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Abstract

Our group produced the best predictions overall in the DREAM3 signaling response challenge, being tops by a substantial
margin in the cytokine sub-challenge and nearly tied for best in the phosphoprotein sub-challenge. We achieved this
success using a simple interpolation strategy. For each combination of a stimulus and inhibitor for which predictions were
required, we had noted there were six other datasets using the same stimulus (but different inhibitor treatments) and six
other datasets using the same inhibitor (but different stimuli). Therefore, for each treatment combination for which values
were to be predicted, we calculated rank correlations for the data that were in common between the treatment
combination and each of the 12 related combinations. The data from the 12 related combinations were then used to
calculate missing values, weighting the contributions from each experiment based on the rank correlation coefficients. The
success of this simple method suggests that the missing data were largely over-determined by similarities in the treatments.
We offer some thoughts on the current state and future development of DREAM that are based on our success in this
challenge, our success in the earlier DREAM2 transcription factor target challenge, and our experience as the data provider
for the gene expression challenge in DREAM3.
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Introduction

The DREAM3 signal transduction challenge and its assessment

are described in more detail elsewhere in this issue. [1] Briefly, two

hepatocyte cell lines, one normal and one cancer, were each

treated with one of seven stimuli, or left untreated. Simultaneously

the cells were treated with one of seven protein kinase inhibitors,

or left uninhibited. Altogether, there were 64 combinations of

stimulus (or non-treatment) and kinase inhibitor (or non-

treatment). For each of these combinations, measurements were

made at two time points. There was also a completely untreated

(time = 0) sample. For each of the seven stimuli, data involving one

of the seven inhibitors was withheld by the organizers and made a

target for prediction. Data for a different inhibitor was withheld

for each of the seven stimuli. For each combination of stimulus and

inhibitor to be predicted, values were required for the normal and

cancer cell lines, and for each of the two time points. For each

combination of stimulus, inhibitor, cell line and time point,

measurements were provided for 20 cytokines and 17 phospho-

proteins. The cytokine and phosphoprotein predictions were

assessed separately.

Methods

To get a feel for what might work, we started by simply

visualizing the data. An example of what we tried is shown in

Figure 1 for the phosphoprotein set. Based on such visualizations,

it was clear that different combinations of stimulus and inhibitor

gave rise to similar profiles of phosphoproteins and cytokines. This

implied that we might be able to directly impute the missing data

points.

In order to predict the data for a particular stimulus-inhibitor

combination, we chose to use data from the other experiments that

involved the same stimulus or the same inhibitor. However, we

wished to weight the contributions from these experiments based

on how similar their marker protein profiles were to the

combination of interest. To that end, we first assessed all pairwise

similarities of inhibitors and, separately, all pairwise similarities of

stimuli. Figure 2 illustrates how this was done. For all inhibitors, a

data vector was constructed by concatenating the values for all

phosphoproteins (or cytokines) measured in the presence of that

inhibitor. The order is arbitrary, but of course has to be the same

for all inhibitors. For each pair of inhibitors, there are two blocks

of data, corresponding to two stimuli, for which values are missing.

However, this leaves data from five stimuli and from unstimulated

cells that can be used for calculating correlation coefficients. This

amounts to a total of 442 values in each vector in the case of the

phosphoprotein predictions and 520 in the case of the cytokines.

Data vectors analogous to those constructed for the inhibitors were

constructed for the stimuli as well, and all subsequent references to

what was done with inhibitors also applies to stimuli.

For each pair of inhibitors, we calculated the Spearman rank

correlation coefficient based on the data vectors described above.
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Values missing from one data vector or the other were ignored.

For each inhibitor, we then calculated a normalized correlation

coefficient to express the similarity of each of the other inhibitors

to that inhibitor. The inhibitor with the highest correlation to the

inhibitor of interest was given a weight of 1, the inhibitor with the

lowest correlation was given a weight of 0, and the weights for all

other inhibitors were scaled between these according to their

correlation coefficients. (Figure 2B). For each missing value to be

predicted, we then averaged the values from the six experiments

that used the same inhibitor, weighting as described above, plus

the values from the six experiments that used the same stimulus,

also weighted as described.

Results and Discussion

By the criteria used by the organizers of DREAM, our group

did well, and we did so with an exceptionally simple algorithm.

The algorithm was developed by inspecting the data, surmising

that a weighted average of related experiments would work

reasonably well, and then implementing a scheme to do it that

seemed sensible. We did a very limited validation using simulated

missing data, which suggested that the scaling of weights was a

sensible thing to do. However, we made no attempt to

systematically optimize the method. The success of such a simple

algorithm suggests that the data set as a whole is substantially

redundant, and that the missing data are mostly well-determined

by data from related experiments.

The importance of having challenges that assess our ability to

predict real data is something that we advocated at the DREAM2

and DREAM3 meetings, and in a previous paper that describes

our success with the DREAM2 transcription factor target

challenge. [2] Interested readers will find in that paper a discussion

about the potential for community self-deception when the

distinction between data and the interpretation of data becomes

blurred. ‘‘We believe we did well in the DREAM2 transcription

factor target challenge, at least in small part, because we adopted a

model for interpreting expression data that we knew that the

organizers themselves subscribed to. We think this should be

avoided wherever possible and applaud the decision to move

towards challenges, such as this DREAM3 signal transduction

challenge, in which data are predicted.

Having argued so strongly for objective, data-dependent

assessments in the DREAM process, we were pleased to

participate in DREAM3 not only as predictors in the signaling

response challenge, but also as the providers of data for the gene

expression challenge. In our challenge, much like the signaling

response challenge, a large amount of data was provided under a

set of related conditions (yeast genotypes), and predictors were

asked to infer something about the data for a small subset of genes.

One of the two groups that did best did make an attempt to

include additional datatypes (i.e., ChIP-chip data) but our sense is

that most if not all of the success in that challenge amounted to the

imputation of missing data, albeit by methods more elaborate than

what we did in the signaling response challenge.

Does the success of imputation, and the corresponding lack of

new insights into biology, mean that data-driven assessments in

DREAM are a failure? We don’t think so. First, it is inevitable that

imputation of some sort will be the superior method given a

sufficient amount of relevant data. One solution might be to

simply provide much less data, or to require predictors to

extrapolate and not just interpolate. Second, it is not clear how

well imputation is really doing, only that it performs significantly

better than random. What are the predictions that we and others

got wrong, and what could we have done to do better? Perhaps

part of the assessment should be focused more on the problems

with the predictions, rather than the low-hanging fruit that we are

currently calling a success? Finally, we need to ask why we are

Figure 1. Visualization of the data provided to predictors for
the phosphoprotein sub-challenge. Phosphoprotein levels were
been normalized such that values above the median for all values are
yellow and those below the median are red. Each column is one of the
phosphoproteins, clustered based on similarity in expression. Rows
correspond to experiments, sorted in an arbitrary hierarchical manner
(cell type, time point, stimulus type, and inhibitor type). The white rows
that appear to subdivide the dataset represent the missing data to be
predicted.
doi:10.1371/journal.pone.0008417.g001
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making the predictions and whether the level of success is

sufficiently good for that purpose. We are reminded here of the

community-wide protein structure prediction experiments, CASP,

and the category of predictions that is traditionally called

homology modeling, but is now more commonly called tem-

plate-based modeling. [3,4] Even more than the imputation of

data in the DREAM challenges, it can be a trivial result to

conclude that a protein adopts a particular fold if there is sufficient

information (in this case, sufficient sequence similarity to a protein

of known structure). However, there would be great practical value

in going further, and predicting the coordinates of the structure to

an accuracy comparable to that which can be achieved

experimentally. After nearly 15 years of objective assessment in

CASP, the challenge remains unsolved. However, the problem has

become better defined, the methods more robust, and the relevant

data more abundant. We are optimistic that the same will happen

with DREAM.
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Figure 2. Determination of weights for calculating the weighted averages of similar experiments. (A) Example of how correlations
between inhibitors and stimuli were calculated. The two colored columns represent the vector of phosphoprotein values obtained under all
experimental conditions, sorted in an arbitrary but defined way. In the case of the mTOR inhibitor, data for the IGF-I stimulus is missing; these data are
to be predicted. Similarly, in the case of the MEK inhibitor, data for the INFg stimulus is missing. The data in common (dashed box) was used to
calculate the Spearman rank correlation coefficient. (B) Graphic representation of the normalized correlation coefficients relating inhibitors (top) and
stimuli (bottom). The matrices are asymmetric because correlation coefficients were separately normalized for each inhibitor (stimulus), setting the
maximum in a row to 1 (yellow) and the minimum to 0 (black). Other values were based on the correlation coefficient, scaling linearly between the
minimum and maximum values in the row.
doi:10.1371/journal.pone.0008417.g002
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