
Generation of Human Antigen-Specific Monoclonal IgM
Antibodies Using Vaccinated ‘‘Human Immune System’’
Mice
Pablo D. Becker1., Nicolas Legrand2., Caroline M. M. van Geelen3, Miriam Noerder1, Nicholas D.

Huntington4,5, Annick Lim5, Etsuko Yasuda3¤a, Sean A. Diehl2¤a, Ferenc A. Scheeren2¤b, Michael Ott6,

Kees Weijer2, Heiner Wedemeyer6, James P. Di Santo4,5, Tim Beaumont3, Carlos A. Guzman1, Hergen

Spits2,3*

1 Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany, 2 Department of Cell Biology and Histology,

Academic Medical Center of the University of Amsterdam (AMC-UvA), Center for Immunology Amsterdam (CIA), Amsterdam, The Netherlands, 3 AIMM Therapeutics,

Amsterdam, The Netherlands, 4 Cytokines and Lymphoid Development Unit, Institut Pasteur, Paris, France, 5 INSERM U668, Institut Pasteur, Paris, France, 6 Clinic for

Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Twincore Centre of Experimental and Clinical Infection Research, Hannover, Germany

Abstract

Background: Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can
be exploited as a therapeutic tool. However, the ‘humanization’ of murine monoclonal antibodies (mAbs) is a time-
consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity.
The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of
biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to
generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique.

Methodology/Principal Findings: After transplantation with CD34+CD382 human hematopoietic progenitor cells, BALB/c
Rag22/2IL-2Rcc2/2 mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. ‘‘Human
Immune System’’ mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface
antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-
XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B
cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for
tetanus toxoid and the hepatitis B surface antigen, respectively.

Conclusion/Significance: This work provides the proof-of-concept for the usefulness of this novel method based on the
immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens.
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Introduction

Hyper-immune sera containing polyclonal immunoglobulins

(Igs) have been widely used in both therapeutic and prophylactic

clinical settings [1]. However, the use of polyclonal sera was

associated with several problems, such as the stimulation of allergic

reactions, low reproducibility between clinical batches and high

off-label use, which finally caused a decline in their use [2]. The

advent of technologies to make monoclonal antibodies (mAbs)

derived from animals, especially mice, has overcome many of the
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problems associated with the use of polyclonal sera. The

technology to make monoclonal cell lines of antibody-producing

cells by fusing antibody producing plasma cells with myeloma cells

was described for the first time in 1975 by Milstein and Kohler [3].

The therapeutic potential of mAbs was immediately recognized

and in 1980 the first mAb, OKT3, was approved for therapeutic

applications. This antibody inactivates T cells, thereby preventing

rejections of organ transplants [4]. However, because of the

animal origin of the first generation of mAbs that were used in

clinical trials, human subjects treated with these antibodies

developed vigorous immune reactions against the animal proteins,

which were thereby eliminated preventing their therapeutic

actions [5]. To overcome these problems technologies were

developed to diminish the immunogenicity of mouse antibodies

by replacing part or the complete mouse antibody backbone by its

human equivalent, first generating chimeric, and subsequently

fully humanized antibodies [6]. In a parallel approach transgenic

mice bearing the human Ig region were created to obtain fully

human antibodies following immunization. The use of these mice

obviates the elaborate molecular engineering of antibodies that is

needed to humanize antibodies generated in wild-type mice,

however, the maturation process of the mouse B cells expressing

human Igs is different from that of fully human B cells [7].

Immortalization of B cells from immune humans seems to be

the logical strategy to avoid these problems. However, the methods

to achieve this goal have showed low efficiencies, although some

progress has recently been reported [8,9]. Nevertheless, the major

disadvantage of human B cells immortalization is the need for cells

from either vaccinated individuals or patients who had recovered

from an infection. Thus, to fully exploit the Ig repertoire of human

B cells in an in vivo setting, we explored the possibility to raise

mAbs following de novo induction of human B cell responses in

mice carrying elements of the human immune system (HIS). HIS

mice are generated by engrafting immunodeficient mice with

human hematopoietic stem cells (HSC) with or without human

lymphoid tissues from fetal origin [10,11,12]. In particular, mice

deficient for the recombinase activating gene-2 (Rag2) and the

common gamma chain of the IL-2 receptor (Il2rg) on a BALB/c or

a non-obese diabetic (NOD) background are permissive for human

HSC xenografts. Inoculation of newborn mice from these strains

with human HSC of fetal or umbilical cord blood origin gives rise

to robust engraftment of a number of immune cells, including T,

B, NK and dendritic cells. In this work, we describe a convenient

approach to generate fully human mAbs based on the immuni-

zation of BALB/c Rag22/2IL-2Rcc2/2 engrafted with human

CD34+CD382 HSC [13,14]. To this end, HIS mice were

immunized with commercial vaccines against hepatitis B virus

(HBV) and tetanus. Following immunization, human CD19+ B

cells were sorted based on surface CD27 expression, as a marker of

memory phenotype, and the isotype of surface Igs. The sorted B

cell populations were immortalized in vitro by retroviral transduc-

tion with human B cell lymphoma (BCL)-6 and BCL-XL genes and

antigen-specific B cell clones were established and characterized.

The obtained results provided the proof-of-concept for the

usefulness of this generic approach based on HIS mice combined

with immortalization of human B cells for the rapid and

inexpensive development of human mAbs against a wide range

of antigens.

Materials and Methods

Ethics statement
The use of fetal liver tissue obtained from elective abortions with

gestational age ranging from 14 to 20 weeks was approved by the

Medical Ethical Committee of the AMC-UvA and was contingent

on informed written consent.

Generation of HIS-mice
BALB/c Rag22/2IL-2Rcc2/2 mice were bred and maintained

in individual ventilated cages, and fed with autoclaved food and

water. HIS mice were generated as previously described

[13,14,15,16], with the approval of the Animal Ethical Committee

of the AMC-UvA (permit number DHL-100970). In brief, human

fetal livers were obtained from elective abortions with gestational

age ranging from 14 to 20 weeks. Magnetic enrichment of CD34+

cells (.98% pure) was performed by using the CD34 Progenitor

Cell Isolation kit (Miltenyi Biotech), after preparation of single cell

suspensions and isolation of mononuclear cells by density gradient

centrifugation over Lymphoprep (Axis Shield). Finally, newborn

(,5 days old) sub-lethally irradiated (3.5 Gy) BALB/c Rag22/2IL-

2Rcc2/2 mice were injected via intra-hepatic route with 5–106104

sorted CD34+CD382 human fetal liver hematopoietic stem cells in

30 ml. All manipulations of HIS mice were performed under

laminar flow. Cell suspensions were prepared in RPMI medium

supplemented with 2% fetal calf serum (FCS).

BCR VH and CDR3 immunoscope analysis
Twelve to sixteen weeks after CD34+CD382 HSC engraftment,

HIS mice were killed and single cell suspensions of splenocytes

were prepared. Red cells lysis was performed in 1 ml of red cell

lysis buffer (Sigma) for 10 min. Splenocytes were washed,

resuspended in 600 ml of RLT lysis buffer (Qiagen) and

homogenized by passing through a 21-gauge needle several times

using RNase free syringes. RNA was prepared using RNeasy mini

kits (Qiagen) according to manufactures instructions. BCR VH

immunoscope was performed as previously described [17]. Briefly,

cDNA was prepared and real-time PCR performed by combining

primers for the different VH chains (VH1-7) and specific

fluorochrome-labeled probes against the different constant regions

(CHm, CHa and CHc). An additional four PCR cycles ‘run-off

reactions’ were then performed on the PCR products using

fluorescent primers specific for the constant regions (Fcm, Fca and

Fcc). Products were gel separated to determine CDR3 lengths.

Analysis of six individual HIS-mice containing greater than 30%

human chimerism in the spleen was performed. The number of

human CD19+ B cells in chimeric spleens ranged from 5–126106.

Immunization protocol and sample collection
Eight weeks after HSC transplantation, blood was taken from

HIS mice to verify the level of engraftment by flow cytometry, as

described elsewhere [18]. HIS mice with a good level of human

reconstitution (.20% hCD45+ cells) were immunized by intra-

muscular route (biceps femoris) using a 29G needle, three times on

weeks 14, 16 and 18 with either 100 ml of the HBV vaccine

(Engerix-B, GlaxoSmithKline) or 50 ml of tetanus toxoid (TT)

containing vaccine (Tetanus vaccine, The Netherlands Vaccine

Institute). These amounts correspond to 1/10 of the normal

human dose. Negative controls received the same volume of PBS

buffer. Two weeks after the last immunization, HIS mice were

exsanguinated under isofluran/oxygen narcosis. Spleens and mLN

were removed aseptically and cellular suspensions were prepared.

The BM cells were isolated from the femur and tibia.

Flow cytometry analysis and B cell sorting
Cell suspensions were labeled with FITC, PE, PerCP-Cy5.5, PE-

Cy7, APC or APC-Cy7 coupled anti-human mAb targeting the

following cell surface markers: CD1a (T6-RD1) and CD38 (CLT16)

HIS Mice to Produce Human mAb
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from Beckman Coulter; CD3 (SK7), CD4 (SK3), CD8 (SK1), CD19

(HIB19), CD38 (HIT2), CD45 (2D1 and HI30), CD45RA (HI100),

CD138 (MI15), IgM (G20-127), IgD (IA6-2), IgG (G18-145) and

CCR7 (3D12) from BD Biosciences; CD27 (LT27) from AbD-

Serotec; CD27 (LG.7F9) from eBioscience. TT-specific B cells were

also occasionally stained with PE-coupled TT, kindly provided by

Dr. Andreas Radbruch (German Rheumatism Research Center,

Berlin, Germany). Dead cells were excluded based on DAPI

incorporation. All washings and reagent dilutions were done with

PBS containing 2% FCS and 0.02% NaN3. Stained cells were

analyzed with an LSR-II interfaced to a FACS-Diva software

system (BD Biosciences). Cell sorting of B cell subsets were

performed on HIS mouse BM and spleens using a FACS-Aria cell

sorter interfaced to a FACS-Diva software system (BD Biosciences).

For these experiments, all washings and reagent dilutions were done

with 2% FCS supplemented PBS without NaN3.

Retroviral transduction, culture and Ig-VH sequence
analysis of human B cell clones

The human BCL6 [19,20] and BCL-XL [21] encoding cDNAs

were further cloned in a LZRS retroviral expression vector, around

a T2A cleavage-promoting peptide sequence and upstream a

cassette containing an internal ribosome entry site (IRES) and the

gene encoding GFP. We therefore obtained a LZRS vector in the

following configuration: BCL6-T2A-BCLXL-IRES-GFP [9].

Transfection of Phoenix-GALV packaging cells and virus produc-

tion were performed as previously described [22]. Before retroviral

transduction, memory B cells were activated on c-irradiated (50 Gy)

mouse L cell fibroblasts stably expressing CD40L (CD40L-L cells) in

the presence of 25–50 ng/ml recombinant mouse interleukin-21

(rmIL-21, R&D systems) for 36 h [19]. The B cells were washed,

mixed with retroviral supernatants in Retronectin-coated plates

(Takara), centrifuged at room temperature for 60 min at 360 g, and

subsequently incubated with the retroviruses at 37uC, 5% CO2 for

6–8 h. Transduced B cells were maintained in co-cultures using

CD40L-L cells (105 cells/ml) and in standard IMDM (Gibco)

culture medium supplemented with 8% fetal bovine serum (FBS;

HyClone), penicillin/streptomycin (Roche) and 25 ng/ml rmIL-21.

The analysis of human Ig-VH sequences was performed as

follows. Total RNA was isolated from approximately 56105

monoclonal B cells with Trizol (Invitrogen). The cDNA was

generated and subjected to PCR with primers specific to the

different VH family members. PCR products were sequenced to

determine the CDR3 region of the different clones. Sequence

analysis was performed using BigDye Terminator chemistry

(Applied Biosystems Inc.) and CodonCode Aligner software.

ELISA screening for antigen-specific B cells
The plasma harvested from HIS mice (7 days after the first and

second immunization; 10 days after the third immunization) and B

cell clone culture supernatants were screened by ELISA for the

presence of total human IgM, total human IgG and antigen-

specific antibodies. Measurement of total IgM and IgG was

performed by coating 96-well plates either with AffiniPure F(ab’)2
fragment goat anti-human IgM (Fc5m-specific, Jackson Immu-

noResearch) or AffiniPure goat anti-human IgG (Fcc fragment-

specific; Jackson ImmunoResearch). Control human serum

protein calibrator (Dako) with known IgM (0.8 mg/ml) and IgG

(10.4 mg/ml) concentrations was used as a standard to be

compared to the samples. For the detection of antigen-specific

antibodies, 96-well plates were coated either with tetanus vaccine

(Nederlands Vaccin Instituut) or Engerix B (GlaxoSmithKline)

(106 diluted in PBS) for 1 h at 37uC or overnight at 4uC.

Alternatively, Ridascreen Tetanus IgG ELISA plates (Biopharm)

were also used to screen for TT-specific antibodies. After coating,

the plates were washed in ELISA wash buffer (PBS, 0.5% Tween-

20). A PBS solution containing 4% of milk was used as a blocking

agent, before adding serial dilution of HIS mouse plasma (starting

at a dilution of 1:5) or cell culture supernatants (starting at a

dilution of 1:2). Enzyme-conjugated detection antibodies were

added at a dilution of 1:2500 for HRP-conjugated anti-IgG and a

dilution of 1:5000 for HRP-conjugated anti-IgM (both from

Jackson ImmunoResearch). Then, TMB substrate/stop solution

(Biosource) was used for the development of the ELISA assay.

Statistical analysis
Statistical analyses were performed using GraphPad Prism

version 5.02 for Windows (GraphPad Software). Data were

subjected to two-tailed unpaired Student t test analysis. The

obtained p values were considered significant when p,0.05.

Results

HIS mice contain a large B cell IgM repertoire
We have generated HIS mice by transplanting human HSC into

alymphoid BALB/c Rag22/2IL-2Rcc2/2 newborn mice (Figure 1A).

As reported previously, multilineage human hematopoietic reconstitu-

tion is observed in HIS mice, which demonstrate human thymopoiesis,

B cell differentiation, NK cell and plasmacytoid dendritic cell

development, and myelopoiesis [10,13,14,15,16]. Human immune

cells accumulate in lymphoid tissues, and several B cell subsets are

observed in HIS mice (Figure 1B). We analyzed the human B cell

repertoire present in naive HIS mice by using B cell receptor (BCR)

immunoscope analysis based on quantitative PCR of Ig variable (VH)

and constant (CH) region gene segments [17]. Due to the lack of human

spleen samples, the cells isolated from HIS mouse spleens, which

contained sufficient numbers of human B cells to perform the

immunoscope analysis, were compared to control human peripheral

blood mononuclear cells (PBMC) samples, which were considered

acceptable for the purpose of the performed comparison. We observed

that IgM-expressing B cells as well as Ig isotype-switched B cells are

found in naive HIS mice (Figure 1C). The vast majority of B cells of

HIS mice expressed an IgM (97.961.0%), whereas IgG (1.861.0%)

and IgA (0.0760.04%) expressing B cells represented minor

populations. Only the frequency of IgA-expressing B cells was found

significantly higher in control human PBMC samples (p,0.0001). At

10–14 weeks post-transplantation (i.e. in steady state conditions), the

human Ig concentrations in the blood were 12268 mg/ml (IgM) and

143612 mg/ml (IgG) (Figure 1D), as previously reported [8,16]. In

comparison, the normal range for Ig concentration in healthy humans

is 400–3100 mg IgM/ml and 7200–14700 mg IgG/ml. In brief, despite

a low frequency of IgG-expressing cells, both human IgM and IgG

accumulated in the plasma of ,3 month-old HIS mice to levels

representing around 10% and 1% of adult human IgM and IgG

concentrations, respectively.

We further examined the antigen receptor repertoire diversity in

HIS mice, by determining the length of CDR3 hypervariable

regions for each Ig-VH gene family. The analysis of CDR3 length

distribution of individual HIS mouse splenocytes showed that IgM

repertoires are undistinguishable from normal human PBMC IgM

repertoires, as measured by the BCR immunoscope analysis

(Figure 1E). This observation suggests that HIS mice contain a

broad variety of naive IgM+ B cell clones. The VH-family usage

was large and similar to control human PBMC (Table 1). The

BCR immunoscope analysis was also performed for IgG and IgA

repertoires and we observed more restricted repertoires, as

expected from B cells undergoing clonal selection and Ig class

switch recombination (Figure S1).

HIS Mice to Produce Human mAb
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Figure 1. Characterization of B cells in naı̈ve HIS mice. (A) HIS mice are generated by transplanting sorted human CD34+CD382 HSC-enriched
cell fraction into conditioned (3.5 Gy irradiation) newborn Rag22/2 IL-2Rcc2/2 mice. After 6 to 8 weeks post-transplantation, human lymphoid and
myeloid cell subsets are found in the blood and lymphoid organs of the reconstituted animals. (B) The top panel shows the flow cytometry analysis of
human T (CD3+) and B (CD19+) cells found in the spleen of 8-week old HIS mice. The expression of IgM and IgD on the surface of B cells is depicted on
the low panel. (C) The relative proportion of B cells expressing an IgM, IgG or IgA BCR was determined by quantitative PCR for both control PBMC and
HIS splenocytes. Percentages represent the frequency of IgM, IgG and IgA (CHm, CHc and CHa) containing VH PCR products out of the total VH PCR
products from each spleen. The horizontal bars indicate the mean value. (D) The graph shows the concentration of total IgM and IgG (mean values:
horizontal bars) in the plasma of 10- to 14-week old naive HIS mice. (E) The naive IgM B cell repertoire of HIS mice was evaluated on splenocytes by
performing a BCR immunoscope for each VH family. The profiles obtained with control human PBMC are also shown.
doi:10.1371/journal.pone.0013137.g001
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Immunization of HIS mice with HBV and tetanus vaccines
results in the generation of antigen-specific antibody
responses

Since HIS mice contained broad naı̈ve B cell repertoires, we

analyzed the induction of human antigen-specific B cell responses

after immunization with commercially available human vaccines.

We designed a vaccination protocol based on repeated intra-

muscular immunizations (3 injections with 2-week intervals) of 10–

14-week old HIS mice with vaccines containing hepatitis B surface

antigen (HBsAg) or TT. Seven days after the last immunization

mice were sacrificed, the blood and the lymphoid organs were

harvested, and the phenotype and function of human cells was

analyzed.

All HIS mice showed human reconstitution (.20% hCD45+

cells) in the blood before starting the immunization protocol,

which correlated with human engraftment in lymphoid organs.

Overall, 42% of HBsAg-vaccinated (8 out of 19 vaccinated

animals) and 40% of TT-vaccinated (6 out of 15) HIS mice

showed significant production of antigen-specific IgM antibodies,

as detected by ELISA (Figure 2A). We performed a kinetic

monitoring of antigen-specific plasma Ig levels in individual

HBsAg-vaccinated responder HIS mice and we observed that after

the first immunization antigen-specific Igs were rarely detected. In

contrast, after the second immunization antigen-specific IgM was

detected, which steadily increased after the third immunization

with approximately 25–40% of responder mice also showing an

antigen-specific IgG response (Figure 2A). This suggests that

repeated vaccination leads to enhanced antigen-specific antibody

production. The responder mice exhibited higher total IgM

(173641 mg/ml) and total IgG (4596140 mg/ml) concentrations

in their plasma, as compared to PBS-injected (IgM: 37612 mg/ml;

IgG: 191658 mg/ml) and non-responder vaccinated (IgM:

44611 mg/ml; IgG: 192667 mg/ml) animals (Figure 2B).

At the end of the immunization protocol, vaccinated animals

showed significantly higher numbers of hCD45+ cells in all organs

(i.e. spleen, bone marrow (BM) and mesenteric lymph nodes

(mLN)) in comparison to mock-injected control mice. Responder

HIS mice exhibited higher numbers of human T and B cells in the

spleen, as well as T cells in the BM (Table 2; Table S1),

suggesting that the vaccination protocol had a positive impact on

the accumulation of human B and T cells. Moreover, the mLN

isolated from vaccinated HIS mice contained 4 to 5-fold more

hCD45+ cells than those of control animals (Figure 2C),

suggesting that the mLN structure might play a role in eliciting

an immune response in the HIS mice.

Generation of antigen-specific monoclonal B cell lines
from vaccinated HIS mice

In humans, the CD27+ memory B cell population contains the

majority of antigen-experienced B cells [23,24], and we reasoned

that the same should be true in vaccinated HIS mice. We therefore

cell sorted several different CD19+CD27+ B cell subsets from

individual HIS mice. We used two strategies to isolate the following

human B cell (CD45+CD19+) subsets from BM and spleens of

vaccinated HIS mice: (i) CD27hiCD38hi, (ii) CD27+CD38lo/intIgD+,

and (iii) CD27+CD38lo/intIgD2 on the one hand (Figure 3 –

Table 1. Average VH family usage for IgM in HIS (BALB-Rag/c)
mice and control human PBMC.

HIS (BALB-Rag/c) Human PBMC

VH1 0.1160.03 0.4060.07

VH2 0.0260.01 0.0560.04

VH3a 10.263.5 3.560.6

VH3b 75.164.4 79.960.1

VH4 12.563.2 11.561.7

VH5 0.0360.01 0.0760.03

VH6 0.0260.01 0.03060.002

VH7 0.000160.0002 0.0260.01

The data from HIS mice were generated with B cells isolated from the spleen of
naı̈ve animals. The values are expressed as the relative frequency (%) of each
IgM-VH family.
doi:10.1371/journal.pone.0013137.t001

Figure 2. Vaccination of HIS mice. (A) The graph shows the titers of HBsAg-specific IgM measured by ELISA in PBS-injected and HBsAg-vaccinated
HIS mice, 10 days after the third i.m. injection. Vaccinated mice are designated as responder animals when antigen-specific antibody titers are above
the cut-off value (doted horizontal line). Responder animals with a detectable antigen-specific IgG response are indicated by the horizontal arrows.
(B) The graphs show the concentration of total IgM (top graph) and IgG (bottom graph) in the plasma of PBS-injected (open squares) or vaccinated
HIS mice (pool of HBsAg- and TT-vaccinated) at the end of the vaccination protocol (mean values: horizontal bars). The vaccinated are separated
between non-responder (- columns; open circles) and responder (+ columns; closed squares) mice. (C) The graph shows the number of human cells
(hCD45+) harvested in mLN of PBS-injected vs. vaccinated (TT and HBsAg) HIS mice. The mLN were not detected in 43% of mock-injected mice, as
compared to 16% of vaccinated animals (symbols placed under the doted line). The animals without detectable mLN were excluded to calculate the
average number of human cells per group (horizontal bar). * p,0.05; ** p,0.01.
doi:10.1371/journal.pone.0013137.g002

HIS Mice to Produce Human mAb
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strategy 1, HBsAg vaccination); and (iv) CD27+IgM+IgG2 and (v)

CD27+IgM2IgG+ on the other hand (Figure 3 – strategy 2, TT

vaccination). The CD27hiCD38hi B cell subset (i) corresponds to a

population of activated plasmablasts potentially enriched for antigen-

specific Ig producing B cells [24,25]. The CD27+CD38lo/intIgD+ (ii)

and CD27+IgM+IgG2 (iv) B cell subsets contain the IgM-memory B

cells [26,27], whereas CD27+CD38lo/intIgD2 (iii) and CD27+IgM2

IgG+ (v) B cell subsets contain the memory B cells that have

undergone class-switch recombination. Still, the frequency of

CD27+CD38lo/intIgD2 (iii) B cells was higher as compared to the

frequency of CD27+IgM2IgG+ (v) B cells. This apparent discrepancy

was explained by the fact that the large majority (.80%) of

CD27+CD38lo/intIgD2 (iii) B cells were IgM+ B cells.

When comparing PBS-injected HIS mice to vaccinated non-

responder and vaccinated responder animals, we did not observe any

significant difference in the frequency of CD27+CD38lo/int memory B

cells (11.561.7% [n = 10], 8.260.7% [n = 20] and 13.062.1%

[n = 14] of total B cells, respectively) and CD27hiCD38hi plasmablasts

(6.462.7%, 2.560.7% and 8.662.6% of total B cells, respectively),

although the number of cells was increased for each of these

subpopulations in the vaccinated animals, as expected from the

enhanced number of total B cells (Table 2). We only observed a

Table 2. Human cell numbers measured in the spleen of vaccinated HIS mice.

Human cells (CD45+)

Groups Total B cells (CD19+) T cells (CD3+)

Absolute number (6106) Absolute number (6106) Absolute number (6106)

Controls (n = 10) 0.7260.27 0.2560.16 0.4360.15

Vaccinated (n = 34) 3.6360.75 ** 2.0360.46** 1.4560.41 n.s.

Responders (n = 14) 5.6361.54 ** 3.0660.96** 2.4460.87 *

non-responders (n = 20) 2.0660.45* 1.2860.35** 0.5960.20 n.s.

The data from the TT and HBsAg vaccination experiments are pooled. Values are expressed as a mean (6 S.E.M.) number of human cells, human B cells and human T
cells found in control (PBS-injected) or vaccinated animals. The vaccinated animals were further distributed between responder and non-responder animals, as
determined by antigen-specific ELISA. Statistical analysis was performed on the cell numbers harvested from vaccinated animals, as compared to the control group
(* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0013137.t002

Figure 3. Memory B cell sorting strategies. Subsets of human B cells (CD45+CD19+) were sorted from BM and spleens of vaccinated HIS mice.
The strategy 1 (upper part) was used on 3 responder HBsAg-vaccinated animals and gave rise to the following B cell subsets: (i) CD27hiCD38hi, (ii)
CD27+CD38lo/intIgD+, and (iii) CD27+CD38lo/intIgD2. The strategy 2 (lower part) was used on 3 responder TT-vaccinated animals and gave rise to the
following B cell subsets: (iv) CD27+IgM+IgG2, and (v) CD27+IgM2IgG+. The respective frequency and name (from i to v) of each sorted B cell subsets is
indicated in the corresponding flow cytometry dot plot.
doi:10.1371/journal.pone.0013137.g003

HIS Mice to Produce Human mAb

PLoS ONE | www.plosone.org 6 October 2010 | Volume 5 | Issue 10 | e13137



significant increase in the frequency of IgG+ B cells within the

CD27hiCD38hi plasmablast population of vaccinated responder HIS

mice, as compared to PBS-injected animals (13.262.7% and

4.361.8% of CD27hiCD38hi B cells, respectively; p = 0.0311).

In order to identify, isolate and immortalize the antigen-specific

antibody-producing B cells, the aforementioned B cell subsets were

transduced immediately after cell sorting with a retroviral vector

encoding both human BCL6 and BCL-XL [9,19]. By ectopically

expressing BCL6 and BCL-XL in splenic or peripheral blood

memory B cells and culturing them with factors produced by

follicular helper T cells (CD40L and IL-21), we generated highly

proliferative, BCR positive B cell lines that secrete Igs. Since these

cells express BCL6, the differentiation of memory B cells to terminal

plasma cells is blocked [28,29,30]. Therefore, the resulting B cells

can expand extensively in vitro for long periods of time in presence of

CD40L and IL-21, and provide a tool to generate antigen-specific

human BCR-positive, antibody-secreting B cell lines.

The number of isolated cells from spleen and antigen-specific B

cell clones that were generated with the BCL6/BCL-XL transduc-

tion approach is provided in the Table S2. Since the frequency of

antigen-specific B cell clones was unknown, we started with micro-

cell cultures ranging from 0.6 to 640 cells per well. The wells

containing antigen-specific B cells – as determined by HBsAg-

specific or TT-specific ELISA – were subsequently cultured by

limiting dilution to obtain monoclonal B cell lines. Overall, we

generated 15 anti-HBsAg IgM+ B cell clones from 3 HIS mice

vaccinated with HBsAg, and 18 anti-TT IgM+ B cell clones from 3

HIS mice vaccinated with TT (Table S2). The estimated

frequency of HBsAg-specific B cells (clones) in the HIS mice after

vaccination was 1/350. The IgM secretion level of the B cell

clones were in the range of 1 mg per 105 cells over 3 days in

culture, which was in a similar range of secretion (0.6–5 mg/105

cells/3 days) to what was previously reported for B cell clones

generated from human blood [9].

Characterization of antibodies produced by the B cell
clones

The IgM VH regions of the BCR of the antigen-specific IgM+ B

cell clones were sequenced. Overall, the BCR of HBsAg-specific

and TT-specific B cell clones exhibited a VH sequence close to the

germ-line sequence, although limited frequencies of somatic

hyper-mutations were observed (Table S3 and Table S4).

Somatic hyper-mutations were occasionally detected in all

framework regions (FR) and complementary determining regions

(CDR), and most of the BCR diversity was the result of N-

additions in the CDR3 region. Based on the BCR sequence, we

observed that 12 out the 15 anti-HBsAg IgM+ B cell clones were

unique, as well as 5 out the 18 anti-TT IgM+ B cell clones (Table
S2, Table S3 and Table S4).

The supernatants of TT-specific B cell clones were further

tested for their capacity to recognize different antigens by ELISA.

We observed that IgM mAbs did not cross-react with unrelated

antigens (i.e., HBsAg and respiratory syncytial virus (RSV)

antigens) (Figure 4A). The TT-specific B cell clones were also

screened by flow cytometry for direct binding of the TT antigen

labeled with a fluorochrome (Figure 4B). Interestingly, three

types of clones that produced antibodies that gave a similar signal

in ELISA were detected, with high, intermediate and low binding

of the fluorescent TT antigen.

Discussion

In the present work we established a new approach to generate

fully human mAbs. We immortalized B cells from vaccinated HIS

mice by transduction with BCL6 and BCL-XL followed by

expansion in presence of IL-21 and CD40L. Antigen-specific B

cell clones were obtained that expressed the BCR on their cell

surface and secreted antigen-specific antibodies. Similarly to

methods based on the immortalization of human memory B cells

from individuals that were either vaccinated or exposed to

pathogens, our strategy exploits the antibody repertoire of human

B cells which is likely to be different from that of B cells of mice

expressing human Ig gene segments.

Naı̈ve HIS mice display an extensive human IgM-expressing B

cell repertoire. Based on the analysis of the length of the CDR3

regions, this IgM B cell repertoire is similar to the repertoire of

healthy individuals. Thus, HIS mice have no obvious limitations

for the generation of human IgM mAbs against any possible

antigen. Upon intramuscular vaccinations with either TT or

HBsAg, approximately 40% of the HIS mice were able to mount

an antigen-specific antibody response. Human IgM-producing B

cell lines against both antigens were obtained after isolation of

memory B cells followed by ex vivo differentiation into plasmablast-

like cells. It is important to highlight that the selection of the

antigen-specific human B cell clones relied on relevant bioassays

(e.g., ELISA or neutralization test). In contrast to EBV-based

approaches, human B cell immortalization using transduction with

BCL-6 and BCL-XL preserves the expression of the BCR at the

surface and antigen-specific B cell clones can also be selected by

binding of labeled antigen to the BCR of immortalized memory B

cells (e.g. by using a labeled antigen).

Even when IgG was used as a selection criterion, we were

unable to establish antigen-specific IgG+ human B cell clones. The

reason for this might be that T cell help in this system is

suboptimal as indicated by the absence of antigen-specific T cell

responses after vaccination (not shown). We also observed that the

BCR of the B cell clones had a close to germ-line sequence,

suggesting that also the induction of somatic hyper-mutation is

sub-optimal in HIS mice. In our hands the great majority of the

vaccinated HIS mice showed a defective formation of germinal

centers [14,16], which further explains the absence of antigen-

specific Ig-class switched B cells. So far, humanized mouse models

based on the transplantation of human HSC only – i.e. without

additional human tissues – share these limitations, and immuni-

zation strategies result in the limited generation of class-switched

antigen-specific B cell responses [14,31,32]. Similar patterns are

observed in human HSC-transplanted immunodeficient mice

infected with lymphotropic pathogens, such as HIV [33] or

EBV [34], although Dengue virus infection in HIS mice was

reported to induce an IgG response in a majority of the responder

animals [35]. It is not clear why IgG antigen-specific responses are

limited while serum IgG can accumulate efficiently, considering

the low frequency of IgG+ B cells in HIS mice. It remains to be

determined whether this apparent discrepancy might be explained

by the conjunction of particularly effective IgG production on a

cell basis by IgG+ B cells (which might occur in a T cell

independent manner, such as in the case of the IgG3 subclass),

long-term stability of human IgG in the HIS mouse serum as

compared to human IgM, and/or defective survival of IgG+ B cells

under specific conditions (e.g. after antigen-specific triggering of

the BCR).

Although IgM mAbs might already be useful for some specific

applications or could be modified by Ig class swapping to obtain

IgG mAbs [36], optimized humanized mouse models with

improved B cell function are highly desirable. One reason for

the suboptimal interaction of T and B cells may be the poor

survival resulting in a high turnover of human T cells (discussed in

[10,37]), making it very likely that procedures leading to improved

HIS Mice to Produce Human mAb
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accumulation of human T cells may promote B cell responses and

isotype switching. It was already shown that human B cells

undergoing isotype switching can be obtained in humanized mice,

provided that a human environment supporting this process is

present, e.g. in SCID mice transplanted with human fetal bones,

thymus and lymph nodes [38]. Consistent with this notion,

enhanced human peripheral T cell accumulation was observed in

NOD/SCID mice transplanted with human bone marrow HSC,

fetal liver and fetal thymus tissues (referred to as BLT mice), as

compared to conventional humanized mouse systems [39].

Interestingly, BLT mice consistently generated an antigen-specific

IgG response after HIV-infection [40]. Although it is yet unknown

whether the isotype switch observed in BLT mice is truly T cell

dependent, those data might support the idea that improved T cell

homeostasis has a positive impact on B cell responses. To obtain

humanized mouse models with improved B and T cell

homeostasis, alternative strategies not relying on the transplanta-

tion of human fetal tissues – which are not necessarily easy to

access to, for ethical, legal or practical reasons – will likely be

favored in the future. The replacement of mouse genes involved in

the hematopoietic system by their human equivalent is a valuable

strategy to improve development, maintenance and/or function of

several hematopoietic cell subsets in humanized mouse models, as

shown with cytokines, such as IL-7 and Il-15 [15,21,41,42], or

MHC molecules (N.D.H and J.P.D., manuscript submitted)

[43,44]. The fact that the human CD47 was shown to be unable

to properly interact with the mouse SIRPa indicates that re-

introducing a functional phagocyte inhibition mechanism via the

CD47/SIRPa signaling axis is another strategy of potential

interest [45].

In conclusion, our results show using two standard vaccine

antigens the general applicability of an innovative B cell

immortalization method in combination with the HIS mouse

model to generate human mAbs. Similarly to methods based on

the immortalization of human memory B cells from vaccinated or

convalescent individuals [9], our approach exploits the broad

antibody repertoire of human B cells, overcoming the potential

limitations of conventional humanized murine mAbs such as

laboriousness or impaired biological properties, synthetic antibody

libraries that require a known target antigen, and transgenic mice

bearing the human Ig locus that have limited B cell repertoires. In

addition, our method enables to exploit experimental infection

models and immunization regimes that would be unethical or

untenable in humans. Considering the upcoming advances in HIS

Figure 4. Characterization of the generated TT-specific human B cell clones. (A) After obtaining monoclonal TT-specific B cell lines, B cell
clones were tested for cross-reactivity against unrelated antigens from HBV or RSV in an ELISA test. (B) The direct binding of phycoerythrin-labeled TT
on TT ELISA positive B cell clones was determined by flow cytometry, and 3 sub-types of clones are observed: high, intermediate and low binding
clones. Values in the histograms show the percentage of cells within the indicated gate.
doi:10.1371/journal.pone.0013137.g004
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mice models [37], this new approach will provide a powerful tool

to generate human mAbs for either diagnostic or therapeutic

purposes.

Supporting Information

Figure S1 IgG/IgA B cell repertoire in naı̈ve HIS mice.

Similarly to Figure 1E, the naive IgG (A) and IgA (B) B cell

repertoires of HIS (BALB-Rag/c) mice were evaluated on

splenocytes by performing a BCR immunoscope for each VH

family. The profiles obtained with control human PBMC are also

shown.

Found at: doi:10.1371/journal.pone.0013137.s001 (1.61 MB TIF)

Table S1 Human cell numbers measured in the BM of

vaccinated HIS mice. Data from the TT and HBsAg vaccination

experiments are pooled, and are presented as in the Table 2.

Found at: doi:10.1371/journal.pone.0013137.s002 (0.06 MB

DOC)

Table S2 Summary of B cell origin, sorted B cell numbers and

antigen-specific B cell clone numbers. Memory B cell populations

were sorted as shown in Figure 3. Limited dilutions of B cells

transduced with BCL-6 and BCL-XL were performed with 6.4 and

0.64 cells/well. After sub-cloning of the positive wells, we

generated 15 IgM+ anti-HBsAg mAbs, of which 13 are unique

(as determined by Ig-VH sequence, see Table S3), and 18 IgM+

anti-TT mAbs, of which 5 are unique (see Table S4). In the case of

HBsAg vaccination, the number of screened B cells was

((192*6.4)+(96*0.64))*3 = 3870, which eventually suggests that

the frequency of HBsAg-specific B cells is at least 1/350 B cells.

Found at: doi:10.1371/journal.pone.0013137.s003 (0.13 MB

DOC)

Table S3 IgM VH amino-acid sequence of generated HBsAg-

specific B cell clones. The germ-line sequence is given for each VH

family, with indication of framework regions (FR) and comple-

mentary determining regions (CDR). Highlighted amino-acids

correspond to N-additions (in the CDR3 region) and somatic

hyper-mutation events, whether it results in a silent mutation

(green) or not (red). Clones with identical BCR sequences are

grouped together.

Found at: doi:10.1371/journal.pone.0013137.s004 (0.02 MB

PDF)

Table S4 IgM VH amino-acid sequence of generated TT-

specific B cell clones. Data are presented as in the Table S2.

Found at: doi:10.1371/journal.pone.0013137.s005 (0.01 MB

PDF)
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