
Land Surface Reflectance Retrieval from Hyperspectral
Data Collected by an Unmanned Aerial Vehicle over the
Baotou Test Site
Si-Bo Duan1,2,3, Zhao-Liang Li , *, Bo-Hui Tang1, Hua Wu1, Lingling Ma5, Enyu Zhao2,5, Chuanrong Li5

1 State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of

Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Laboratoire des sciences de l’ingenieur, de l’informatique et de l’imagerie,
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Abstract

To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a
comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable
reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was
assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-
HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear
response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian
land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of
approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the
retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low
aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when
adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0).
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Introduction

Hyperspectral data in the solar-reflective region (0.4–2.5 mm)

has been collected since the mid-1980 s [1]. Hyperspectral remote

sensing is increasingly being used in a wide range of applications,

including geology, agriculture, forestry, and ecology [2–4].

An adequate pre-processing of hyperspectral data is a manda-

tory prerequisite to extract quantitative information about the land

surface from hyperspectral data. Radiometric calibration is an

important process in the pre-processing of hyperspectral data. The

radiometric calibration of airborne hyperspectral sensors is usually

performed in the laboratory. However, the radiometric perfor-

mance of these sensors can be reduced by the significant stresses

generated during their transport, installation, and/or data

acquisition [5]. Therefore, the radiometric calibration coefficients

determined in the laboratory may not be appropriate for data

acquired during the flight. Vicarious calibration methods are often

used to produce a new set of radiometric calibration coefficients to

replace those derived in the laboratory [6], [7]. For airborne

hyperspectral sensors, a feasible vicarious calibration method is

reflectance-based test site calibration [8], [9]. To perform a test

site calibration for airborne hyperspectral sensors, portable or

permanent reference reflectance targets must be deployed over the

test sites. In addition, in situ measurements of target reflectance and

atmospheric properties during the flight are required to predict the

at-sensor radiances [10].

Besides radiometric calibration, quality assessment is also a key

step in the pre-processing of hyperspectral data. The signal-to-

noise ratio (SNR) is an important criterion for characterizing the

quality of hyperspectral data. Accurate evaluation of the SNR is

crucial to quantitatively analyze the data, and a high SNR is

required to optimize the use of the data [11]. Therefore, bands

with particularly low SNR must be discarded. Image-based SNR

estimation is a feasible method to assess the quality of

hyperspectral data [12]. Several methods have been developed

to perform image-based SNR estimation [13], [14].

After the pre-processing of hyperspectral data, accurate removal

of atmospheric absorption and scattering effects is required to

extract land surface reflectance from remotely sensed data. The

atmospheric absorption and scattering effects in remotely sensed

data can be corrected by a number of physical-based methods [1].

In addition to atmospheric absorption and scattering effects, the

adjacency effect must be considered during the retrieval of land

surface reflectance from hyperspectral data. The magnitude of this
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effect directly depends on atmospheric turbidity and surface

heterogeneity [15]. Therefore, the adjacency effect is the most

intricate problem that must be solved when removing atmospheric

effects from hyperspectral data [16].

To validate land surface reflectance derived from airborne

hyperspectral data, in situ measurements must be collected. In situ

measurements are used to evaluate the performance of the

retrieval algorithms of land surface reflectance. The accuracies of

the retrieval parameters are characterized by comparing the values

of the retrieval parameters with the in situ measurements. The

accuracies to which the retrieved values match the in situ

measurements are used to further improve the performance of

the retrieval algorithms of land surface reflectance. The objectives

of this study are 1) to assess the radiometric performance of a new

hyperspectral sensor onboard an unmanned aerial vehicle (UAV)

and 2) to validate land surface reflectance retrieval from airborne

hyperspectral data using in situ measurements.

Test Site and Data
1. Test site. To evaluate the in-flight performance of a new

hyperspectral sensor onboard an UAV, a comprehensive field

campaign was conducted over the Baotou test site (Inner

Mongolia, China: 40.88uN, 109.53uE) on 3 September 2011.

The Baotou test site is located in a rural area, is surrounded by

agricultural parcels, and has an average ground elevation of

approximately 1.3 km above sea level (ASL). The test site receives

little precipitation and has a high percentage of cloud-free days.

The area has a continental climate that is characterized by four

seasons and a large diurnal temperature variation. The yearly

average temperature is 6–7uC, and the average annual rainfall is

200–250 mm.

A number of portable reference reflectance targets were

deployed over the test site. Figure 1 shows a subset image

extracted from data acquired by the hyperspectral sensor onboard

the UAV on 3 September 2011 at 06:42 UTC. The targets

denoted as R1–R4, H1–H4, and M1–M15 in Figure 1 are used in

this study. Targets R1–R4 and H1–H4 are 15 m615 m in size,

while targets M1–M15 are 7 m67 m in size. Targets R1–R4,

which have nominal surface reflectance of 0.2, 0.3, 0.4, and 0.5,

respectively, are used to perform the radiometric calibration of the

hyperspectral sensor. Targets H1–H4 and M1–M15 are employed

to evaluate the accuracies of the land surface reflectance retrieved

from the hyperspectral data.

2. UAV-HYPER sensor. The hyperspectral sensor, which

was developed by the Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Sciences, was

installed on an UAV operated by the Research Institute of

Unmanned Flight Vehicle Design, Beihang University, China.

Hereafter, the hyperspectral sensor is referred to as UAV-HYPER.

Figure 1. A subset image extracted from hyperspectral data acquired over the test site on 3 September 2011 at 06:42 UTC. The
locations of the 23 targets (R1–R4, H1–H4, and M1–M15) are displayed in the image. A bare area highlighted in a white rectangle is used to perform
the signal-to-noise ratio estimation. The two pixels labeled as P1 and P2 are used to demonstrate the discrepancy between the uniform and non-
uniform Lambertian land surface reflectance.
doi:10.1371/journal.pone.0066972.g001

Reflectance Retrieval from Hyperspectral Data
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The UAV-HYPER sensor is a pushbroom scanner that utilizes

linear CCD arrays. The main characteristics of the UAV-HYPER

sensor are presented in Table 1. During the campaign, the

operational altitude of the UAV-HYPER was approximately

3.5 km above ground level (AGL), which gives a spatial resolution

of approximately 0.7 m at nadir. The UAV-HYPER image has an

across-track sampling of 1024 pixels, which gives a swath width of

approximately 0.7 km. The spectral response functions of the

UAV-HYPER sensor are simulated using Gaussian functions with

the center wavelengths and band widths that were measured

during the laboratory calibration. The center wavelengths of 128

bands of the UAV-HYPER sensor are shown in Figure 2.

3. In situ measurements. In situ measurements of the 23

targets (R1–R4, H1–H4, and M1–M15) were carried out to collect

the surface reflectance spectra with a SVC HR-1024 field portable

spectroradiometer at the time of the UAV-HYPER data

acquisition. The spectroradiometer has 1024 channels that cover

the spectral range from 350 to 2500 nm. A reference measure-

ment was collected with a white Spectralon reference panel before

and after each target measurement. The spectra were measured in

absolute radiance mode at nadir. The raw spectra of each target

were scaled with the reference measurements to produce

reflectance spectra. Five measurements of each target were

averaged to yield a representative reflectance spectrum. The

averaged reflectance spectra of each of the 23 targets are shown in

Figure 3. Because the wavelength range of the UAV-HYPER

sensor is in the 0.4–1.03 mm region and the sensitivity of the Si

detector of the SVC spectroradiometer is reduced around 1 mm,

only the reflectance spectra in the wavelength range of 0.4–

0.95 mm are plotted in Figure 3.

In addition to the surface reflectance measurements of the

targets, aerosol optical depth (AOD) and columnar water vapor

(CWV) were also collected with an automatic CIMEL CE318

sunphotometer. The sunphotometer has nine channels at nominal

wavelengths of 340, 380, 440, 500, 670, 870, 936, 1020, and

1640 nm. Measurements at 936 nm were used to derive the CWV

[17] with the coefficients simulated by MODTRAN [18]. The

AOD at 550 nm was derived from the other channels using the

Ångström law. Detailed information on the method used to

retrieve the AOD can be found in [19]. The measured values of

the AOD at 550 nm (AOD@550) and the CWV at the time of the

UAV-HYPER data acquisition are 0.18 and 1.7 g cm22,

respectively.

Radiometric Performance of the UAV-HYPER Sensor
1. SNR estimation. Some bands of the UAV-HYPER data

have low SNR values. A method based on local means and local

Table 1. Main characteristics of the UAV-HYPER sensor.

Parameter Requirement

Instantaneous field of view 0.2 mrad

Field of view 11.5u

Pixel per line 1024

Spectral range 350–1030 nm

Spectral resolution 5 nm

Spatial resolution 1 m @ 5 km flight altitude AGL

Number of bands 128

Swath width 1 km @ 5 km flight altitude AGL

Digitization 12 bits

Signal-to-noise ratio .100:1

doi:10.1371/journal.pone.0066972.t001

Figure 2. Center wavelengths lc of 128 bands of the UAV-HYPER sensor.
doi:10.1371/journal.pone.0066972.g002

Reflectance Retrieval from Hyperspectral Data
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standard deviations of small imaging blocks is used to estimate the

SNR from the UAV-HYPER data. A 363 pixel window is chosen

as the block size, and the SNR is calculated as the ratio of the

average signal to the average noise of the UAV-HYPER data. The

detailed procedure to estimate the SNR from data acquired with

imaging spectrometers can be found in [14].

Figure 4 shows the SNR estimated using a bare area (50650

pixels) shown in Figure 1. The SNR values are in the range of 4–

110. Low SNR can be found in the first and last bands of the

UAV-HYPER sensor. For comparison, the SNR is also estimated

using targets R1–R4 and H1–H4. An area of 10610 pixels is

extracted from the center of each of the eight targets to estimate

the SNR. The SNR values of the eight targets are then averaged to

yield a single averaged SNR. The results are also shown in

Figure 4. The SNR estimated using the target area range from

approximately 5 to 120. Low SNR values can also be found in the

first and last bands of the UAV-HYPER data. Except for the

bands with low SNR, the SNR values estimated using the target

area are slightly greater than those estimated using the bare area.

This is because the target area is more homogeneous than the bare

area. Therefore, the SNR of the target area is more suitable to

characterize the quality of the UAV-HYPER data. To minimize

the effect of low SNR, the bands with SNR values lower than 40

are discarded. Therefore, only bands 13–108, with SNR values

between 40 and 120, are used in the following analysis.

2. Radiometric calibration of the UAV-HYPER

sensor. Radiometric calibration coefficients generally differ

from the laboratory pre-flight values due to in-flight changes in

instrument behavior, such as optical defocusing or distortion of the

dispersed radiation on the detector arrays. The procedure that

converts the digital number (DN) to the at-sensor radiance Lsensor

according to the radiometric calibration coefficients is called

radiometric calibration and can be given by:

Lsensor~gain|DNzoffset ð1Þ

where gain and offset are the radiometric calibration coefficients.

To determine the radiometric calibration coefficients, the at-

sensor radiance Lsensor is calculated using Equation (2) assuming a

uniform Lambertian surface:

Lsensor~Lpz
rULFd e{t=mvztd mvð Þ

� �
p 1{rULSð Þ ð2Þ

Figure 3. In situ surface reflectance spectra of the 23 targets (R1–R4, H1–H4, and M1–M15) in the wavelength range of 0.4–0.95 mm.
The four dashed vertical lines denote the positions of the center wavelengths of four selected bands (19, 33, 54, and 83) that represent the blue,
green, red, and near-infrared bands, respectively.
doi:10.1371/journal.pone.0066972.g003

Reflectance Retrieval from Hyperspectral Data
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where Lp is the atmospheric path radiance, rUL is the uniform

Lambertian land surface reflectance, Fd is the total solar flux at

ground level, mv~ cos hvð Þ is the cosine of the view zenith angle hv,

e{t=mv and td mvð Þ are the direct and diffuse transmittances in the

viewing direction, and S is the spherical albedo of the atmosphere.

In this study, the apparent reflectance corresponding to the at-

sensor radiance Lsensor calculated using Equation (1) is denoted as

rapp, while the at-sensor reflectance corresponding to the at-sensor

radiance Lsensor simulated using Equation (2) is referred to as rsim.

Targets R1–R4 are used to determine the radiometric

calibration coefficients of the UAV-HYPER sensor. The DNs

are averaged over a 363 pixel window, which is extracted from

the center of each of the four targets. The at-sensor radiances Lsensor

are calculated using Equation (2) in conjunction with five

atmospheric parameters (Lp, S, Fd, e{t=uv , and td mvð Þ) simulated

by MODTRAN and the measured surface reflectance shown in

Figure 3. The input parameters to MODTRAN for the radiative

transfer calculations are a mid-latitude summer atmosphere, rural

aerosol with AOD@550 of 0.18, CWV of 1.7 g cm22, flight

altitude (FA) of 4.8 km ASL, ground elevation (GE) of 1.3 km

ASL, solar zenith angle (SZA) of 44.1u, viewing zenith angle (VZA)

of 2.5u, and relative azimuth angle (RAA) of 42.5u/137.5u. The

radiometric calibration coefficients (gain and offset) are obtained by

a least squares regression from Equation (1) using the DNs and the

corresponding at-sensor radiances Lsensor of the four targets (R1–

R4). Figure 5 shows a flowchart of the radiometric calibration

procedure of the UAV-HYPER sensor.

Four bands (band 19 centered at 0.485 mm, band 33 at

0.554 mm, band 54 at 0.659 mm, and band 83 at 0.803 mm) are

arbitrarily selected to represent the blue, green, red, and near-

infrared bands, respectively. The positions of the center wave-

lengths of the four bands are shown in Figure 3. The at-sensor

radiances Lsensor as a function of the DNs for the four bands are

shown in Figure 6. The linear response of the UAV-HYPER

sensor is good for the four bands, with R2 of approximately 1 and

root mean square error (RMSE) of approximately 1 W/(m2 sr

mm). The other bands have similar performance, which is not

shown.

To further demonstrate the linear response range of the UAV-

HYPER sensor, Figure 7 shows the apparent reflectance rapp

versus the simulated at-sensor reflectance rsim for the 19 targets

(H1–H4 and M1–M15) in bands 13–108. Different symbols with

different colors represent different targets. As shown in Figure 7,

rapp matches rsim well in the apparent reflectance range of

approximately 0.05–0.45. The result illustrates that the linear

response of the UAV-HYPER sensor is good in this apparent

reflectance range. Nevertheless, rapp does not correspond well to

rsim when rapp is greater than approximately 0.45. This may be

due to the non-linear response of the UAV-HYPER sensor beyond

rapp~0:45 and/or errors in the in situ measurements.

To evaluate the accuracies of the radiometric calibration of the

UAV-HYPER sensor, the RMSE and relative RMSE (RRMSE)

between rapp and rsim for targets H1–H4 and M1–M15 in bands

13–108 are calculated according to Equations (3) and (4):

RMSEk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

rk,i
app{rk,i

sim

� �2

vuut ð3Þ

RRMSEk~
RMSEk

1

N

XN

i~1

rk,i
sim

ð4Þ

Figure 4. Signal-to-noise ratio estimated using the bare area shown in Figure 1 and the target area including targets R1–R4 and H1–
H4. The bands with signal-to-noise ratio values lower than 40 are discarded in this study.
doi:10.1371/journal.pone.0066972.g004
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where k is the band number, i is the target number, and N = 19

(targets H1–H4 and M1–M15).

Figure 8A displays the RMSE and RRMSE values between rapp

and rsim calculated from targets H1–H4 and M1–M15 in bands

13–108. The RMSE values are between approximately 0.01 and

0.06. The larger RMSE values occur in the near-infrared region,

where most of the apparent reflectance is beyond the linear

response range of the UAV-HYPER sensor. Conversely, the

smaller RMSE values occur in the visible range, where most of the

apparent reflectance is in the linear response range of the UAV-

HYPER sensor. The RRMSE values are between approximately

4% and 10%. The larger RRMSE values are approximately 10%

and occur in the first and last bands of the UAV-HYPER sensor.

The smaller RRMSE values are approximately 4% and are

approximately 0.54 mm.

To further examine the RMSE and RRMSE values between

rapp and rsim in the linear response range of the UAV-HYPER

sensor, apparent reflectance greater than 0.45 in bands 13–108

were discarded. The results are shown in Figure 8B. The range of

RMSE values is approximately 0.005 to 0.03, which is less than

those in Figure 8A. The RRMSE values are between approxi-

mately 3% and 9%, which are slightly less than those in Figure 8A.

Methodology
1. Retrieval of uniform lambertian land surface

reflectance. The compilation of a large atmospheric look-up

Figure 5. Flowchart of the radiometric calibration procedure of the UAV-HYPER sensor.
doi:10.1371/journal.pone.0066972.g005

Reflectance Retrieval from Hyperspectral Data
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table (LUT) is useful in deriving land surface reflectance from

airborne hyperspectral data, especially for the operational

atmospheric processing of large volumes of data [20]. MOD-

TRAN is used to establish the atmospheric LUT because of its

high accuracy and fine spectral resolution. A mid-latitude summer

atmospheric model is selected. Multiple scattering is calculated

using the scaled DIScrete Ordinate Radiative Transfer (DISORT)

option of MODTRAN with eight streams. The carbon dioxide

(CO2) mixing ratio of the atmosphere is set to 380 parts per million

by volume (ppmv). Due to its low spatial and temporal variations,

the total ozone column content is fixed at 0.33 atm-cm for ground

at sea level. The rural aerosol model is selected to represent aerosol

in areas that are not strongly affected by urban or industrial

sources. The radiative transfer calculations are performed using

the default MODTRAN 5 cm21 atmospheric database.

Six free parameters are selected as inputs in the atmospheric

LUT: AOD@550, CWV, FA, GE, SZA, and RAA. Due to the

small FOV of the UAV-HYPER sensor (FOV = 11.5u), VZA is

fixed at 2.5u for the establishment of the atmospheric LUT. An

AOD@550 range of 0.05–1.5 is used to characterize clean to very

turbid atmospheric conditions. A CWV range of 0.1–5 g cm22

represents a normal range for a mid-latitude summer atmosphere.

The maximum flight altitude of the UAV is 7 km. The ground

elevation at the Baotou test site is between 0 and 2.5 km. SZA

ranges from 0u to 70u with an increment of 10u, and RAA ranges

from 0u to 180u with an increment of 30u. The breakpoint

positions in the atmospheric LUT for the six input parameters are

presented in Table 2. The number of breakpoints describing each

dimension in the atmospheric LUT is selected as a trade-off

between sufficient sampling and LUT size. Given a certain set of

inputs, the values of the atmospheric parameters are calculated

through linear interpolation in the six directions of the parameter

space [21]. The atmospheric LUT gives five atmospheric

parameters as outputs: Lp, S, Fd, e{t=uv , and td mvð Þ. Detailed

information on calculating the atmospheric parameters can be

found in [22].

Once the atmospheric parameters are determined, rUL can be

calculated from Lsensor by inverting Equation (2) on a pixel-by-pixel

basis:

rUL~
p Lsensor{Lp

� �
p Lsensor{Lp

� �
SzFd e{t=mvztd mvð Þ½ �

ð5Þ

The procedure for retrieving rUL is shown in Part 1 of Figure 9.

2. Retrieval of non-uniform lambertian land surface

reflectance. For the case of a non-uniform Lambertian surface,

Figure 6. At-sensor radiances Lsensor as a function of the DN for bands 19, 33, 54, and 83. lc is the center wavelength.
doi:10.1371/journal.pone.0066972.g006
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Equation (2) can be rewritten as:

Lsensor~Lpz
Fd e{t=mv rNULztd mvð ÞSrT
� �

p 1{SrTSð Þ ð6Þ

The non-uniform Lambertian land surface reflectance rNUL can

then be calculated from Lsensor by inverting Equation (6) on a pixel-

by-pixel basis:

rNUL~
1{SrTS

1{rULS
1z

td mvð Þ
e{t=mv

	 

rUL{

td mvð Þ
e{t=mv

SrT ð7Þ

Figure 7. Comparison of the apparent reflectance rapp with the simulated at-sensor reflectance rsim for targets H1–H4 and M1–M15
in bands 13–108. Different symbols with different colors represent different targets.
doi:10.1371/journal.pone.0066972.g007

Figure 8. Root mean square error (RMSE) and relative RMSE (RRMSE) values of apparent reflectance as a function of the
wavelength for targets H1–H4 and M1–M15. A: RMSE and RRMSE values between the apparent reflectance rapp and the simulated at-sensor
reflectance rsim for targets H1–H4 and M1–M15 in bands 13–108. B: Same as Figure 8A, but the apparent reflectance greater than 0.45 in bands 13–
108 has been discarded due to the non-linear response of the UAV-HYPER sensor.
doi:10.1371/journal.pone.0066972.g008

Reflectance Retrieval from Hyperspectral Data
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where the average reflectance of the surrounding SrT can be

weighted by an atmospheric point spread function (PSF) that takes

into account the contribution of the surrounding region according

to the distance from the target [23]:

SrT~

ðz?

{?

ðz?

{?

PSF x,yð Þr x,yð Þdxdy ð8Þ

According to [24], the unnormalized atmospheric PSF is defined

as:

PSFunnorm i,jð Þ~
Xat{sensor

h~BOA

P h,lð ÞV i,jð Þe{ ta sec hztbð ÞDth ð9Þ

where h is the atmospheric layer height, BOA is the bottom of

atmosphere, h is the scattering angle, l is the wavelength, P is the

scattering phase function, V is the solid angle subtended by the

unit cross section as seen by the (i, j)th surrounding pixel, ta is the

atmospheric optical depth from the surrounding pixel to the

atmospheric layer height h, tb is the atmospheric optical depth

from the atmospheric layer height h to the sensor, and Dth is the

atmospheric optical depth at the atmospheric layer height h.

To calculate the weight of each surrounding pixel, it is necessary

to normalize the atmospheric PSF (i.e. the atmospheric PSF must

integrate to unity). Assuming that the atmosphere is homogeneous

within each atmospheric layer, Dth can be canceled, leaving [24]:

PSF i,jð Þ~

Pat{sensor

h~BOA

P h,lð ÞV i,jð Þe{ ta sec hztbð Þ

PWS

i~1

PWS

j~1

Pat{sensor

h~BOA

P h,lð ÞV i,jð Þe{ ta sec hztbð Þ
ð10Þ

where WS is the moving window size, which depends on the pixel

size, the atmospheric parameters, the spectral band, and the

spatial frequencies of the image itself [25].

The average reflectance of the surrounding SrT can then be

calculated in the discrete form of Equation (8), namely:

SrT~
XWS

i~1

XWS

j~1

PSF i,jð Þr i,jð Þ ð11Þ

To determine the window size WS, an iterative method is used

to calculate the SrT difference between two successive iterations

‘m’ and ‘m+1’. If the difference is less than d (e.g. the noise

equivalent reflectance of the sensor at that wavelength), the

iterative process is stopped. Otherwise, the iteration procedure

goes back to recalculate SrT, and the order ‘m’ is increased by 1.

The iteration procedure is shown in the Part 2 of Figure 9. The

outputs of the iteration procedure are the final WS image and the

initial rNUL image.

In theory, the reflectance r on the right-hand side of Equation

(11) should be the actual reflectance; however, the actual

reflectance is not available at this stage. Therefore, an iteration

procedure is used to reduce the error introduced by replacing the

actual reflectance with rNUL [26]. The iteration procedure is

shown in Part 3 of Figure 9. The output of the iteration procedure

is the final rNUL image.

Results and Discussion

1. Results of Uniform Lambertian Land Surface
Reflectance Retrieval

The in situ land surface reflectance measurements of the 19

targets (H1–H4 and M1–M15) are used to evaluate the accuracies

of the atmospheric correction of the UAV-HYPER data. A 363

pixel window is selected from the center of each of the 19 targets to

yield the average surface reflectance. The uniform Lambertian

land surface reflectance rUL derived from Equation (5) is

compared with the apparent reflectance rapp and the in situ

surface reflectance rin situ for targets H1–H4 in bands 13–108 in

Figure 10. The absorption effects of oxygen (0.76 mm) and water

vapor (0.82 mm) are clearly observed in rapp but have been nearly

removed in rUL. These results demonstrate that the spectral shift

of the UAV-HYPER sensor is small around the oxygen absorption

feature centered at 0.76 mm. However, small dips can still be

found at approximately 0.76 mm in targets H3 and H4; this is most

likely because the oxygen concentration given in the radiative

transfer calculations is lower than the actual conditions. rUL

generally agrees closely with rin situ for targets H1–H4. However,

large discrepancies are present in some bands; these may be

caused by radiometric calibration errors of the UAV-HYPER

sensor and/or the radiative transfer calculations.

Figure 11 shows rUL versus rin situ for targets H1–H4 and M1–

M15 in bands 19, 33, 54, and 83. The results show that rUL

generally agrees well with rin situ in these four bands, with R2

values of 0.992, 0.997, 0.991, and 0.977 and RMSE values of

0.022, 0.018, 0.034, and 0.051, respectively. However, they do not

match well in the high reflectance conditions, as is shown in

Figures 11C and D.

Table 2. Breakpoint positions in the atmospheric LUT for the six input parameters.

Parameter* #1 #2 #3 #4 #5 #6 #7 #8

AOD@550 0.05 0.1 0.3 0.6 1.0 1.5 _ _

CWV (g cm22) 0.1 0.5 1.5 2.5 3.5 5.0 _ _

FA (km) 1 2 3 4 5 6 7 _

GE (km) 0 0.5 1.0 1.5 2.0 2.5 _ _

SZA (u) 0 10 20 30 40 50 60 70

RAA (u) 0 30 60 90 120 150 180 _

*AOD@550: aerosol optical depth at 550 nm, CWV: columnar water vapor, FA: flight altitude, GE: ground elevation, SZA: solar zenith angle, and RAA: relative azimuth
angle.
doi:10.1371/journal.pone.0066972.t002
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Figure 9. Flowchart of the atmospheric correction procedure for the UAV-HYPER data. Part 1 is used to derive the uniform Lambertian
surface reflectance rUL using the atmospheric look-up table (LUT). Part 2 is used to determine the window size (WS) of the atmospheric point spread
function (PSF) by calculating the SrT difference between two successive iterations. Part 3 is used to determine the final non-uniform Lambertian
surface reflectance rNUL by calculating the rNUL difference between two successive iterations.
doi:10.1371/journal.pone.0066972.g009
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To further analyze these results, Figure 12 shows rUL versus

rin situ for targets H1–H4 and M1–M15 in bands 13–108.

Different symbols with different colors represent different targets.

The results show that rUL does not match rin situ well when rin situ

is greater than approximately 0.5. This discrepancy is believed to

be mainly caused by the large errors of the radiometric calibration

of the UAV-HYPER sensor due to its non-linear response when

the surface reflectance is greater than approximately 0.5 and/or

by measurement errors of rin situ. Nevertheless, rUL matches

rin situ well in the surface reflectance range between approximately

0.05 and 0.5, which demonstrates the good accuracy of land

surface reflectance retrieval from the UAV-HYPER data in the

linear response range of the UAV-HYPER sensor.

2. Results of Non-uniform Lambertian Land Surface
Reflectance Retrieval

Figure 13 shows the relative errors between rUL as well as the

non-uniform Lambertian land surface reflectance rNUL derived

from Equation (7) and rin situ for targets H1–H4 in bands 13–108.

The relative errors are less than 10% in most bands. Compared

with Figure 10, large relative errors occur in the bands with

wavelengths less than approximately 0.5 mm and surface reflec-

tance less than approximately 0.4. This occurs because a small

absolute difference for a low surface reflectance may lead to a large

relative error. There is no evident improvement and difference in

terms of the relative errors between rNUL and rUL for targets H1–

H4. Two reasons can explain these findings. One reason is that the

AOD was relatively low at the time of the UAV-HYPER data

acquisition (AOD = 0.18). The other reason is that the targets are

large and have relatively homogeneous surface reflectance. Both

these effects lead to a small difference between rNUL and rUL.

Two pixels, labeled as P1 and P2 in Figure 1, are selected to

calculate the discrepancy between rUL and rNUL. As shown in

Figure 14, the surface reflectance of pixel P1 (rUL&0:6) is greater

than that of pixel P2 (rULv0:4 for all bands). Therefore, rUL of

pixel P1 is lower than its actual surface reflectance because photons

escaping from the FOV of the UAV-HYPER sensor are not

counterbalanced by those coming from the surrounding pixels (e.g.

pixel P2). In contrast, rUL of pixel P2 is greater than its actual

surface reflectance because more photons come from the

surrounding pixels (e.g. pixel P1) than escape from the FOV of

the UAV-HYPER sensor. As shown in Figure 14, because the

Figure 10. Comparison of the uniform Lambertian surface reflectance rUL derived using Equation (5) with the apparent reflectance
rapp and the in situ surface reflectance rin situ for targets H1–H4 in bands 13–108.

doi:10.1371/journal.pone.0066972.g010
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surface reflectance of pixel P1 is greater than that of its

surrounding pixels, rNULwrUL for the pixel P1. Furthermore,

the surface reflectance difference Dr (Dr~rNUL{rUL) for pixel

P1 decreases as wavelength increases because the effect of

atmospheric scattering in the near-infrared region is less than in

the visible region, where scattering from atmospheric aerosols

dominates. In contrast, rNULvrUL, and absolute Dr decreases as

wavelength increases for pixel P2.

To further demonstrate the impact of AOD on the discrepancy

between rUL and rNUL, four AOD@550 values (0.05, 0.3, 0.5,

and 1.0) are used to calculate the surface reflectance differences Dr
for pixels P1 and P2. The AOD@550 values of 0.05, 0.3, 0.5, and

1.0 represent clear, slightly turbid, turbid, and very turbid

atmospheric conditions, respectively. To simulate the at-sensor

radiances of the UAV-HYPER sensor, the other input parameters

for the radiative transfer calculations are the same as those used to

perform the atmospheric correction of the UAV-HYPER data.

Furthermore, the image of rNUL is used as a reference image of

surface reflectance. The average reflectance SrT of each pixel is

simulated by Equation (11) using the atmospheric PSF and the

reference image of surface reflectance, and the at-sensor radiances

for the four AOD@550 values are simulated using Equation (6).

The images of rUL and rNUL for the four AOD@550 values are

then derived from the corresponding at-sensor radiances using

Equations (5) and (7), respectively.

The surface reflectance differences Dr for the four AOD@550

values are shown in Figure 15. For pixel P1, Dr decreases as

wavelength increases for each AOD@550 value. In addition, Dr
increases as the AOD@550 value increases for each band. The

maximum Dr for the case of AOD@550 = 1.0 can reach 0.035 in

the blue region and is approximately seven times larger than that

for the case of AOD@550 = 0.05. The relative surface reflectance

difference Dr% (Dr%~Dr=rNUL|100%) varies from approxi-

mately 1% in the blue region to approximately 0% in the near-

infrared region for the case of AOD@550 = 0.05, while Dr%
varies from approximately 6% in the blue region to approximately

2% in the near-infrared region for the case of AOD@550 = 1.0.

For pixel P2, Dr is negative, and its absolute value DDrD decreases

as wavelength increases for each AOD@550 value. In addition,

DDrD increases as the AOD@550 value increases for each band.

The maximum DDrD for the case of AOD@550 = 1.0 reaches 0.08

in the blue region and is approximately eight times larger than that

Figure 11. Comparison of the uniform Lambertian surface reflectance rUL derived using Equation (5) with the in situ surface
reflectance rin situ for targets H1–H4 and M1–M15 in bands 19, 33, 54, and 83. lc is the center wavelength of each of the four bands.
doi:10.1371/journal.pone.0066972.g011

Reflectance Retrieval from Hyperspectral Data

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e66972



for the case of AOD@550 = 0.05. The relative surface reflectance

difference Dr% varies from approximately 210% in the blue

region to approximately 0% in the near-infrared region for the

case of AOD@550 = 0.05, while Dr% varies from approximately

280% in the blue region to approximately 27% in the near-

infrared region for the case of AOD@550 = 1.0.

The accuracies of land surface reflectance retrieval are

evaluated in terms of the RMSE and RRMSE values between

rNUL and rin situ for targets H1–H4 and M1–M15 in bands 13–

108. The results are shown in Figure 16A. The RMSE values

range between approximately 0.01 and 0.07, while the R-RMSE

values are between approximately 5% and 12%. The largest

RMSE value occurs in the near-infrared region, while the smallest

RMSE value occurs in the visible range. In contrast, the largest

RRMSE value occurs in the visible region, while the smallest

RRMSE value occurs in the near-infrared range. The accuracies

of rUL are similar to those of rNUL, which are not shown in this

study.

To further demonstrate the RMSE and RRMSE values

between rNUL and rin situ for the 19 targets in the linear response

range of the UAV-HYPER sensor, surface reflectance greater than

0.5 in the bands 13–108 are discarded. The results are shown in

Figure 16B. The RMSE values are between approximately 0.005

and 0.05, which is obviously smaller than those shown in

Figure 16A. However, large RMSE values also occur in the

near-infrared region. The RRMSE values are between approxi-

mately 4% and 10%, which is slightly less than those shown in

Figure 16A.

Conclusions
The radiometric performance of the UAV-HYPER sensor was

assessed in terms of SNR and the accuracy of the radiometric

calibration. The SNR values estimated using the homogeneous

targets were between approximately 5 and 120. The linear

response of the UAV-HYPER sensor was found in the apparent

reflectance range of approximately 0.05 and 0.45, while a non-

linear response was observed for apparent reflectance greater than

approximately 0.45. The accuracies of the radiometric calibration

of the UAV-HYPER sensor were evaluated with RMSE of

approximately 0.01–0.06 and RRMSE of approximately 4%–

10%.

The retrieved uniform Lambertian land surface reflectance

match the in situ surface reflectance well in the land surface

reflectance range of approximately 0.05 to 0.5. There is a small

difference between the retrieved uniform and non-uniform

Lambertian land surface reflectance over the homogeneous targets

and under low AOD conditions. The results demonstrate that the

discrepancy between the uniform and non-uniform Lambertian

land surface reflectance can be neglected under homogeneous

surface and low AOD conditions. However, the discrepancy is up

to 0.08 in the blue region when adjacent pixels have large land

surface reflectance contrast and under high AOD conditions (e.g.

AOD = 1.0). Therefore, this discrepancy should be taken into

account under these conditions. The accuracies of land surface

reflectance retrieval were evaluated using the in situ measurements

with RMSE of approximately 0.01–0.07 and RRMSE of

approximately 5%–12%.

Figure 12. Comparison of the uniform Lambertian surface reflectance rUL derived from Equation (5) and the in situ surface
reflectance rin situ for targets H1–H4 and M1–M15 in bands 13–108. Different symbols with different colors represent different targets.
doi:10.1371/journal.pone.0066972.g012
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Figure 13. Relative errors of surface reflectance as a function of the wavelength for targets H1–H4. Relative errors between the uniform
Lambertian surface reflectance rUL derived from Equation (5) and the non-uniform Lambertian surface reflectance rNUL derived from Equation (7)
and the in situ surface reflectance rin situ for targets H1–H4 in bands 13–108.
doi:10.1371/journal.pone.0066972.g013

Figure 14. Comparison of the uniform Lambertian surface reflectance rUL derived from Equation (5) and the non-uniform
Lambertian surface reflectance rNUL derived from Equation (7) for pixels (A) P1 and (B) P2. Dr is the surface reflectance difference
between rUL and rNUL (Dr~rNUL{rUL).
doi:10.1371/journal.pone.0066972.g014
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