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Abstract

Background: Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal
liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is
induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in
neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain
and primary cultured astrocytes.

Methodology/Principal Findings: BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations
(0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide,
pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2a protein was studied by
immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a
concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible
expression of HIF-2a protein was also significantly suppressed with isoflurane. In the experiments using primary cultured
astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2a protein and EPO
mRNA.

Conclusions/Significance: Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and
inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.
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Introduction

Ischemic and hypoxic insults to the brain during surgery and

anesthesia result in life-threatening complications including stroke.

These complications occur at the rate of 0.08–0.7% in general

surgery and 1.4–3.8% in cardiac surgery [1]. Pharmacologic

interventions, including calcium channel blockers, free radical

scavengers, and glutamate antagonists, have been introduced to

prevent and/or ameliorate stroke [2]. Erythropoietin (EPO) is also

recognized as a promising molecule to introduce neuroprotection,

and encouraging results have been obtained from clinical trials

involving stroke patients [3,4,5]. Originally, EPO was widely

known as a hematopoietic growth factor produced in the kidney

and fetal liver [5]. Further investigations expanded this review by

showing that EPO and EPO receptor (EPOR) are present in the

human brain and synthesized locally by astrocytes and neurons

[6,7,8,9]. It is well documented in both experimental and clinical

studies that EPO produced in the brain acts in a paracrine or

autocrine manner to provide neuroprotection [10,11]. Endoge-

nous EPO in the brain is produced in an oxygen tension-

dependent manner [12] and reduces brain damage by inhibiting

apoptosis [13], suppressing glutamate release [14], and reducing

the production of proinflammatory cytokines [15].

Hypoxia-induced EPO upregulation in the brain is regulated

mainly by hypoxia-inducible factor (HIF)-1 and HIF-2 [16]. HIF is

a transcriptional factor that acts as a key regulator in cells exposed

to low oxygen [17,18]. In fact, HIF-1 was originally cloned as a

transcription factor responsible for hypoxia-induced EPO expres-

sion [17]. HIF is a heterodimeric DNA-binding complex

composed of two basic helix-loop-helix proteins of the PER-

ARNT-SIM (PAS) family: the constitutive non-oxygen-responsive

subunit HIF-1b (also termed as the aryl hydrocarbon receptor

nuclear translocator: ARNT) and one of either of the hypoxia-

inducible a-subunits HIF-1a or HIF-2a [19,20]. HIF-a proteins

are rapidly degraded in normoxia but highly induced by hypoxia

[19,20,21]. HIF-1a and HIF-2a share significant sequence

homology and both are regulated post-translationally by protein

degradation [19,20]. HIF-2a, originally termed endothelial PAS

domain protein 1 (EPAS1) because of its expression in endothelial

cells, exhibits a more restricted expression pattern than HIF-1a
[17,22]. Although both HIF-a subunits are able to bind the

consensus hypoxia-responsive element (HRE) in promoters that
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contain the sequence NCGTG, they seem to regulate a different

set of target genes depending on the cellular context and oxygen

concentration [23,24]. The factors and molecular mechanisms

that potentially determine this isoform-specific target gene

selectivity remain poorly defined. Interestingly, although HIF-1a
was originally identified to bind to HRE in the 39-enhancer of the

EPO gene, there is now considerable evidence that HIF-2a is the

main HIF-a-subunit controlling EPO gene expression both in vitro

and in vivo [25].

We previously reported that the volatile anesthetic halothane

inhibits hypoxia-induced activation of HIF-1 by distinct molecular

mechanisms [26]. Recently, however, another volatile anesthetic,

isoflurane, has been reported to upregulate HIF-1 activity in

Hep3B cells [27], cultured rat hippocampal neurons [28], and rat

myocardium [29]. Isoflurane-induced activation of HIF is now

considered a possible mechanism of anesthetic preconditioning

[27,28,29,30,31]. However, in vivo experiments of the brain have

not been reported, and while HIF-2 rather than HIF-1 mainly

regulates EPO in the brain [32], the effect of general anesthetics

on HIF-2 has not been well investigated. Considering the pivotal

role of EPO in inducing neuroprotection, the influence of general

anesthetics on EPO, especially in the brain, may have a major

impact on perioperative clinical management. In the present

study, we investigated the effect of general anesthetics, including

isoflurane, on hypoxia-induced upregulation of EPO in the mouse

brain and primary cultured astrocytes.

Results

Isoflurane inhibits the induction of EPO expression under
hypoxic conditions in the brain, but does not affect EPO
induction in the kidney

To examine the effect of general anesthetics on EPO expression

under hypoxic conditions, we exposed 6-week-old BALB/c mice

to 10% O2 (hypoxia) for 3 h with isoflurane. Hypoxic exposure

significantly increased EPO mRNA expression and isoflurane

suppressed hypoxia-induced EPO mRNA expression in a

concentration-dependent manner in the mouse brain (Figure 1A)

and spinal cord (Figure 1B). In the brain, a decrease was observed

at 0.25% and maximal suppression was achieved at 0.5%

(Figure 1A). Next, we performed a time course study with 0.5%

isoflurane. Hypoxic exposure increased EPO mRNA time-

dependently (Figure 1C). Isoflurane inhalation for more than 1 h

significantly suppressed induction (Figure 1C). We re-exposed

mice to hypoxia 24 h after hypoxic treatment with (hypoxia+iso/

hypoxia) or without (hypoxia/hypoxia) 0.5% isoflurane to

determine the reversibility of the suppressive effect of isoflurane

on EPO mRNA in the brain. As shown in Figure 1D, hypoxia-

induced upregulation of EPO mRNA was almost of a similar

extent between the two groups (hypoxia/hypoxia and hypox-

ia+iso/hypoxia); therefore, the suppressive effect of isoflurane was

not identified 24 h later. Next, in order to confirm the effect of

isoflurane at the protein level, we measured EPO protein

concentration in mouse brains using ELISA. We exposed mice

to 10% O2 (hypoxia) for 5 h with or without 0.5% isoflurane.

Hypoxic exposure induced a significant increase in EPO protein

immediately after the treatment, and the effect of isoflurane was

not apparent (Figure 1E). However, 24 h after the hypoxic

exposure, EPO protein concentration decreased in the mice

exposed to hypoxia with isoflurane, although still elevated in the

mice without isoflurane (Figure 1E). Hypoxia has been reported to

induce EPO mRNA upregulation in the kidney and brain [30].

Therefore, we measured EPO mRNA levels in the kidney.

Hypoxic exposure significantly increased EPO mRNA in the

kidney, but isoflurane did not affect the induction of EPO mRNA

levels (Figure 1F).

Sevoflurane, halothane, nitrous oxide (N2O),
pentobarbital, ketamine,and propofol suppress hypoxia-
induced up-regulation of EPO mRNA in mouse brains

To examine whether the effect of isoflurane could be observed

with other general anesthetics, we exposed 6-week-old BALB/c

mice to 10% O2 with 0.5% sevoflurane or halothane. As in the

case of isoflurane, both anesthetics also suppressed hypoxia-

induced EPO upregulation in the brain (Figure 2A) but did not

affect the expression of EPO in the kidney (Figure 2B). Next, we

investigated the effect of nitrous oxide (N2O). We exposed mice to

10% O2 and 90% N2O (hypoxia-N2O group), compared with

10% O2 and 90% N2 (hypoxia-N2 group). EPO mRNA in the

brains of the hypoxia-N2O group was significantly suppressed

compared with that in the hypoxia-N2 group (Figure 2C). Finally,

we tested the non-inhalational anesthetics pentobarbital, ketamine,

and propofol. Fifty mg/kg pentobarbital (Figure 2D), 400 mg/kg

ketamine (Figure 2E), and 200 mg/kg propofol (Figure 2F) also

suppressed hypoxia-induced EPO mRNA upregulation in the

brain.

Isoflurane inhibits the induction of EPO expression under
hypoxic conditions in the brain of one-week and sixteen-
week old C57BL/6N CrSlc mice

Age is an important factor that influences the response to

hypoxia-ischemia in the brain [33]. After our first experiment, we

performed the same experiment in mice of other ages and species.

One-week and sixteen-week-old C57BL/6N CrSlc mice were

exposed to 10% O2 (hypoxia) for 3 h with 0.5% isoflurane. As with

6-week-old BALB/c mice, EPO mRNA induction was significant-

ly suppressed with isoflurane in one-week (Figure 3A) and sixteen-

week (Figure 3B) old mice.

Systemic hemodynamics
To exclude the possibility of secondary effects, including

hypotension, influencing the brain’s hypoxic responses, we

examined the systemic hemodynamics of mice. Hemodynamic

parameters including heart rate (HR), systolic (SAP), diastolic

(DAP), and mean (MAP) arterial pressures were measured in 6-

week-old BALB/c mice exposed to 10% O2 (hypoxia), 10% O2 with

0.5% isoflurane (hypoxia+iso), or 10% O2 with 0.5% sevoflurane

(hypoxia+sev) for 3 h, compared with controls (Table 1). Control

mice were exposed to air without anesthetics. SAP and MAP

decreased in the hypoxia, hypoxia+iso, and hypoxia+sev groups

compared to the control group. However, there were no significant

differences in all hemodynamic parameters among the hypoxia,

hypoxia+iso, and hypoxia+sev groups.

Isoflurane inhibits the induction of HIF-2a protein
expression under hypoxic conditions in the brain of mice

EPO is induced under hypoxic conditions, mainly through

activation of HIF-1 and HIF-2 [16,34]. Therefore, we investigated

the effect of isoflurane on the expression of HIF-1a and HIF-2a
proteins. We exposed 6-week-old BALB/c mice to 10% O2

(hypoxia) for 3 h with or without 0.5% isoflurane. Control mice

were exposed to air without isoflurane (normoxia). The protein

expression of HIF-1a, HIF-2a, and ARNT (HIF-1b) was

investigated with an immunoblot assay. As shown in Figure 4A,

HIF-1a protein was expressed under normoxic conditions and this

expression was not significantly altered in response to either

hypoxic exposure or isoflurane. In contrast, hypoxic exposure
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induced a marked accumulation of HIF-2a protein, which was

clearly suppressed by isoflurane (Figure 4A). ARNT protein

expression was almost stable under all conditions (Figure 4A). Next

we assayed the expression of HIF-1a and HIF-2a immunohisto-

chemically, and found positive immunostaining of HIF-1a was

observed globally in the frontal cortex under all conditions

(Figure 4B). HIF-2a was also admitted to a certain degree under

hypoxic condition, but barely observed under normoxia or

hypoxia with isoflurane exposure (Figure 4B).

Effect of isoflurane on the expression of HIF target genes
Despite significant similarities in their DNA binding and

dimerization domains, it has been demonstrated that HIF-1 and

HIF-2 have unique, as well as common, target genes [35]. As

shown in Figure 5A, HIF-1 specifically regulates glycolytic genes,

including lactate dehydrogenase A (LDHA), whereas HIF-2

exclusively regulates POU transcription factor Oct-4, cyclin D1,

and transforming growth factor a (TGF-a) [35,36]. Other

hypoxia-inducible genes, such as vascular endothelial growth

factor (VEGF), glucose transporter 1 (GLUT1), and EPO, are

regulated by both HIF-1 and HIF-2 in a cell-type-specific manner

[35]. Therefore, we investigated the influence of hypoxia or

isoflurane on HIF target genes in the mouse brain. VEGF mRNA,

as well as EPO, was significantly induced by hypoxic exposure

(10% O2, 3 h) and was significantly suppressed with isoflurane

(0.5%) (Figure 5B). In contrast, the expression of LDHA did not

change significantly with hypoxic exposure and isoflurane

inhalation (Figure 5B). Next, we studied the change of HIF target

genes in the kidney. Although hypoxic exposure significantly

induced EPO mRNA in the kidney (Figure 1F), other HIF target

genes, VEGF and LDHA, were not elevated but rather suppressed

(Figure 5C). The effect of isoflurane on VEGF and LDHA was not

significant (Figure 5C).

Recently, several reports have shown that isoflurane activates

HIF-1 and upregulates HIF target genes [27,28,29,31]. Most of

these studies were performed under normoxic conditions.

Therefore, we investigated the influence of isoflurane on the

expression of HIF target genes in mouse brains under normoxic

conditions. We exposed mice to air with 0.5% or 1.0% isoflurane

for 3 h and measured the mRNA levels of the HIF target genes,

including EPO, VEGF, LDHA, and GLUT1 (Figure 5D).

Isoflurane inhalation did not significantly change the expression

of the mRNA for any of these HIF target genes.

Isoflurane, pentobarbital, ketamine, and propofol
suppress, but morphine does not suppress hypoxia-
induced up-regulation of EPO mRNA in primary cultured
astrocytes

Astrocytes are now supposed to be the major source of EPO in

the CNS [6,7]. To investigate the direct effect of general

anesthetics on astrocytes, we performed in vitro experiments.

Primary cultured astrocytes were exposed to hypoxia (1% O2) with

or without various anesthetics for 4 h. Hypoxic exposure

significantly induced EPO mRNA, and isoflurane suppressed its

induction (Figure 6A). Not only isoflurane but also other anesthetics,

including pentobarbital, ketamine, and propofol, suppressed the

induction of EPO mRNA (Figures 6B–D). However, morphine, a

commonly used drug during the preoperative period, did not inhibit

the upregulation of EPO mRNA in astrocytes (Figure 6E). Next,

HIF-1a, HIF-2a, and ARNT protein accumulation were analyzed

in whole cell lysates from astrocytes. An immunoblot assay showed

distinct HIF-1a and HIF-2a protein accumulation under hypoxic

conditions, and the expression was significantly suppressed with

isoflurane, ketamine, and pentobarbital (Figure 7).

Effect of various anesthetics on oxygen consumption in
primary cultured astrocytes

To investigate the precise mechanism of how general anesthetics

suppress the induction of EPO under hypoxic conditions, we

finally examined the influence of general anesthetics on oxygen

consumption in astrocytes. General anesthetics, especially thio-

pental, are known to decrease metabolism and oxygen consump-

tion of the brain [37]. Therefore, the suppression of oxygen

consumption induced by general anesthetics may reduce the level

of hypoxia and consequently decrease HIF-a protein accumula-

tion and EPO induction. As indicated in Figure 8, 1 mM

pentobarbital as well as sodium azide, a cytochrome oxidase

inhibitor, reduced the oxygen consumption; however, 1 mM

ketamine and 100 mM propofol did not alter the oxygen

consumption significantly. These results suggest that, at least as

to ketamine and propofol, the decrease in oxygen consumption

was not the cause of the suppression of EPO induction.

Discussion

EPO is a major hematopoietic growth factor that is mainly

produced in the kidney and fetal liver [5]. It is also known to

express in CNS tissue [5]. EPO mRNA is constitutively expressed

in the cortex and hippocampus of the brain [38]. Various studies

have focused on the function of EPO in CNS; for example, mice

lacking EPO or EPOR exhibited increased apoptosis in the brain

before they died from severe anemia in utero [39,40], and mice

lacking EPOR in the brain suffered from reduced neurogenesis or

impaired migration of neurons in a brain stroke model [41]. Thus,

EPO is considered to be a neuroprotective factor against hypoxic-

ischemic and traumatic injuries and essential for neuronal

development [5,12].

In the present study, we showed that the induction of EPO

expression under hypoxic conditions was suppressed by the

general anesthetic isoflurane in a concentration- and time-

dependent manner in the mouse brain. Other anesthetics,

including sevoflurane, halothane, N2O, pentobarbital, ketamine,

and propofol, showed a similar effect. As for the mechanism of this

suppression, we found that the accumulation of HIF-2a, but not

HIF-1a, protein under hypoxic conditions was suppressed with

isoflurane in the mouse brain. This finding is consistent with a

previous report indicating that EPO is a target gene for HIF-2a,

rather than HIF-1a, in CNS [32]. HIF-1a is expressed

ubiquitously, but the expression of HIF-2a is tissue-specific [32].

Figure 1. Effect of isoflurane on EPO expression in mouse CNS and kidney. (A, B, and F) Six-week-old BALB/c mice were exposed to 10% O2

(hypoxia) in the presence of various concentrations of isoflurane for 3 hours (n = 6–15), or (C) exposed to 10% O2 (hypoxia) with 0.5% isoflurane for
the indicated periods of time. (D) 24 hours after the hypoxic exposure with or without 0.5% isoflurane, 6-week-old BALB/c mice were re-exposed to
hypoxia (10% O2) for 3 hours. EPO mRNA in the brain (A, C, and D), spinal cord (B) and kidney (F) was assayed with real-time RT-PCR analysis. (E)
Immediately or 24 hours after the 5-hour hypoxic (10% O2) exposure with or without 0.5% isoflurane, EPO protein concentration (pg/ml) in the brain
was quantified with ELISA and divided by the total protein concentration (mg/ml) of each mouse brain. Number of animals per treatment conditions
is 6 (C–E). Data are presented as mean 6 SD. The expression levels of EPO were normalized to that of 18S and expressed relative to the mean of
control mice (A, B, C, D and F). *P,0.05, **P,0.01 versus control, N.S.; not significant (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029378.g001
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HIF-2a is expressed in astrocytes and endothelial cells in the CNS

[32]. Astrocytes are the major source of EPO in the CNS [6,7],

and hypoxia-induced EPO upregulation is dramatically reduced in

the astrocyte-specific HIF-2a knockout mouse [38]. In the present

study, various anesthetics, including isoflurane, pentobarbital, and

ketamine, suppressed the accumulation of HIF-2a protein under

hypoxic conditions in cultured astrocytes. Therefore, our results

indicated that the hypoxia-induced activation of HIF-2 in

astrocytes was inhibited by general anesthetics, which resulted in

a significant suppression of EPO production.

Recently, various studies on astrocytes have been performed,

and these cells are considered responsible for a wide variety of

functions in the CNS, including synaptic transmission and

information processing by neural circuit functions [42]. In the

present study, we showed that various anesthetics suppressed the

accumulation of HIF-2a protein and EPO upregulation under

hypoxic conditions in the mouse brain and cultured astrocytes.

Considering the fact that the accumulation of HIFa proteins is

induced by hypoxia, the suppression of oxygen consumption

induced by general anesthetics may reduce the level of hypoxia

and consequently decrease HIF-2a protein accumulation. Actu-

ally, most of all general anesthetics excluding ketamine and N2O

are known to decrease cerebral metabolic rate of oxygen [43]. But

the effect of anesthetics on metabolism of astrocytes is not well

investigated. In the current study, pentobarbital, well known for

suppressing the metabolism of the CNS [37], decreased oxygen

consumption of astrocytes. On the other hand, ketamine and

propofol did not change oxygen consumption. In addition, we

previously reported that hypoxic brain EPO induction was preserved

in hypothermic mice, although hypothermia is well known to reduce

cerebral oxygen consumption [44]. Therefore, these findings suggest

that the suppressive effect of various anesthetics against HIF-2a
protein accumulation and EPO induction cannot be explained only

by the decrease in oxygen consumption.

The main target of general anesthetics differs with various

anesthetics; for example, ketamine and N2O act via N-methyl-D-

aspartate (NMDA) receptors [45,46], whereas the volatile

anesthetics, propofol and barbiturates act via c-aminobenzoic

acid-A (GABA-A) receptors [47,48]. On the other hand, the effect

of general anesthetics on glial cells is not well understood, except

for the fact that volatile anesthetics inhibit the glutamate uptake of

astrocytes [49]. Our finding that various general anesthetics have

an EPO-suppressive effect in in vitro experiments suggests that

general anesthetics have some common direct effects on astrocytes.

This finding is quite surprising considering the diverse action

mechanism of general anesthetics. Anesthetics modulate functions

of macromolecules, which play an essential role in cellular signal

transduction. For example, protein kinase C (PKC) [50], mitogen-

activating protein kinases (MAPKs) [51], and reactive oxygen

species (ROS) [52] are modulated by anesthetics. PKC, MAPK,

and ROS are also identified to affect HIF activity by modulating

HIF-a protein translation rate, hydroxylation, and phosphoryla-

tion of HIF-a protein [53,54,55]. Therefore, general anesthetics

may affect astrocytes through modulation of such enzymes and

mediators. But most of the studies considering the effect of

anesthetics on HIF have focused on HIF-1 under normoxic

conditions, and the effect on HIF-2 under hypoxic conditions is

not well understood.

Another important finding of the present study is the difference

of behavior between HIF-1a and HIF-2a. Namely, HIF-1a was

Figure 2. Effect of various anesthetics on hypoxia-induced EPO upregulation in the brain. (A, B) 6-week-old BALB/c mice were exposed to
10% O2 (hypoxia) in the presence of 0.5% sevoflurane, halothane or isoflurane for 3 hours. (C) 6-week-old mice were exposed to 10% O2, 90% N2O
(hypoxia- N2O) for 3 hours and compared with 10% O2, 90% N2 (hypoxia- N2). (D–F) 6-week-old mice were exposed to 10% O2 with pentobarbital (D),
ketamine (E) or propofol (F). In the all experiments, control mice were exposed to air without anesthetics (normoxia). EPO mRNA in the brain (A, C–F)
and kidney (B) was assayed with real-time RT-PCR. Data are presented as mean 6 SD (n = 6). The expression levels of EPO were normalized to that of
18S and expressed relative to the mean of control mice. *P,0.05, **P,0.01 versus control, N.S.; not significant (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029378.g002

Figure 3. Effect of age and species on hypoxic EPO induction in mice brains. (A) 1-week and (B) 16-week-old C57BL/6N CrSlc mice were
exposed to 10% O2 (hypoxia) in the presence of 0.5% isoflurane for 3 hours. Control mice were exposed to air without anesthetics (normoxia). EPO
mRNA in the brain was assayed with real-time RT-PCR. Data are presented as mean 6 SD (n = 3–5). The expression levels of EPO were normalized to
that of 18S and expressed relative to the mean of control mice. *P,0.05 versus control (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029378.g003
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expressed even under normoxic conditions and 3-h hypoxic

exposure did not affect HIF-1 protein accumulation distinctively in

mice brains. In contrast, HIF-2a was barely expressed under

normoxic conditions and clearly increased in response to hypoxic

exposure. In in vitro experiments, however, both HIF-1a and HIF-

2a protein accumulation were observed under a 1% O2 condition,

and various anesthetics significantly suppressed their induction.

Although both HIF-1a and HIF-2a are considered to accumulate

significantly under hypoxic conditions in in vivo experiments using

the mouse brain [56], some reports have shown that HIF-1a was

expressed even under normoxic conditions [57,58]. In most of

these previous reports, HIF-1a protein increased in response to

hypoxic exposure in the brain, but the extent varied [57,58,59]. A

possible explanation for the discrepancy is the difference of oxygen

concentration. Previous report showed that HIF-1a protein

accumulation was observed under 1% O2 condition but not 5%

O2 condition in the neuronal cell line SK-N-BE cells [23]. We

exposed mice to 10% O2 in our studies, but 10% O2 might not be

low enough to induce HIF-1a protein accumulation.

Figure 4. Mechanism of suppression by isoflurane against EPO upregulation under hypoxic conditions. (A) Expression analysis of
hypoxia-inducible factor (HIF)-1a, HIF-2a, and aryl hydrocarbon receptor nuclear translocator (ARNT, also termed as HIF-1b) in the whole brain by
immunoblotting. 6-week-old BALB/c mice were exposed to air (control), 10% O2 (hypoxia) or 10% O2 with 0.5% isoflurane (hypoxia+iso) for 3 hours.
Figures are representative of at least three independent experiments. (B) Immunohistochemical staining for HIF-1a and HIF-2a in the frontal cortex of
6-week-old BALB/c mice. Mice were exposed to air (control), 10% O2 (hypoxia) or 10% O2 with 0.5% isoflurane (hypoxia+iso) for 3 hours. Figures are
representative of 6 slices of 3 mice. Scale bars: 100 mm.
doi:10.1371/journal.pone.0029378.g004

Table 1. Systemic hemodynamics.

Mice n
HR,
beats/min

SAP,
mmHg

DAP,
mmHg

MAP,
mmHg

Control 7 450670 115613 62615 80612

Hypoxia 7 513649 10065.8* 50617 67612*

Hypoxia+Iso 6 463677 9368.8* 4267.3 5865.6*

Hypoxia+Sev 6 448634 8968.7* 54612 65610*

Six-week-old BALB/c mice were divided into 4 groups; control (exposed to air),
hypoxia (exposed to 10% O2 for 3 hours), hypoxia+iso (exposed to 10% O2 with
0.5% isoflurane for 3 hours) and hypoxia+sev (exposed to 10% O2 with 0.5%
sevoglurane for 3 hours). Immediately after the hypoxic exposure, heart rate
and blood pressure were measured.
There were no significant differences in any of the parameters among hypoxia,
hypoxia+iso and hypoxia+sev group mice. Values are shown as mean 6 SD.
* P,0.05 versus control.
HR = heart rate; SAP = systolic arterial pressure; DAP = diastolic arterial pressure;
MAP = mean arterial pressur.
doi:10.1371/journal.pone.0029378.t001
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Figure 5. Effect of isoflurne on mRNA expression of HIF target genes. (A) HIF-1 and HIF-2 have unique, as well as common, target genes. HIF-
1 specifically regulates glycolytic genes, including lactate dehydrogenase A (LDHA), phosphoglycerate kinase (PGK), as well as carbonic hydrase-9 (CA
IX) whereas HIF-2 exclusively regulates POU transcription factor Oct-4, cyclin D1, and transforming growth factor a (TGF-a). Other hypoxia-inducible
genes, such as vascular endothelial growth factor (VEGF), glucose transporter 1 (GLUT1), and EPO are regulated by both HIF-1 and HIF-2. (B, C) 6-
week-old BALB/c mice were exposed to 10% O2 (hypoxia) for 3 hours with or without 0.5% isoflurane and compared with controls. Control mice were
exposed to air without isoflurane (normoxia). (D) 6-week-old BALB/c mice were exposed to 0.5% or 1.0% isoflurane in air for 3 hours. Data are
presented as mean 6 SD (n = 6). The expression levels of EPO, VEGF, LDHA and GLUT1 were assayed using real-time RT-PCR and normalized to that of
18S and expressed relative to the mean of mice exposed to air without isoflurane (normoxia).
doi:10.1371/journal.pone.0029378.g005
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EPO has now been considered to be one of the promising agents

for neuroprotection [3,4,5]. Actually, in the clinical trials,

erythropoietin showed neuroprotective effect against acute stroke

[60], hypoxic-ischemic encephalopathy in newborns [61] and

delayed ischemic deficits following aneurysmal subarachnoid

hemorrhage [62]. In the current study, we showed the induction

of EPO mRNA expression under hypoxic conditions was

suppressed with isoflurane in a concentration- and time-dependent

manner. Other anesthetics including sevoflurane, halothane, N2O,

pentobarbital, propofol and ketamine showed the same effect.

Most of all anesthetics suppressed EPO mRNA induction with

concentrations no more than clinically used, for example,

isoflurane, sevoflurane and halothane showed this effect with

0.5%. Therefore, considering the neuroprotective effect of EPO,

exposure to anesthetics beyond necessity should be avoided

especially in cases hypoxia in brain may happen at greater risk

like cardiovascular surgery.

According to the recent reports, anesthetic exposure in neonatal

animals leads to neuronal death in certain circumstances [63,64].

Such neurotoxicity has now been demonstrated for many

anesthetics, including isoflurane, ketamine, midazolam, pentobar-

bital, N2O, and propofol, and a positive correlation may exist

between increased levels of anesthesia and increased severity of

neuroapoptosis [65,66]. The precise mechanisms by which injury

is invoked are not clear, although an imbalance between excitatory

and inhibitory input in the CNS during synaptogenesis may

contribute to such an effect [65]. On the other hand, EPOR is

highly expressed in the developing mouse brain [7], and mice

lacking EPO or EPOR experienced increased apoptosis in the

brain before they died of severe anemia in the uterus [39,40]. We

did not investigate the effect of general anesthetics on brain EPO

under normoxic conditions in neonatal animals. However,

considering the pivotal role of EPO in brain development, general

anesthetics may cause neuroapoptosis by suppressing EPO

production in the brain. Further studies using neonatal animals

should be performed.

In conclusion, we demonstrated that isoflurane inhibited

hypoxia-induced EPO upregulation in the mouse brain and

cultured astrocytes, most likely through suppression of HIF-2

activity. Other general anesthetics showed the same effect. Our

findings suggest that general anesthetics have some direct effect on

astrocytes and a major impact on the hypoxic response of the

CNS.

Methods

Animals
This study (ID: Med Kyo 09504) was approved by the Animal

Research Committee of Kyoto University (Kyoto, Japan), and all

experiments were conducted in accordance with the institutional

and NIH guidelines for the care and use of laboratory animals. All

procedures were performed on BALB/c or C57BL/6N CrSlc

mice purchased from Japan SLC Inc., Shizuoka, Japan. Food and

water were provided ad libitum, and the mice were maintained

under controlled environmental conditions (24uC, 12-h light/dark

cycles).

Drugs and chemicals
Isoflurane and pentobarbital were obtained from Dainippon

Sumitomo Pharma Co., Ltd., Osaka, Japan; sevoflurane from

Maruishi Pharmaceutical Co., Ltd., Osaka, Japan; halothane from

Takeda Pharmaceutical Co., Ltd., Osaka, Japan; and propofol

from Astra-Zeneca, London, UK. Morphine and ketamine were

purchased from Sankyo Co., Ltd., Tokyo, Japan. Nitrous oxide

(N2O) (Wakayama Sanso, Wakayama, Japan), oxygen (O2) (Taiyo

Nippon Sanso, Tokyo, Japan), and nitrogen (N2) (Taiyo Nippon

Sanso) were also used.

Hypoxic treatment
Mice were placed in a polypropylene chamber, and O2 and N2

mixed gas with or without volatile anesthetics, including

isoflurane, sevoflurane, and halothane, was delivered to the

chamber at a flow rate of 3 l/min using an anesthetic machine

(Custom50; Aika, Tokyo, Japan). In the experiment using N2O,

O2 and N2O-mixed gas was administered at the same flow rate.

Concentrations of O2, carbon dioxide (CO2), N2O, and volatile

anesthetics, including isoflurane, sevoflurane, and halothane, were

monitored continuously using an infrared analyzer (Capnomac

Ultima; Datex-Ohmeda, Helsinki, Finland). Mice were allowed to

adjust to the hypoxic environment by gradually decreasing the O2

level from 21% to 10% over 1 h, and they were maintained at

10% O2 for the indicated durations. Treatment with the volatile

anesthetics was initiated immediately after the adaptation to

Figure 6. Effect of various anesthetics on EPO expression in primary cultured astrocytes. Primary cultured astrocytes were exposed to 1%
O2 (hypoxia) in the presence of indicated concentrations of isoflurane (A), pentobarbital (B), ketamine (C), propofol (D) or morphine (E) for 4 hours. In
the all experiments, control was exposed to 20% O2. EPO mRNA was assayed with real-time RT-PCR. Data are presented as mean 6 SD (n = 4). The
expression levels of EPO were normalized to that of 18S and expressed relative to the mean of control. *P,0.05, **P,0.01 versus control, N.S.; not
significant (Mann-Whitney U-test).
doi:10.1371/journal.pone.0029378.g006

Figure 7. Expression analysis of HIF-1a, HIF-2a, and ARNT
protein in primary cultured astrocytes by immunoblotting.
Primary cultured astrocytes were incubated under hypoxic (1% O2)
conditions with or without 1.5% isoflurane, 1 mM pentobarbital, or
1 mM ketamine for 4 hours. Whole cell lysates were analyzed for HIF-1a,
HIF-2a, ARNT, GFAP, NeuN and b-actin protein expression by
immunoblot assay. Figures are representative of at least three
independent experiments.
doi:10.1371/journal.pone.0029378.g007
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hypoxia. In the experiments using pentobarbital, ketamine, and

propofol, the drugs were administered intraperitoneally immedi-

ately after hypoxic adaptation. The rectal temperature was

monitored using an ATB-1100 (Nihon Kohden, Tokyo, Japan),

and a heat lamp was used to maintain the temperature at 3661uC.

Arterial blood pressure was measured non-invasively using the tail-

cuff method immediately after completion of the hypoxic exposure

using an MK-2000ST (Muromachi Kikai Co., Ltd., Tokyo,

Japan). At the end of the experiments, the mice were killed by

cervical dislocation. The brains, spinal cords, and kidneys were

Figure 8. Effect of anesthetics on oxygen consumption of primary cultured astrocytes. Oxygen consumption curves generated using a
Clark electrode for primary cultured astrocytes suspensions. Arrows indicate addition of 2 mM sodium azide, 1 mM pentobarbital, 1 mM ketamine or
100 mM propofol. The slope of the curve is a measure of the rate of O2 consumption. Data are presented as mean 6 SD (n = 3).
doi:10.1371/journal.pone.0029378.g008
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rapidly removed, frozen in liquid nitrogen, and stored at 280uC
for subsequent determinations.

Reverse transcription and real-time quantitative
polymerase chain reaction

RNA was isolated from the frontal lobe of the brain using the

FastPureTM RNA Kit (Takara Bio, Inc., Shiga, Japan). First-strand

synthesis and real-time RT-PCR were performed using the One

Step SYBRTM PrimeScriptTM RT-PCR Kit II (Takara Bio)

according to the manufacturer’s instructions. PCR was performed

using the Applied Biosystems 7300 Real-Time PCR System

(Applied Biosystems, Foster City, CA). All PCR primers (Catalog

numbers: 18S: QT01036875; EPO: QT00170331; VEGF:

QT00160769; GLUT1: QT01044953) except lactate dehydroge-

nase A (LDHA) were purchased from Qiagen (Valencia, CA). The

sequences of the LDHA primers (Takara Bio) are 59-GGAT-

GAGCTTGCCCTTGTTGA-39 (forward) and 59-GACCAG-

CTTGGAGTTCGCAGTTA-39 (reverse). The fold changes in

expression of each target mRNA were calculated relative to 18S

rRNA.

ELISA of EPO
Samples were prepared according to the method described

previously [67]. Briefly, the entire brain was homogenized in

phosphate-buffered saline (PBS), centrifuged for 10 min at 5,000 g

at 4uC, and immediately frozen at 220uC. After two freeze–thaw

cycles to break the cell membranes, the brain homogenates were

assayed by an ELISA kit (R&D Systems Europe, Abingdon, UK)

according to the manufacturer’s instructions. The results were

expressed as the ratio of the quantity of EPO (in pg) to the quantity

of total protein (in mg) in the brain. The total protein

concentration was determined by the modified Bradford assay

(Nakalai Tesque, Inc., Kyoto, Japan) using bovine serum albumin

(BSA) as a standard.

Immunoblot assay
Nuclear extracts were prepared from a whole mouse brain using

a nuclear extraction kit (Active Motif, Carlsbad, CA). The aliquots

(100 mg protein) were fractionated by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS/PAGE) (7.5% gel) and

subjected to an immunoblot assay following a protocol described

previously [68]. Primary antibodies raised against HIF-1a (AB

1536; R&D Systems, Minneapolis, MN), HIF-2a (NB100-480;

Novus Biologicals, Inc., Littleton, CO), ARNT (HIF-1b)

(#611078; BD Biosciences, San Jose, CA), glial fibrillary acidic

protein (GFAP) (#3670; Cell Signaling, Stockholm, Sweden),

neuronal nuclei (NeuN) (MAP377; Millipore, Billerica, MA), and

b-actin (A5316; Sigma-Aldrich, St. Louis) were used at a 1:1000

dilution. Horseradish peroxidase (HRP)-conjugated sheep anti-

mouse IgG (GE Healthcare, Piscataway, NJ) or donkey anti-rabbit

IgG antibodies (GE Healthcare) were also used at a 1:1000

dilution. The signal was detected with enhanced chemilumines-

cence (ECL) reagent (GE Healthcare).

Immunohistochemistry
Immunohistochemistry was performed according to the proce-

dure described by Toda et al [69]. Mouse brains were kept at 4uC
overnight in 4% paraformaldehyde in 0.1 M phosphate buffer.

The brains were then rinsed in PBS, transferred to 70% ethanol,

and embedded in paraffin. Ten-micrometer coronal sections were

cut and mounted on slides using albumin water. Sections were

deparaffinized and rehydrated, and antigen retrieval was per-

formed using autoclaving. Briefly, a Coplin jar containing glass

slides in citrate buffer was covered with a loose fitting cap and

heated in a stainless steel pressure cooker for 5 min at 121uC. The

pressure cooker was removed from the heat source and cooled by

running under cold water with the lid on. The glass slides were

rinsed in distilled water. The incubation and washing procedures

were carried out at room temperature. After deparaffinization and

antigen retrieval by the methods noted above, endogenous

peroxidase activity was blocked by 0.3% H2O2 in methyl alcohol

for 30 min. The glass slides were washed in PBS (6 times, 5 min

each) and mounted with 1% goat normal serum in PBS for

30 min. Subsequently, rabbit polyclonal anti-HIF-1a (AB 1536;

R&D Systems) diluted 1:200 and rabbit polyclonal anti-HIF-2a
(NB100-480; Novus Biologicals) diluted 1:400 were applied

overnight at 4uC. They were then incubated with biotinylated

goat anti-rabbit serum (second antibody) diluted 1:300 in PBS for

40 min, followed by washes in PBS (6 times, 5 min each). Avidin-

biotin-peroxidase complex (ABC) (ABC-Elite, Vector Laborato-

ries, Burlingame, CA) at a dilution of 1:100 in BSA was applied for

50 min. After washing in PBS (6 times, 5 min each), coloring

reaction was performed using diaminobenzidine, and the nuclei

were counterstained with hematoxylin.

Cell culture
Primary cultures of cerebral cortical astrocytes were prepared

from 1- or 2-day-old C57BL/6N CrSlc mice according to the

method previously described [70]. Brains of mice were removed

under sterile conditions, and the meninges were carefully removed.

The tissue was dissociated by passing it through a 320-mm nylon

mesh with the aid of a rubber policeman. After washing with

Hanks’ balanced salt solution containing DNaseI, the cells were

suspended and passed through a 100-mm nylon mesh. Next, they

were plated on a plastic culture flask (density of 2 brains per flask)

in 10-ml tissue culture medium. The tissue culture medium

consisted of Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS), 100 U/ml

penicillin, and 0.1 mg/ml streptomycin. The cultures were

maintained in a humidified atmosphere of 5% CO2 in air at

37uC. The medium was changed after 3 days, then twice weekly.

At the first medium change, the flasks were vigorously shaken in

order to remove oligodendrocytes and their precursors. All

experiments were performed in cells at day 14 in vitro.

Isoflurane exposure
Isoflurane exposure was performed as described previously [71].

Briefly, cell dishes were kept in the airtight chamber housed within

a water jacket incubator maintained at 37uC. An in-line calibrated

anesthetic agent vaporizer was used to deliver isoflurane to the gas

phase of the culture wells. Hypoxic gas (1% O2–5% CO2–94%

N2) was administered at a flow rate of 3 l/min, until the

appropriate effluent concentration of the anesthetic was achieved.

Effluent isoflurane, O2, and CO2 concentrations were continu-

ously monitored via a sampling port connected to an anesthetic

agent analyzer (Capnomac Ultima; Datex-Ohmeda, Helsinki,

Finland).

Protein extraction
Whole cell lysates were prepared using ice-cold lysis buffer

[0.1% SDS, 1% Nonidet P40 (NP40), 5 mM EDTA, 150 mM

NaCl, 50 mM Tris-Cl (pH 8.0), 2 mM DTT, 1 mM sodium

orthovanadate, and complete protease inhibitor (Roche Diagnos-

tics)] following a protocol described previously [72]. A total of

100 mg of protein was loaded onto a 7.5% SDS/PAGE gel for

immunoblot assay.
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Measurement of total cellular O2 consumption
Cells were trypsinized and suspended at 16107 cells per ml in

DMEM with 10% FBS and 25 mM HEPES buffer. For each

experiment, equal numbers of cells suspended in 0.4 ml were

pipetted into the chamber of an OxythermTM electrode unit

(Hansatech Instruments, Norfolk, UK), which uses a Clark-type

electrode to monitor the dissolved O2 concentration in the sealed

chamber over time. The data were exported to a computerized

chart recorder (Oxygraph; Hansatech Instruments) that calculated

the rate of O2 consumption. The temperature was maintained at

37uC during measurement. The O2 concentration in 0.4 ml of

DMEM medium without cells was also measured over time to

provide background values. Oxygen consumption experiments

were repeated three times.

Statistical analysis
Data are presented as the mean 6 SD. Statistical significance

was assessed by Mann-Whitney U-test for two group comparisons

and by Kruscal Wallis H-test, followed by Mann-Whitney U-test

with Bonferroni Correction for multiple group comparisons.

Significance was defined as a value of P,0.05.
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