 1,235 6,170 16,400 135

Total 4,065 25,000 130,920 2,375

Total concepts count represents the number of specific ontology terms that are assigned as tags to signatures, or which represent ‘‘parent’’ ontology concepts. For
example, when a gene signature is tagged with ‘‘heart ventricle’’, it is automatically considered tagged with the parent term ‘‘heart’’ and both are considered in the
counts shown. ‘‘Total studies’’ refers to the number of studies that contain gene signatures that contribute to a given concept based on their associated tags. ‘‘Total
Signatures’’ and ‘‘Total Samples’’ refer to the number of gene signatures and individual samples contributing to a given concept type (e.g. disease).
doi:10.1371/journal.pone.0013066.t001
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We applied our strategy to investigate molecular properties of

brown fat cells and to explore their similarity to a collection of

other normal tissues. To achieve this we derived a brown fat tissue

gene expression signature from the mouse tissue atlas dataset

containing genome-wide gene expression profiles of 61unique

tissues and organs (NCBI GEO Accession # GSE1133) [21]. Each

gene was ranked according to its fold change relative to the

median of all mouse tissues (see Methods). As a result we obtained

a tissue signature that consisted of 31,309 probe sets and their

associated ranks.

We then used our rank-based enrichment analysis to compute

pairwise correlation scores between brown fat and signatures

across all studies contained in NextBio (www.nextbio.com,

Table 1). A meta-analysis of the pairwise signature correlations

then computed the correlation of the brown fat signature with the

tags of all target signatures (Figure 5A). The majority of ontology

concepts were associated with multiple signatures derived from

different studies and organisms. As shown in Table 2, skeletal

muscle tissue produced the strongest positive correlation with the

brown fat tissue signature. A positive correlation indicates that

predominantly the same sets of genes are either up- or down-

regulated in the query and target set of signatures (in this case a

total of 4 signatures). Skeletal muscle had the top ranked

correlation score to brown fat out of 120 total tissue concepts

computed from over 2,000 signatures (Table 1). Skeletal muscle

data used in the meta-analysis was generated from mouse, rat, and

human tissues, providing evidence that the results are consistent

across species and platforms. Of interest, these data indicate that

brown fat cells are more closely related to muscle than to white

adipose tissue, which failed to produce significant correlation with

muscle tissue concepts for the same query (Table S2). In a recently

published study, Seale et al. demonstrated that brown fat cell

precursors can turn into muscle cells upon the loss of PRDM16

protein [22]. Other studies have also shown that brown fat and

muscle tissue share important molecular characteristics, thus

validating our approach [23,24].

Analysis of a brown preadipocyte signature
Seale et al. identified new progenitor cells that gave rise to brown

fat and muscle cells but not to white fat cells [22]. Currently,

however, there is no gene expression data available for these new

precursor cells. Given that, we decided to investigate the molecular

properties of another brown fat cell precursor and its molecular

similarity with normal tissues and cell types. We derived a brown

preadipocytes signature consisting of 2,302 probesets (mouse

MG_U74Av2 Affymetrix chip) by comparing gene expression of

Figure 5. Brown fat meta-analysis. Diagram representing analyses of two different brown fat related signatures: (a) Brown fat tissue signature
(relative to all other mouse tissues). (b) Signature of brown preadipocytes vs. white preadipocytes. After computing pairwise scores between query
and all target signatures the meta-analysis of pairwise scores and their associated tags (associated disease, tissue, and compound terms) is
performed. The final result produces a ranked set of tissues, diseases, and compounds with the most significant association to query signature.
doi:10.1371/journal.pone.0013066.g005
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brown to white preadipocytes (GEO Accession # GSE7032,

Table S4) [23]. Using this signature, we performed a correlation

analysis across all normal tissues and cell types in NextBio

(Figure 5B), and found that muscle stem cells were among the top

five concepts with the strongest positive correlation scores to the

brown preadipocytes signature (Table 3). This result further

contrasts the differences between brown and white fat cells and

demonstrates the association of muscle to brown fat. We continued

our analysis by looking for patterns as brown and white adipocytes

undergo differentiation, and we continued to observe a pattern of

positive correlation between brown adipocyte and muscle cell

precursors. In accordance with results in Seale et al., our meta-

analysis approach suggests the possibility of the existence of a

common precursor cell for these two cell types [22].

Use Case 2: Comparative Analysis across Disease Related
Data

Analysis of brown fat tissue and correlation with disease

signatures. Using public data, we generated thousands of

signatures representing 700 distinct disease states. This large

collection of disease profiles provides a rich contextual framework

with which to explore gene sets of interest. Analysis of tissue- and

cell type-specific gene sets against these disease-state profiles can

unveil abnormal cell- and tissue-specific programs that are

involved in disease development. Analysis of gene sets derived

from specific patient cohorts against specific disease signatures can

classify a disease more precisely and help drive patient

stratification and trial selection [25,26].

As an example, we investigated the relationship of brown fat

tissue to all disease tissue signatures. For the purposes of this study

we focused on disease concepts that had a negative correlation to

brown fat signature. Among the top ranking disease states, we

found obesity, quadriplegia, aging, Duchenne muscular dystrophy,

and myocardial infarction (Table 4). The negative correlation to

obesity provided a positive control, as brown fat functions in

energy expenditure and is associated with resistance to obesity in

diverse mouse strains [27]. Furthermore, the proportion of white

to brown fat is significantly increased in obese versus normal

subjects [28].

The strong negative correlation of the brown fat signature

with aging (Table 4) may be partly explained by the potential

age-related suppression of pathways leading to brown fat cell

production. This is supported by the fact that that brown tissue

deposits are more abundant in fetuses and newborns, but are

less prominent in adults [29]. The strong negative correlation

with quadriplegia, Duchenne muscular dystrophy, and myo-

cardial infarction is consistent with our earlier findings of

molecular similarities between brown fat and muscle tissues.

Also, normal tissue-specific gene expression is suppressed in the

atrophied muscles associated with these disease phenotypes

[30].

Use Case 3: Comparative Analysis across Chemical
Perturbations Data

Brown preadipocytes differentiation signature positively

correlates with reversine. A comparative analysis of gene

signatures derived from a large collection of compound treatment

experiments can identify those compounds with similar biological

properties, pinpoint treatments with toxic side-effects, and discover

novel indications for existing compounds [11]. Furthermore, by

exploring a large collection of compound signatures, investigators

can identify chemical perturbations that can activate or deactivate

Table 2. Brown fat tissue signature query results.

Rank Normal tissue
Correlation
Direction Correlation Score

# Correlated/
Total Studies

# Total Correlated
Signatures

1 Skeletal muscle tissue + 100 4/4 4/4

2 Tongue + 93.8 3/3 5/5

3 Epidermis + 93.3 1/1 3/3

4 Cardiac atrium + 88.9 2/2 2/2

5 Duodenum + 85.9 2/2 2/2

The gene expression signature from brown fat tissue was queried against all studies corresponding to normal normal tissues from different microarray platforms and
organisms. The results for top five tissues with the biggest positive correlation to brown fat signature are shown. Additional results are shown in Tabs S2 of the
Supporting Information section.
doi:10.1371/journal.pone.0013066.t002

Table 3. Brown versus white preadipocytes signature correlation with normal tissues and cell types.

Normal tissue Correlation Direction Correlation Score
# Correlated/
Total Studies

# Total Correlated
Signatures

Embryonic tissue + 89.0 7/7 17/17

Muscle stem cell + 88.7 1/1 3/3

Hair follicle matrix + 87.1 2/2 3/3

T-helper type 1 cells + 82.2 1/1 1/1

Embryonic Stem cells + 82.1 15/18 26/32

Query results for gene expression signature differentiating brown and white preadipocytes across normal tissue signatures. Positive correlation scores for the top four
tissues whose expression signatures correlate with brown vs. white preadipocytes signature (for additional results see Table S5, Supporting Information section).
doi:10.1371/journal.pone.0013066.t003

Public Data Meta-Analysis
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cell type-specific differentiation programs and use them as

additional tools in future experiments.

To explore compounds that may affect differentiation of brown

preadipocytes, we first derived a differentiation signature of 2,000

probe sets by comparing mature brown adipocytes to brown

preadipocytes (Table S6) [23]. We then queried this signature against

all compound-related data. The strongest positive correlation

discovered was with the signature of the small molecule reversine

(Table 5). Interestingly, Kim et al. demonstrated that reversine

stimulates adipocyte differentiation in 3T3-L1 cells [31]. There is also

a strong positive correlation between the signatures of mature brown

fat and reversine (Table S7) [32]. This suggests that reversine may be

a useful compound in future studies of brown fat and may act to

stimulate brown preadipocytes differentiation into mature cells.

Use Case 4: Comparative Analysis across Genetic
Perturbations Data

Analysis of brown versus white preadipocytes

signatures. Genetic perturbation experiments represent animal

or cell line models in which a gene was deleted, modified, or silenced

using transcript-specific siRNAs. Identifying genes whose per-

turbation causes similar gene expression changes as found in the

target condition might help reveal common, key mechanisms

involved in the regulation of processes leading to normal and disease

development.

To identify genetic perturbations that resulted in altered gene

expression patterns similar to the brown preadipocyte signature,

we again used the 2,302 probe set derived by comparing the gene

expression profiles of brown and white preadipocytes (Table S4)

[23]. A query against all genetic perturbation experiments in

NextBio (1,235 datasets containing 6,170 gene signatures for a

total of 135 perturbed gene products) revealed that perturbations

of SNF5 correlated most positively and those of MYC correlated

most negatively (Table 6). Positive correlation between brown vs.

white preadipocytes signature and SNF5 perturbation implies that

ablation of SNF5 function induces gene expression changes that

are positively correlated with white preadipocytes. Current

literature supports the notion that the SNF5 gene positively

regulates adipocyte differentiation during adipogenesis [33]. Our

results suggest that SNF5 expression may direct cell fate towards

white preadipocyte differentiation. The negative correlation with

MYC gene perturbations indicates that MYC regulated pathways

may positively regulate brown adipocyte differentiation as

compared to white adipocytes. A number of reports suggest that

overexpression of MYC suppresses adipogenesis and that its

deletion can stimulate accumulation of white fat in pancreas

[34,35]. Overall, we find that our system allows a deeper look at

Table 4. Correlation between brown fat and muscle tissue signatures with diseases.

A. Query: Brown Fat Rank Disease
Correlation
Direction

Correlation
Score

# Correlated/
Total Studies

# Total Correlated
Signatures

Brown fat 1 Obesity - 100 8/14 27/46

Brown fat 2 Quadriplegia - 78.2 1/1 1/1

Brown fat 3 Aging - 73.9 27/30 36/48

Brown fat 4 Duchenne Muscular Dystrophy
(DMD)

- 86.9 7/8 14/16

Brown fat 5 Myocardial infarction - 84.1 5/5 25/26

B. Query: Skeletal
Muscle

Skeletal muscle 1 Quadriplegia - 100 1/1 1/1

Skeletal muscle 2 Duchenne Muscular Dystrophy
(DMD)

- 99.9 7/8 14/16

Skeletal muscle 3 Oral cancer - 89.5 2/2 3/3

Skeletal muscle 4 Nerve injury - 78.1 4/4 10/14

Skeletal muscle 5 Myocardial infarction - 77.2 6/6 24/27

Brown fat and muscle normal tissue signatures queried against all disease-related signatures in different studies and organisms. Top diseases with negatively correlated
genes to brown fat and muscle are shown (for additional results see Table S3, Supporting Information section).
doi:10.1371/journal.pone.0013066.t004

Table 5. Brown mature adipocytes signature correlation with compounds.

Compound
Correlation
Direction

Correlation
Score

# Correlated/
Total Studies

# Total Correlated
Signatures

Reversine + 100 1/1 1/1

Dasatinib + 79.8 1/1 9/9

Matrigel + 79.6 7/8 24/26

Gentamicin + 79.5 3/5 12/16

Top five query results for gene expression signature comparing mature brown adipocytes to differentiating brown preadipocytes across all signatures tagged with
‘‘Compounds’’ category (for additional results see Table S6, Supporting Information section).
doi:10.1371/journal.pone.0013066.t005

Public Data Meta-Analysis
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the regulatory networks involved in regulating brown and white

preadipocyte differentiation into mature cell types.

Discussion

In this study we presented a novel strategy for mining global

collections of large-scale biological data using a combination of

ranked-based enrichment statistics and ontology-based meta-

analysis. We have implemented our approach within the NextBio

platform (www.nextbio.com) and demonstrated how researchers

can use their own gene sets of interest to perform queries in the

context of the globally available public data. In a series of case

studies, we showed how this strategy can be used to scan thousands

of microarray experiments in the public domain against brown fat-

related gene sets to glean insight into adipose tissue biology. These

adipose-related gene sets were analyzed within the context of gene

expression data from normal and disease tissue comparisons,

chemical compound studies, and genetic perturbation experi-

ments. Insights drawn from these case studies were consistent with

previously published results and also provided a novel foundation

for the formation of new hypotheses.

Two key factors driving the significance of our data-driven in

silico analysis are the sheer volume of data that we independently

correlated and ranked with brown fat-related gene sets (over 4,000

experiments comprising 25,000 signatures) and the replication of

observed correlations across multiple independent datasets. Using

brown fat-derived gene sets, we demonstrated the strategy of

exploring tissue development, cell-type specific expression, and

disease etiology. Furthermore, we demonstrated the discovery of

compounds and genetic perturbations that could potentially

influence gene expression programs involved in adipocyte

differentiation. The identification of compounds and genetic

perturbations also furthers our understanding of cell type-specific

expression and helps in designing new experiments to study white

and brown fat biology.

Our strategy also provides a method that addresses, at multiple

levels, the data quality concerns that are often raised with respect

to publicly available data. First, the data goes through rounds of

preprocessing, quality control, and curation. Second, all analysis

results are rank-ordered according to enrichment statistics. Finally,

the meta-analysis framework ensures that the majority of findings

are supported by multiple, independent datasets, which signifi-

cantly increases the overall confidence of our results.

The brown fat case study represents a hypothesis-generation

strategy that can be applied to a variety of biological questions. As

the amount of large-scale public data continues to grow, such data-

driven in silico analyses are becoming increasingly important and

provide a complementary methodology to traditional hypothesis-

driven research. Similar strategies can also be applied to study the

function of genes, pathways, and other biological entities of

interest. Additionally, within clinical research settings, it can be

used to study common and distinct genomic signatures of different

patient cohorts or to identify novel drug indications, among other

applications.

The ontology-based meta-analysis strategy presented here

enables a higher order view of biological connections within the

combined corpus of public and user-generated data. As thousands

of new datasets become available, such meta-level analyses can

provide a practical way to mine vast quantities of diverse large-

scale datasets. Microarray-based gene expression data is the

obvious starting point, given the large amount of public data that

has become available in the last several years. The next logical step

for our strategy would be to extend the current framework to

incorporate orthogonal data types generated by proteomics, SNP

genotyping, and next-generation sequencing platforms. The

combination of orthogonal data will ultimately provide a broader

view of biological systems and enable comprehensive in silico

investigations to take place.

Methods

Raw data pre-processing
A majority of studies currently processed within NextBio adhere

to certain criteria for inclusion:

N Comprehensive coverage of genes - The platform used should

contain over 12,000 probes for human, mouse, or rat studies.

For all other organisms, the array should contain at least half

the number of probes as there are estimated genes in the

genome.

N Presence of a baseline or control group.

N Access to raw or normalized expression values

N Sample annotations provided

To ensure standardization in the processing pipeline, studies

were processed from raw data whenever available and from pre-

processed data otherwise. For example, for Affymetrix-based

studies in which CEL files are available, RMA normalization was

applied [36]. Otherwise, expression summary intensities, such as

those processed generated by MAS5 (Affymetrix) or dChip were

processed [37]. All datasets went through appropriate processing

steps that depended on the data type, platform, and experimental

design used to generate the data and include:

N Background subtraction, if applicable

N Expression summarization, e.g. using RMA when CEL data is

available

Table 6. Brown versus white preadipocytes signature correlation with genetic perturbations.

Perturbed Gene
Correlation
Direction Correlation Score

# Correlated/
Total Studies

# Total Correlated
Signatures

SMARCB1 (SNF5) + 100 1/1 1/1

Tcrb + 96 1/1 10/11

MYC 2 95 21/23 44/65

MYOD1 2 95 5/5 20/28

RHO 2 95 3/3 8/9

Top five query results for gene expression signature comparing brown to white preadipocytes across all signatures tagged with ‘‘Genetic Perturbation’’ category (for
additional results see Table S8, Supporting Information section).
doi:10.1371/journal.pone.0013066.t006

Public Data Meta-Analysis

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e13066



N Data transformation (log) and technical replicate averaging

and negative value correction

N Normalization – RMA, per-chip median or Lowess where

applicable

N Quality control assessment

N Statistical (differential expression) analysis

The vast majority of processed data in the system falls into the

category of case-control experimental design analyzed using

Welch or standard t-tests, paired or unpaired, as appropriate.

Quality assessment methods were employed to review sample-level

and dataset-level integrity – these included curator review of pre-

and post-normalization boxplots, missing value counts, and p-

value histograms (after statistical testing) with FDR analysis to

determine whether the number of significantly changing genes is

greater than expected by chance.

A p-value significance cutoff of 0.05 (without any multiple

testing correction) and a minimum absolute fold-change cutoff of

1.2 (typically the lowest sensitivity threshold of commercial

microarray platforms) was used to obtain the final set of signatures

of differentially-expressed genes. This double filtering procedure

serves to address different aspects of variability in the data [38–

40]. To address the potential unreliability of the fold-change

metric at low intensity levels [41], genes with signals lower than a

20th percentile cutoff in both control and test groups were

discarded from the signature.

Expression profiles can vary considerably from study to study

and from platform to platform. Different platform technologies

can yield different dynamic ranges, distributions of fold-changes,

and p-values that reflect the technologies used. To allow inter-

study comparability, a non-parametric approach was established

so that ranks were assigned to each final gene signature based on

the magnitude of fold change. Fold-change, as a ranking metric,

had a better concordance across platforms than p-values from

statistical tests [42]. Ranks were then further normalized to

eliminate any bias due to varying platform sizes.

In the absence of a ‘‘gold standard’’ for processing microarray

data, these statistical threshold cutoffs serve to maintain a

reasonable and consistent level of data quality across all studies

analyzed within NextBio and are commonly adopted in the

literature [43–45]. The thresholds are intentionally permissive to

ensure that signatures contain all potentially interesting elements.

The potential for introducing noise, i.e., more false positives, is

balanced by (a) enforcing the basic quality control metrics

described above and (b) incorporating a normalized rank-based

scheme that captures the relative importance of each gene in a

signature. This key metric of the meta-analysis framework is

described below. In summary, this strategy results in the following

advantages:

(1) The normalized ranking approach enables comparability

across data from different studies, platforms, and analysis

methods by removing dependence on absolute values of fold-

change, minimizing some of the effects of normalization

methods used, and accounting for platform effects.

(2) During pair-wise comparison of signatures, the Running Fisher

algorithm (described below) dynamically determines the best

cutoffs corresponding to the maximal similarity score by

scanning all of the potentially interesting data. Most of the

time, low ranking genes do not contribute to the maximal

score, thus reducing the dependence on the minor variations

of the actual cutoffs used in generating biosets.

(3) A meta-analysis identifies genes with consistent signals across

several experiments. This rescues potentially interesting gene

signatures that might otherwise have fallen below the margin

of significance in an analysis based on a single study.

Cross-platform comparisons
An index of microarray platforms was compiled to aid in the

comparison of microarray data. The index provides a standard-

ized mapping of commonly used public- and vendor-specific

vendor gene identifiers to reference identifiers such as NCBI

Entrez Gene, UniGene, Ensembl, RefSeq, or GenBank accession

numbers.

Cross-species comparisons
To enable seamless comparison across different species, orthologs

were identified for each pair of organisms and were grouped into

ortholog clusters. Ortholog information was derived from Mouse

Genome Informatics (MGI) at Jackson Lab (http://www.informat-

ics.jax.org), HomoloGene at NCBI (http://www.ncbi.nlm.hih.gov),

and Ensembl (http://www.ensembl.org). Ortholog clusters were

generated as follows: 1) the manually curated pairwise ortholog data

among human, mouse, and rat from MGI were retrieved and

clustered to form initial ortholog clusters. 2) The homology group

data among human, mouse, rat, fly, and worm were analyzed to

remove those in conflict with MGI data. The filtered homology

group data were then entered into the ortholog clusters. 3) The

whole genome pairwise sequence similarity data from Ensembl were

processed to identify reciprocal best hits as candidate orthologs for

all pairwise organisms among human, mouse, rat, fly, worm, and

yeast. The candidate orthologs were prioritized based on the

percentage sequence identity and examined against the existing

ortholog cluster. Qualified ortholog candidates were then entered

into the ortholog cluster.

Computing pairwise correlation scores between gene
signatures

The directional relationship between the two signatures is

captured by the sign of the correlation score. The up-regulated

genes (b+) and the down-regulated genes (b2) are separated into

directional subsets, and correlation scores are computed for each

directional subset from one signature (b1+, b12) against each

subset from the other signature (b2+, b22). A positive sign is given

to a subset pair of the same direction (b1+b2+, b12b22), and a

negative sign is given to a subset pair of opposite directions

(b1+b22, b12b2+). The overall correlation score is the sum of

directional subset scores and the sign of the sum determines

whether the two signatures are positively or negatively correlated

(Figure 3). The matching genes between two typical gene

signatures are depicted in Figure 2. The directionality and ranks

for each gene is shown.

The detailed steps given two gene signature sets (b1, b2) are as

follows:

First, each gene signature set is rank-ordered according to fold

change, p-value or a particular score. If appropriate metrics are

not provided, then the gene signature set is unranked. The up-

regulated genes and down regulated genes are noted with positive

and negative signs to imply directionality, respectively. A

directional subset is generated for each direction, such as b1+,

b12, b2+, and b22 (Figure 3). If no directional data are provided,

then the gene signature set is not directional and only one subset is

formed with the whole signature set, such as b1o, or b2o.

Second, all the subset pairs are identified: b1Di, b2Dj, where Di

and Dj are the available directions (+, 2, or o) in b1 and b2,

respectively. The Running Fisher algorithm is applied to each

subset pair. The top ranking genes in the first subset b1Di are
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collected as a group G, and the second subset b2Dj is scanned top

to bottom in the rank order to identify each rank with a gene

matching a member in the group G. If the subset is unranked, all

the genes in the subset are retrieved at the first scan.

At each matching rank K, the scanned portion of the second

subset b2Dj consists of N genes, and the overlap between group G

and N genes is M. A Fisher’s exact test is performed at rank K, to

evaluate the statistical significance of observing M overlaps

between a set of size G and a set of size N, where the set of size

G comes from platform P1 and the set of size N comes from

platform P2, given the sizes of P1 and P2 as well as the overlap

between P1 and P2.

At the end of the scan, the best p-value is retained, and a

multiple hypothesis testing correction factor is applied. The

multiple testing factor is the expected number of overlaps between

the two subsets of the given sizes, given the two platforms P1 and

P2. The negative log of the multiple testing corrected best p-value

is a score for the subset pair.

Next, the Running Fisher algorithm is performed in the reverse

direction: the top ranking genes in the second subset b2Dj are

collected as a group G, and the first subset b1Di is scanned in the

rank order. The same procedure in this reverse direction produces

another score for the same subset pair. The two scores are

averaged to represent the magnitude of the similarity between the

two subsets. A positive sign is given to the final subset pair-score if

Di and Dj are the same. A negative sign is given if Di and Dj are

opposite. The score is unsigned if any of Di and Dj is not

directional.

Finally, the overall score is computed by summing up all

directional subset pair scores (Figure 3). The sign of the sum

determines whether the two signatures are positively or negatively

correlated. If one of the two signature sets is directional and the

other is not directional, the overall score is represented by the

larger of the two subset pair scores, annotated with the

contributing direction from the directional signature. If both

signatures are not directional, then a single unsigned pair score is

calculated between the two biosets.

Ontology-driven Meta-Analysis
Given a gene signature representing the set of genes of interest

from a given experiment, a meta-analysis of the tens of thousands

of tagged gene signatures in the NextBio system can be used to

determine tissues, diseases, and compounds associated strongly

with the query set. Conceptually, the problem is that of ranking

ontology terms (concepts) based on how strongly enriched

signatures tagged with those concepts are with a set of genes of

interest. For a set of genes, ranked or unranked, the gene set

enrichment analysis described above is used to identify other

strongly associated signatures. Based on the strength of the

association, the aggregated scores for their associated semantic

concepts were computed.

Meta-analysis scores were computed separately for tissue,

disease, and compound categories. Given a query gene signature,

a list of contributing signatures was obtained for each category

based on two criteria – (1) They have enrichment scores with the

query signature above a pre-determined threshold and (2) They

pass an initial screening logic that ensures that they are tagged

with the appropriate combination of concepts to allow them to

contribute to that category.

Based on the list of contributing signatures, along with the

associated concepts and enrichment scores, the equation below

describes the various factors considered in determining a score for

a concept.

ScoreConcept!
NormalizedHitCounta

BackgroundCountb|AverageWeightedRankc

The normalized hit count for a concept is the sum of the ratio of

associated score of each signature tagged with that concept to the

overall best association score. The background count of a concept

is the number of signatures in the NextBio system tagged with that

concept. Inclusion of the background count reduces the bias

toward popular concepts that have more associated gene

signatures than others. Finally, the average weighted rank

represents the average rank of a tagged signature relative to all

other correlated signatures weighted by the associated normalized

score.

Given the dynamic nature of the NextBio system where the

distribution of data from various species, platforms, data types,

and semantic categories changes on a continuous basis, it is not

obvious at the outset what the relative contributions of each of

these factors should be toward determining an optimal overall

scoring function for determining top ranked concepts. These are

determined empirically by optimizing the model described above

using gold standard use cases and tuning parameters (a,b,c in the

equation above) for each of the factors.

This meta-analysis scoring process results in a ranked list of

ontological terms for each tissue, disease, and compound category.

It should be noted that some concepts are part of a hierarchical

ontological framework. When that was the case, enrichment scores

for signatures tagged with specialized concepts are accordingly

propagated to more general parent concepts in the hierarchy.

After scores for all concepts are computed, children concepts with

lower scores than parent concepts are clustered and presented to

the user.

Computing direction of signature-concept correlation
The overall direction of association (positive or negative)

between a query signature and a concept refers to the net

correlation of the query signature with a set of contributing

signatures (see previous section) tagged with that concept. Recall

that these contributing signatures may have positive or negative

pairwise correlation scores with the query signature. A cumulative

positive and negative score is obtained by aggregating the scores

for the positively and negatively associated signatures separately.

To minimize the effect of any spuriously strong signature

association, the cumulative scores are each weighted by the ratio

of the respective number of positively or negatively associated

signatures to the total number of contributing signatures. Finally,

the overall direction is called depending on which weighted

cumulative score is greater, as long as a minimum difference

threshold is met.

Supporting Information

Table S1 The list of public databases containing raw microarray

data available to the public. Only major databases were included

in this list.

Found at: doi:10.1371/journal.pone.0013066.s001 (0.02 MB

XLS)

Table S2 Meta-analysis results for the brown fat tissue signature

query against all other public datasets on normal tissue analysis.

Found at: doi:10.1371/journal.pone.0013066.s002 (0.02 MB

XLS)

Table S3 Meta-analysis results for the white fat tissue signature

query against all other public datasets on normal tissue analysis.
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Found at: doi:10.1371/journal.pone.0013066.s003 (0.38 MB

XLS)

Table S4 Brown preadipocytes gene expression signature. The

signature was identified by comparing cultured brown preadipo-

cytes to white preadipocytes at day 4.

Found at: doi:10.1371/journal.pone.0013066.s004 (0.01 MB

DOC)

Table S5 Meta-analysis results for the brown preadipocyte

signature query against all other public datasets on normal tissue

analysis. Brown preadipocyte signature was determined by

comparing gene expression of cultured brown preadipocytes

versus white preadipocytes at 4 days.

Found at: doi:10.1371/journal.pone.0013066.s005 (0.01 MB

XLS)

Table S6 Query results for gene expression signature comparing

mature brown adipocytes to differentiating brown preadipocytes

across all signatures tagged with ‘‘Compounds’’ ontology category.

Found at: doi:10.1371/journal.pone.0013066.s006 (0.01 MB

XLS)

Table S7 Reversine gene expression signature. The signature

was identified by comparing cultured C2C12 mouse myoblasts

treated with reversine to non-treated control myoblasts.

Found at: doi:10.1371/journal.pone.0013066.s007 (0.62 MB

XLS)

Table S8 Meta-analysis results for the brown preadipocyte

signature query against all other public datasets on genetic

perturbations analysis. Brown preadipocyte signature was deter-

mined by comparing gene expression of cultured brown

preadipocytes versus white preadipocytes at 4 days

Found at: doi:10.1371/journal.pone.0013066.s008 (0.01 MB

XLS)
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