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Abstract

Background: Determine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during
early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis.

Methodology/Principal Findings: By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we
derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-
1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and
MYOD1, and a deficit of factors (SUV39H1 and HMGB2) involved in D4Z4 chromatin conformation. On the other hand, FSHD-
2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser
extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol
biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene
dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression
throughout the 4q35 chromosome.

Conclusions/Significance: FSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global
deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and
FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell
cycle progression (FSHD-1 and to a lesser extent FSHD-2), protein synthesis and degradation (FSHD-2), response to oxidative
stress (FSHD-1 and FSHD-2), and cholesterol homeostasis (FSHD-1 and FSHD-2) may in general impair a correct myogenesis.
Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene
deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a role.
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD [OMIM

158900]) is the third most frequent form of muscle diseases,

inherited as an autosomal dominant trait, with an estimated

incidence of 1 in 20,000.

The disease is predominantly characterized by progressive,

often asymmetric, weakness and wasting of facial, shoulder and

upper arm muscles [1]. Interfamilial and intrafamilial variability,

with severity ranging from asymptomatic carriers (20% of

individuals related to FSHD patients) to loss of ambulation, are

also described [2–3]. Males are on average more often and more

severely affected than females [4].

The molecular defect associated to the disorder has been mapped

to the subtelomeric region of the long arm of chromosome 4 (4q35)

where a large, complex macrosatellite (the D4Z4 repeat array) is

present [5]. In the general population, the D4Z4 repeat array is

polymorphic and it may vary from 11 to more than 100 units of

3.3 kb, whereas most of FSHD patients (FSHD-1) carry only 1 to 10

repeat units [6]. To develop FSHD, D4Z4 contraction needs to

occur on a specific genetic background; in fact, only contractions

associated with some chromosome 4 variants, such as the 4qA161

and the newly discovered uncommon 4qA159 and 4qA168, are

permissive [7–8]. It is noticeable that monosomy of 4qter or entire

deletions of D4Z4 repeat array are not associated with the disorder,

so a critical role for this genomic region and its flanking sequences in

FSHD pathogenesis is to be expected.

However, a small percentage of FSHD cases (,5%) (defined

FSHD-2 patients), shows at least one 4qA161 chromosome but no

contraction of 4q35 D4Z4 [9–10]. This subset of patients appears
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very heterogeneous and to date no disease locus has been

identified.

Furthermore, recent studies showed that FSHD-1 and FSHD-2

patients are characterized by 4q D4Z4 hypomethylation that is

contraction-dependent in FSHD-1 and contraction-independent

in FSHD-2 patients [10–11]. Current models of FSHD patho-

genesis suggest that D4Z4 contraction (FSHD-1) or other not yet

known genetic defects (FSHD-2), results in chromatin modification

that could generate aberrant expression of a putative gene

encoded by the D4Z4 repeat, termed double-homeobox 4

(DUX4) [8,12–14], or of genes in cis to the D4Z4 array [15], or

elsewhere in the genome (in trans). However, until now

disagreement remains on whether single genes are reliably mis-

expressed or causative for FSHD.

One approach with no an a priori model on the molecular basis

of the disease is represented by the derivation of global gene

expression profile in cells derived from affected patients in

comparison to control ones. Although several transcriptome

studies have been published on FSHD-1, only one was carried

out on primary myoblasts [16], and none has considered gene

variations in different steps of myogenic differentiation. Further-

more, no studies have been previously reported on global gene

expression in FSHD-2.

In this paper, we present global gene-expression profiles of

myoblasts from FSHD-1 and FSHD-2 patients and healthy

controls in the context of myogenic differentiation.

Materials and Methods

Cell lines and patients
Human primary myoblasts derived from FSHD-1 and FSHD-

2 (non 4q-linked or phenotypic FSHD) patients and from

healthy controls were obtained from the Telethon BioBank

(Neuromuscular Disease and Neuroimmunology Unit, Muscle

Cell Biology Laboratory, C. Besta Neurological Institute).

Table 1 reports the main features of the used cell lines. Cells

Table 1. Features of the analyzed cell lines.

CELL
LINES

AGE AT
BIOPSY/
GENDER

SITE OF
BIOPSY

MOLECULAR
DIAGNOSIS

SIZE OF
D4Z4
ARRAY HAPLOTYPE* PDa

MICROARRAY
ASSAY**

qRT-
PCR**

FSHD-1
S1

35 / M Quadriceps
femoris

FSHD-1 23 kb 4qA161–4qB168 7 X

FSHD-1
S2

5 / M Quadriceps
femoris

FSHD-1 6–9 kb 4qA161–4qB164 4 X X

FSHD-1
S3

71 / F Quadriceps
femoris

FSHD-1 27,5 kb 4qA161–4A163 5 X X

FSHD-1
S4

55 / F Quadriceps
femoris

FSHD-1 29 kb 4qA161–4qA161 3 X X

FSHD-1
S5

75 / F Quadriceps
femoris

FSHD-1 25 kb N.D. 4 X

FSHD-1
S6

33 / M Quadriceps
femoris

FSHD-1 27,5 kb N.D. 5 X

FSHD-1
S7

17 / F Quadriceps
femoris

FSHD-1 17 kb N.D. 4 X

FSHD-2
S1

12 / M Quadriceps
femoris

FSHD-2 .38 kb 4qA161–4qB168 4 X X

FSHD-2
S2

17 / M Quadriceps
femoris

FSHD-2 .38 kb 4qA161–4qA161 3 X X

CN-1 62 / F Quadriceps
femoris

control - 4qA161–4qB164 5 X

CN-2 77 / M Quadriceps
femoris

control - 4qA161–4qB164 4 X

CN-3 55 / F Quadriceps
femoris

control - 4qA168–4qB164 4 X X

CN-4 60 / M Quadriceps
femoris

control - 4qA161–4qB163 3 X

CN-5 20 / M Quadriceps
femoris

control - N.D. 2 X

CN-6 28 / F Quadriceps
femoris

control - 4qA161–4qB163 5 X

CN-7 37 / F Quadriceps
femoris

control - 4qA161–4qB164 6 X

CN-8 49 / F Quadriceps
femoris

control - N.D. 10 X

N.D. Not determined.
aPopulation doubling (PD).
*Sequence-lengh polymorphism (SSLP) located 3,5 kb proximal to D4Z4 [7].
**Cell lines used in microarray assay and/or qRT-PCR.
doi:10.1371/journal.pone.0020966.t001
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were grown in Dulbecco’s Modified Eagle Medium (DMEM)

containing 20% fetal bovine serum (FBS), L-glutamine (1%),

penicillin and streptomycin (1%) (Euroclone), insulin 10 mg/ml

(Sigma), human fibroblast growth factor (hFGF) 25 ng/ml and

human epidermal growth factor (hEGF) 10 ng/ml (Peprotech).

Myotubes were obtained after treatment in DMEM supple-

mented with 2% horse serum (Euroclone) and 1% insulin

(Sigma), for 8 days (differentiating medium) [17]. All experi-

ments were performed using cell lines between 2 and 10

population doubling (PD) to avoid premature replicative

senescence which normally occurs after 10–15 PD (Table 1).

All FSHD patients satisfied the accepted clinical criteria for

FSHD. FSHD-1 had undergone DNA diagnosis and were

identified as carriers of small (,38 kb, ,11 repeats) 4q35-

located D4Z4 repeat arrays, as determined by p13E-11

hybridization to EcoRI-digested and EcoRI/BlnI-digested geno-

mic DNA (Table 1). FSHD-2 patients were considered those

showing: a) FSHD clinical signs [18] and b) a 4q D4Z4 cluster

size higher than 38 kb (Table 1). Regarding the clinical signs,

FSHD-2 S1 presented with severe shoulder (involving trapezius,

arm rotator and extension muscles) and pelvic (mainly gluteus)

girdle weakness, as well as a marked facial weakness. FSHD-2

S2 presented with severe shoulder girdle weakness (inability to

lift arms above shoulder level), orbicularis oculi and orbicularis

oris weakness and modest pelvic girdle weakness. Furthermore,

both FSHD-2 patients were subjected to molecular analysis on

Calp-3 and dysferlin gene products (molecular markers of the

two main forms of Limb girdle dystrophies: LGMD2A and

LGMD2B), and the two markers were found unaffected.

Total RNA extraction and qRT-PCR analysis
Total RNA was isolated from sub confluent cell cultures using

the RNeasy Mini Kit (Qiagen), and the purified RNA was

treated with RNase-free DNase (Qiagen) to remove any residual

DNA. Purified RNA was quantified by NanoDrop spectropho-

tometry (Thermo Scientific). Quantitative RT-PCR (qRT-PCR)

analysis was performed on an IQTM5 Multicolor Real-Time

PCR Detection System (Biorad) by TaqManH Gene Expression

Assays (Applied Biosystem) (Table 2), or SYBR Green (Biorad)

(Table 3). Each amplicon was analyzed in duplicate in 96-well

optical plates. For TaqManH Gene Expression Assays, typical

20 ml reactions contained 10 ml IQ multiplex supermix (Biorad),

1 ml 20x TaqMan Gene Expression Assay Mix (containing

unlabeled PCR primers and FAM dye-labeled MGB probe;

Applied Biosystem), and 20 ng of cDNA. SYBR Green qRT-

PCR was performed as previously described [17]. For the

TaqManH Assay Thermal cycling conditions were 2 min at

95uC, followed by 40 cycles at 95uC for 10 s and 60uC for 30 s.

PCR conditions for SYBR Green assay are described in Table 3.

Each experiment was performed on three independent RNA

extractions of the same sample. For SYBR Green assays,

standard curves for each amplicon were generated using cDNA

derived from a serial 5 fold dilution of human muscle cDNA,

derived from a commercial RNA (Ambion). Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), hypoxanthine phosphor-

ibosyl transferase-1 (HPRT1) and polymerase RNA II DNA-

directed polypeptide A (POLR2A) were initially tested as house-

keeping genes. Since they displayed a similar expression range

(data not shown), we decided to use only GAPDH. Thus results

were normalized to PCR product for GAPDH using the

comparative 2-DDCt method and are presented as fold change

(FC) [19].

The statistical analysis was performed using a two-tailed

Student’s t-test and the error bar is ERR.STD.

Microarray Assay
RNA quality and quantity were assessed using Agilent 2100

Bioanalyzer (Agilent Technologies) and NanoDrop ND-1000

Spectrophotometer (Thermo Fisher Scientific), respectively. 1 mg

of total RNA was subjected to ribosomal RNA removal using

RiboMinus human/mouse transcriptome isolation kit (Invitrogen),

then cDNA was synthesized using Whole-Transcript Sense Target

Labeling Assay (AffymetrixH), following manufacturer’s procedure.

Fragmented biotin-labeled cDNAs were hybridized to AffymetrixH
human exon 1.0 ST arrays at 45uC for 17 hours, as described in

AffymetrixH Users Manual. Washing and staining steps were

carried out using GeneChip Fluidics Station 450, then the arrays

were scanned in the AffymetrixH GeneChipH scanner 3000 7G.

AffymetrixH GeneChipH operating software was used for acqui-

sition, management and initial processing of the expression data,

while arrays quality control was performed using AffymetrixH
Expression ConsoleTM.

Microarray data analysis
Expression analysis of microarray experiments was performed

with Raw Affymetrix data (".CEL" files) were background

adjusted, preprocessed and normalized using RMA procedure.

The analyses were performed using R statistical environment

(www.r-project.org) with Bioconductor libraries for microarray

data analysis (www.bioconductor.org). Custom probeset defini-

Table 2. TaqMan RT–PCR primers and probes.

Transcript Primer (59–39)
Probes (Reporter –
Quencher)

GAPDH Fw -
cccttcattgacctcaactacatg

TEXAS RED - BHQ-2 (Sigma)

Rw -
tgggatttccattgatgacaagc

POLRA2 Fw- gcaccacgtccaatgacat HEX - BHQ-1 (Sigma)

Rw- gtgcggctgcttccataa

HPRT1 Fw-
agactttgctttccttggtcagg

JOE - TAMRA (Sigma)

Rw-
gtctggcttatatccaacacttcg

KIF18A Hs00229692_m1 FAM - BHQ-2 (Applied
Biosystems)

CDC6 Hs00154374_m1 FAM - BHQ-2 (Applied
Biosystems)

E2F7 Hs00403170_m1 FAM - BHQ-2 (Applied
Biosystems)

SUV39H1 Hs00162471_m1 FAM - BHQ-2 (Applied
Biosystems)

DCLRE1B Hs00224566_m1 FAM - BHQ-2 (Applied
Biosystems)

MSH2 Hs00953523_m1 FAM - BHQ-2 (Applied
Biosystems)

SDR Hs00190538_m1 FAM - BHQ-2 (Applied
Biosystems)

LAMA4 Hs00935293_m1 FAM - BHQ-2 (Applied
Biosystems)

SOD2 Hs00167309_m1 FAM - BHQ-2 (Applied
Biosystems)

PTPRN Hs00160947_m1 FAM - BHQ-2 (Applied
Biosystems)

doi:10.1371/journal.pone.0020966.t002
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tions were adopted [20]: library version 11. In particular, the

ENSEMBL based probeset definition was used to obtain gene

expression data. Expression data matrices were filtered to select

only custom probeset including at least 4 probes. Differential

expression was evaluated using limma package (www.bioconduc-

tor.org) considering the contrasts of interest between selected

groups of samples. Moderated statistics were computed using

limma empirical Bayes adjustment for standard errors. Gene

probesets with P,0.01 and FC.2 were selected in FSHD-1 assay,

whereas P,0.001 and FC.2 were used in FSHD-2, in the

attempt to overcame problems due to the small sample size

analyzed. All data discussed in this publication are MIAME

compliant; all data have been deposited in Gene Expression

Omnibus (NCBI) and are accessible through GEO Series

accession number GSE26061.

Functional classification analysis of the differentially expressed

probes was performed with DAVID Bioinformatics Resource 6.7

(National Institute of Allergy and Infectious Disease (NIAD), NIH

(http://david.abcc.ncifcrf.gov) [21–22], and by Gorilla [23]. We

considered GeneOntology functional classes that had a Fisher

exact p-value (EASE score) ,0.05.

miRNA target prediction
miRNA target prediction was obtained with microRNA.org

(http://www.microrna.org/microrna/home), PicTar (http://pictar.

mdc-berlin.de/), miRNAMap (http://mirnamap.mbc.nctu.edu.tw),

TargetScanHuman 5.1 (http://www.targetscan.org), Microcosm

Target (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/

targets/v5).

Results

Expression profiles of FSHD-1 and FSHD-2 myoblasts and
myotubes

We analyzed by microarray the expression profile of human

primary myoblasts obtained from three FSHD-1 and two

FSHD-2 patients, and three healthy controls (CN). To evaluate

the molecular perturbation of FSHD upon muscle differenti-

ation, we compared patients and CN proliferating myoblasts as

well as the corresponding myotubes obtained after 8 days of cell

differentiation. Moreover we analyzed gene expression varia-

tions in the differentiation processes of FSHD samples and

compared them to that observed in control cells (Fig. 1). Setting

the criteria described in Material and Methods (FC.2 and p-

value ,0.01 and ,0.001 for FSHD-1 and FSHD-2, respec-

tively), FSHD-1 and FSHD-2 proliferating cells showed a total

of 367 (239 down and 128 up) and 70 (47 down and 23 up)

deregulated probes as compared to controls respectively,

sharing only 4 genes (1 down and 3 up) (Fig.1A). The same

analysis performed on the corresponding myotubes (Fig.1B)

evidenced a total of 129 (58 down and 71 up) in FSHD-1 and

626 (448 down and 178 up) in FSHD-2 deregulated probes,

respectively. Also in this case the number of shared genes was

very low (13 genes, 9 down and 4 up). The four gene lists are

reported in Table S1A-D. Analyzing the gene expression

during the differentiation processes we obtained a total of 559

genes modulated in CN cells, 158 in FSHD-1 and 899 in

FSHD-2 cells. The FSHD-1 differentiation process shared with

the CN one only 67 entries, whereas FSHD-2 and CN

differentiation processes shared 222 entries (Fig.1C). Further-

more, the two pathological differentiation processes shared 25

deregulated genes.

Regarding the 4q35 chromosome region, the analysis did not

reveal a significantly altered pattern of gene expression, in both

FSHD-1 and FSHD-2 samples; exceptions were represented by

three genes (SNX25, ANKRD37 and SORBS2, located approx-

imately 4 Mb upstream to the D4Z4 array) found down-regulated

only in FSHD-1 myotubes (Table S1C).

The probes identified by microarray as up- or down-regulated

in FHSD-1 and FSHD-2 cells were categorized in the DAVID

program (see criteria in Materials and Methods). As shown in

Fig. 2A, the most severely affected biological processes in FSHD-

1 myoblasts in respect to control cells were mainly linked to cell

cycle (94 genes, 35% of total deregulated probes), particularly M-

phase (65 genes out of 94), and to DNA metabolic process (65

genes) and replication (44 genes). More precisely, these classes

that represent the most significant ones (p-value ,10230) are

essentially composed by down-regulated genes. In these biological

categories we found, all down-regulated, seven cell division cycle

genes (CDC, involved in G1/S and G2/M transitions), eight

minichromosome maintenance complex components (MCM,

required for the entry in S phase and cell division), two cyclins

(CCNA2 and CCNF), two cyclin-dependent kinases (CDK1 and

CDK2), several factors involved in DNA replication (four DNA-

dependent DNA polymerases, one primase and one helicase) and

repair (MSH2, DCLRE1B, BRCA1 and BRCA2), eight kinesins

(KIF, involved in spindle formation and the movements of

chromosomes during mitosis), and five centromere proteins

(CEMP). Among the up-regulated genes, of particular interest

was GAS1, involved in growth arrest. Furthermore, the careful

inspection of the deregulated gene list of FSHD-1 myoblasts

allowed the identification of several entries previously reported to

be involved in FSHD-1 and in the myogenic program. We found

the down-regulation of two genes (SUV39H1 and HMGB2)

involved in chromatin conformation mechanism, and the up-

regulation of two myogenic markers (PAX3 and MYOD1) and of

SOD2 involved in oxidative stress response (Table S1A). All

together the above results suggest the occurrence in FSHD-1

myoblasts of a damage in cell cycle progression, and in myogenic

differentiation.

Conversely, the categories of biological processes identified as

more severely affected in FSHD-2 myoblasts (Table S1B) did not

show very significant p-values (.1023) and were mainly associated

to extracellular structure organization and system development.

Also the functional analysis of FSHD-1 myotubes (Table S1C)

identified a limited number of biological processes, without very

significant p-values (approximately 1024), essentially involved in

transport and biosynthetic processes.

Differently from what observed in FSHD-1 myotubes, FSHD-

2 differentiated cells showed that the most significantly affected

Table 3. SYBR Green Assay primer pairs and PCR efficiency.

Transcript Primer (59–39) Correlation coefficient (R‘2)

Efficiency of reaction (E)

PAX3 Fw- ggagactggctccatacgtc E = 99,0%

Rw- caaattactcaaggacgcgg R‘2 = 0,924

MYOD1 Fw- cggcggaactgctacgaag E = 99,5%

Rw- gcgactcagaaggcacgtc R‘2 = 0,990

MYOG Fw- tcaaccaggaggagcgtgac E = 97,0%

Rw- tgtagggtcagccgtgagca R‘2 = 0,979

MYH2 Fw- ggaccaactgagtgaactgaaa E = 95,8%

Rw- ttgcctcttgataactgagacac R‘2 = 0,908

doi:10.1371/journal.pone.0020966.t003
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biological process (p-value up to 10214) was related to ncRNA

metabolic process, including ribosome biogenesis (22 genes) and

tRNA metabolic process (21 genes). Others significantly affected

categories regarded sterol (13 genes) and amino acid metabolic

processes (31 genes) (Fig. 2B). Considering the tRNA metabolic

process, about 50% of all entries were tRNA synthases (ARSs).

Interestingly, in respect to cellular components the DAVID

program highlighted in FSHD-2 myotubes as the main

deregulated the nucleolus (55 genes) and the mitochondrion

(53 genes); almost all the deregulated genes in these categories

were down-regulated. The mitochondrion showed the deregu-

lation of many ribosomal proteins (seven MRPs), four genes

involved in respiratory chain, including ATP synthase, six

transporters (i.e. SLC, TIMM and TOMM), and three genes

involved in fission and fusion (DNM1L, MTFR1, and MFN2).

Two entries (GSR and GPX4) involved in the response to

oxidative stress were also found down-regulated. In addition the

inspection of the gene list containing all the deregulated genes

(Table S1D) showed the down-regulation of five eukaryotic

translation initiation factors (EIFs). Thus, FSHD-2 myotubes

were principally affected in functions related to protein

synthesis, to sterol biosynthetic process and to energetic

metabolism. The complete lists of all the significant deregulated

biological categories of the four analyzed cell typologies (FSHD-

1 and FSHD-2 myoblasts and myotubes) are reported in Table

S2A-D.

Another approach to investigate the gene deregulation in

FSHD cells is to analyze the gene chip results in the context of

the differentiation process. This could be obtained by categoriz-

ing in the DAVID program the variation in gene expression

profile obtained analyzing the FSHD-1 and FSHD-2 differenti-

ation processes subtracted with the variation showed by the

control cells differentiation. The result of these analyses is

schematized in Fig.3, where on the left is reported the biological

process not modulated in FSHD-1 (yellow bar) and in FSHD-2

(grey bar) cells, in respect to control, whereas on the right the

biological processes modulated in FSHD-1 (yellow bar) and in

FSHD-2 (grey bars), but not in control cells. Both pathological

Figure 1. Venn diagrams showing overlapping and non-overlapping counts of genes differentially expressed. A): FSHD-1 and FSHD-2
myoblasts, in respect to controls; 367 genes were up- (128) or down- (239) regulated in FSHD-1 myoblasts and 70 genes were up- (23) or down- (47)
regulated in FSHD-2 myoblasts. Four (3 up and 1 down) genes were deregulated in both cell lines. B): FSHD-1 and FSHD-2 myotubes, in respect to
controls; 129 genes were up- (71) or down- (58) regulated in FSHD-1 myotubes and 626 genes were up- (178) or down- (448) regulated in FSHD-2
myotubes. Thirteen (4 up and 9 down) genes were deregulated in both cell lines. C): FSHD-1 and FSHD-2 differentiation processes, in respect to the
differentiation of control cells; 559 genes were modulated in the differentiation of CN cells, 158 in the differentiation of FSHD-1 and 899 of FSHD-2,
cells. FSHD-1 and CN differentiation processes shared 67 entries, whereas FSHD-2 and CN differentiation processes shared 222 entries. FSHD-1 and
FSHD-2 differentiation processes shared 25 deregulated genes. FC.2 and p-value ,0.01 and ,0.001 for FSHD-1 and FSHD-2, respectively.
doi:10.1371/journal.pone.0020966.g001
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differentiation processes showed as mainly deregulated categories

those already derived in FSHD-1 myoblasts (cell cycle and

proliferation) and FSHD-2 myotubes (RNA processing) (Figs. 2

and 3). In addition, this analysis evidenced a slight damage of cell

cycle also in FSHD-2 and of the proteasomal ubiquitin-

dependent processes. Interestingly, FSHD-1 and FSHD-2 cells

showed the common deregulation of five genes involved in

cholesterol metabolic process; four genes (HMGCR, DHCR7,

DHCR24 and IDI1) implied in cholesterol biosynthesis, were up-

regulated in FSHD-1 and down-regulated in FSHD-2, and one

gene (ABCA1) involved in the efflux of cholesterol from the cell,

was down-regulated in FSHD-1 and upregulated in FSHD-2.

The complete lists of all the significant deregulated biological

categories of the three differentiation processes are reported in

Table S3.

MicroRNA deregulation
The gene expression profile analysis of FSHD-1 and FSHD-2

myoblasts and myotubes also evidenced a total of six deregulated

miRNAs. Two miRNAs, mir-23b and mir-133a-1, were upregu-

lated in FSHD-1 and FSHD-2 myoblasts, respectively; FSHD-1

myotubes showed the down-regulation of one miRNA (mir-186),

whereas in FSHD-2 myotubes four miRNAs (mir-149, mir-15a,

mir26a-2, and mir23b) were up-regulated. Furthermore, mir-23b

was found deregulated both in FSHD-1 myoblasts and FSHD-2

myotubes. The derived list of deregulated miRNAs was then

analyzed for the predicted targeted genes (see Materials and

Methods). To this aim we used five different softwares, and only

the gene targets predicted by at least three softwares and showing

an opposite trend of deregulation in the gene chip analysis were

considered. By using these criteria, the miRNAs 133a-1 was not

further considered. Table 4 reports the five miRNAs and the

corresponding predicted targeted genes found deregulated in

FSHD-1 myoblasts and myotubes and in FSHD-2 myotubes, with

the corresponding fold change and p-value. Interestingly, some of

the predicted targets of the miRNAs deregulated in FSHD-2

myotubes could be included into the functional categories

represented in the Gene Ontology analysis of these samples, such

Figure 2. Selected gene classifications according to biological processes. Biological processes significantly enriched in the set of genes
identified by microarray as up- or down-regulated in A) FSHD-1 myoblasts, and B) in FSHD-2 myotubes, and categorized in the DAVID program.
Numbers in the bars indicate the number of genes assigned to each gene ontology term. p-value ,0.05.
doi:10.1371/journal.pone.0020966.g002
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as RNA biosynthesis (NFIB and ZNF410) and cholesterol

biosynthesis (SC4MOL). One gene (PRKAR2A) was targeted by

more then one miRNA (asterisked in Table 4).

Validation of microarray results by Quantitative Real–
Time PCR

To confirm the FSHD-1 microarray data we focused our

attention on some genes contained in the most enriched

categories evidenced by GO analysis. The chosen representative

genes were validated by multiplex Real–Time assay performed

with TaqmanH probes on seven FSHD-1 in comparison to six

healthy controls (for a description of the used cell lines see

Table 1 in Materials and Methods). The analyzed genes

comprised: E2F7 (negative regulator of cell cycle progression),

CDC6 (DNA replication), KIF18A (chromosome segregation)

and SUV39H1 (histone methylation), MSH2, DCLRE1B,

SOD2 (DNA damage and repair), LAMA4 (extracellular

matrix), SDR (membrane raft) and PTPRN (cell growth and

differentiation). mir 23-b was also analyzed. As shown in Fig.4A,

the results of the Real–Time assay confirmed the data of the

array. In fact all genes tested were regulated in the same

direction with both methods. The data relative to the FSHD-2

genechip analysis were not validated by qRT-PCR due to the

unavailability of other FSHD-2 cell lines in addition to those

used for microarray experiments.

Furthermore, since the analysis of the FSHD-1 myoblasts gene

chip array evidenced a slight up-regulation of the transcription

factor PAX3 (P 161022; FC 2.17), a molecule involved in

developmental myogenesis, and of MYOD (P 1,0161022; FC

2.39, Table S1A), we also evaluated by real-time PCR the gene

expression level of these and of two other myogenic markers

(MYOG and MYH2) not significantly deregulated in the chip

assay, using cDNAs from FSHD-1 cells before and after

differentiation (day 0 and 8).

As shown in Fig.4B, the expression level of the four myogenic

markers (PAX3, MYOD1, MYOG and MYH2) in control and

FSHD-1 cells showed a general trend of up-regulation upon

differentiation. In FSHD-1 proliferating cells compared to control,

PAX3 and MYOD1 were, respectively almost four and six-fold

up-regulated, respectively; conversely, MYOG and MYH2

mRNA levels were undetectable, both in control and FSHD-1

cells. Upon differentiation, all markers showed comparable levels

of mRNA expression in FSHD-1 and control cells. These results

confirm the general trend of differentiation exhibited by both

control and FSHD-1 cells and that significant differences are only

present in FSHD-1 proliferating cells for PAX3 and MYOD

mRNAs levels. Regarding FSHD-2 cells the gene chip assay data

evidenced for these four myogenic markers an expression level

similar to that of control cells both before and after cell

differentiation (Table S1B and S1D).

Discussion

In this paper we have compared the expression profiles of

FSHD-1 and FSHD-2 precursor cells in regard to healthy controls

before and after myogenic differentiation. In our knowledge, this is

the first report that uses human 4q-linked and non 4q-linked (or

phenotypic) FSHD primary myoblasts and their in vitro

differentiation to investigate global gene deregulation character-

izing cells deriving from FSHD patients with a different genetic

defect, but with a very similar phenotypic manifestation of the

disease [24]. Although the in vitro differentiation of myoblasts does

not involve many of the complex series of events known to be

important in vivo, such as activation of quiescent satellite cells

(stem cell), maturation of the myotubes into muscle fibers and the

innervations of the fibers, the cell system we used could be useful in

the attempt to derive global gene expression deregulation

characterizing the early stages of myogenic differentiation without

interferences represented by cell contamination, inflammation or

muscle regeneration as found in studies of biopsies.

It is noteworthy that only two FSHD-2 cell lines were available

for the chip analysis; although this represents a small sample size

we decided anyhow to include them in our analysis since this type

of FSHD cell has never been analyzed; thus to render the data

more significant we decided to use a lower p value (.0.001) than

that used for FSHD-1 (.0.01).

Figure 3. Selected gene classifications according to biological processes of genes regulated in the three differentiation programs.
Diagram showing the biological processes significantly enriched in the set of genes differentially expressed in the differentiation processes of FSHD-1
(yellow bars) and FSHD-2 (grey bars) cells in respect to control. Bar on the left indicated the biological process modulated in control but not in FSHD-
1 (yellow bar), and FSHD-2 (grey bars) cells, whereas bars on the right indicated the biological processes modulated in FSHD-1 (yellow bar) and FSHD-
2 (grey bars) but not in control cells. All bars group many related GO categories. p-value ,1024.
doi:10.1371/journal.pone.0020966.g003
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A gradient of altered gene expression throughout the 4q35

chromosome linked to D4Z4 contraction has been proposed as a

model for the molecular pathogenesis of FSHD-1 [15]. Our

results did not evidence such a correlation in both FSHD-1 and

FSHD-2 cells. Only three genes (SNX25, ANKRD37 and

SORBS2) located approximately from 4 to 5 Mb proximal to

the D4Z4 array showed in FSHD-1 myotubes a significant

down-regulation. Interestingly, one of these genes (ANKRD37)

was also found deregulated in muscle biopsies from FSHD-1

patients [25]. Absence of significant gene expression alteration

throughout the 4q35 region agrees with the data previously

reported by Winokour et al. (2003) [26] and Osborne et al.

(2007) [27] on muscle biopsies, thus excluding a position effect

model for FSHD. However, we can not exclude the possibility

that some of the 4q35 genes (i.e. FRG1) might be transiently

deregulated during intermediate steps of the differentiation

process [17].

However, significant results concerning the altered biological

processes of the pathological cells were obtained, by deriving in

regard to controls the global deregulation of gene expression in

FSHD-1 and FSHD-2 myoblasts and myotubes and by

comparing the two pathological differentiation processes to the

normal one. By combining the two approaches, we derived that

gene deregulation was essentially a feature of FSHD-1 prolifer-

ating cells and of FSHD-2 differentiated cells. FSHD-1 myoblasts

showed a highly significant gene deregulation linked to cell cycle

control essentially affecting G1/S and G2/M transitions. These

results are in agreement with previous data derived by the

analysis of FSHD-1 cells, and showing the up-regulation of p21,

known to arrest progression at G1/S interface, and of WEE1, a

negative regulator of entry into mitosis (G2/M transition)

[16,26].

Furthermore, FSHD-1 myoblasts showed the up-regulation of

PAX3, a key upstream regulator of the myogenic program: PAX3

up-regulates the myogenic determination gene MYOD1 that, in

turn regulates MYOG expression [28]. However, while in

embryonic tissues the ability of PAX3 to activate the myogenic

program is well documented [29-30], in adult-derived cells this

effect is still under discussion.[28,31–32].

In our system, the found premature up-regulation of

MYOD1 mRNA could be ascribed to PAX3 mRNA up-

regulation; furthermore, as previously reported [33], also in our

cellular system MYOD-mediated induction of myogenesis is

accompanied by the down-regulation of cyclins. Thus, PAX3

up-regulation might contribute to the early cell cycle arrest

shown by FSHD-1 myoblasts. In spite of the up-regulation of

MYOD1 mRNA, FSHD-1 proliferating cells did not show the

occurrence of later marker of myogenic differentiation, such as

myogenin and sarcomeric myosin. This could probably due to

the absence of other required transcription factors such as

myogenic enhancer factors (MEFs), essential for muscle

differentiation. Thus, FSHD-1 cells seem to be characterized

by a premature and partial activation of the myogenic program

that could be related to the observed defect in cell cycle

progression.

Remarkably, other two genes SUV39H1 and HMGB2 both

involved in chromatin remodeling were down-regulated in FSHD-

1 myoblasts. SUV39H1 is a histone methyl-transferase involved in

D4Z4 H3K9me3 [34], whereas HMGB2 is part of a multi-protein

complex shown to bind a 27bp binding element (DBE) within

D4Z4 units [15,35]. In normal cells both gene activities, in

association with other factors, may play an important role in the

establishment and maintenance of the higher order chromatin

structure of the D4Z4 array (facultative heterochromatin). In

FSHD-1 cells, the down-regulation of SUV39H1 and HMGB2

genes could correlate with the hypothesized more open chromatin

conformation of the contracted 4q alleles [8,10].

Thus, in addition to the early partial activation of the myogenic

program, proteins involved in chromatin organization are also

modulated in FSHD-1 samples, suggesting that their absence

might contribute to the epigenetic defect of the D4Z4 array.

Conversely, FSHD-2 cells were characterized by a significant

alteration of gene expression only after the in vitro transition from

myoblasts to myotubes. Effectively, FSHD-2 myotubes showed the

Table 4. miRNAs significantly dysregulated in FSHD-1 and FSHD-2 myoblasts and myotubes, with the corresponding predicted
gene targets.

miRNA GENE TARGET

CELL
LINES

GENE
SYMBOL FC (P-VALUE)

GENE
SYMBOL FC (P-VALUE) FUNCTION

FSHD-1
myoblasts

hsa-mir-23b 3,4 (6,90E-03) HMGB2 22,1 (1,91E-03) Chromatin conformation

FSHD-1
myotube

hsa-mir-186 22,3 (2,09E-03) HAS2 3,8 (1,48E-03) Biosynthesis of extracellular matrix

FSHD-2
myotubes

hsa-mir-149 3,18 (4,22E-05) NFIB
PRKAR2A*

25,77(2,41E-05)
22,48 (2,43E-04)

RNA biosynthesis
Signal transduction

FSHD-2
myotubes

hsa-mir-15a 6,19 (6,07E-05) IARS
COPS7A
PRKAR2A*
ARL2

23,03 (8,95E-06)
22,23 (1,35E-05)
22,48 (2,43E-04)
22,54 (4,76E-04)

Protein synthesis
Signal transduction
Signal transduction
Transport

FSHD-2
myotubes

hsa-mir-26a-2 2,64 (5,80E-04) EPC2
ZNF410
FAM55C
SC4MOL

22,95 (5,67E-05)
22,33 (1,91E-04)
23,30 (3,97E-04)
27,49 (1,13E-05)

Chromatin conformation; regulation of transcription
RNA biosynthesis
Unknown
Cholesterol byosinthesis

FSHD-2
myotubes

hsa-mir-23b 6,57 (6,79E-04) EPS15
ENTPD5

22,28 (9,07E-04)
22,27 (1,67E-04)

Transport
Nucleotide metabolism

*The asterisk indicates the only gene targeted by more than one miRNA.
doi:10.1371/journal.pone.0020966.t004
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deregulation of genes essentially involved in non-coding RNA

metabolism and in nucleolus organization, implied in protein

synthesis. FSHD-2 myotubes also showed mitochondrial abnor-

malities, including energy production, response to oxidative stress

and mitochondrial dynamics. Mitochondrial abnormalities and

dysfunction in protein synthesis have been also reported for other

muscular dystrophies [36-39].

FSHD-2 differentiation analysis also evidenced the deregulation

of the cell cycle and of proteasomal ubiquitin-dependent process.

Importantly, ubiquitin-dependent proteolysis has been suggested

Figure 4. Real-Time PCR validation of FSHD-1 microarray data. A: Table reports the genes analyzed in qRT-PCR with fold-change and p-value.
The data obtained in the FSHD-1 myoblasts gene chip array and the biological processes identified by the DAVID program, are also reported. The
analysis was performed on seven FSHD-1 and six CN myoblast cell lines. B) Bar diagrams show relative expression of PAX3, MYOD1, MYOG and MYH2
in control and FSHD-1 myoblasts (day 0) and myotubes (day 8) relative to GAPDH. *** p-value , ,001.
doi:10.1371/journal.pone.0020966.g004
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to govern terminal muscle differentiation by coordinating cellular

division and differentiation [40].

Interestingly, both FSHD-1 and FSHD-2 cells were affected in

sterol biosynthetic process, showing the deregulation, although in

the opposite direction, of the same genes. The alteration of

cholesterol homeostasis could primarily cause cell damage in

membranes lipid rafts, where different proteins are incorporate

(e.g. GPI-anchored and cholesterol-linked proteins), and in

caveolae a subclass of rafts [41]. It was previously reported that

caveolae structure alteration could affect myotube formation [42–

43], and that FSHD-1 biopsies are characterized by the

impairment of biological processes involved in the synthesis of

GPI anchored proteins [25].

In normal cells reactive oxygen species (ROS) generation is

counterbalanced by the action of antioxidant enzymes, such as

mitochondrial superoxide dismutase (SOD2) and of those involved

in glutathione metabolism. The found deregulation of SOD2 in

FSHD-1 myoblasts and of glutathione reductase (GSR) and

peroxidase (GPX4) in FSHD-2 myotubes could suggest for both

FSHD manifestations the occurrence of a similar increased

susceptibility to oxidative stress. The deregulation of enzymes

involved in oxidative stress resistance and the consequent

increased susceptibility to oxidative stress have been already

reported for FSHD-1 myoblasts and biopsies [16,26–27,44].

Finally, both FSHD-1 and FSHD-2 cells showed the involve-

ment in the gene deregulation network of some microRNAs

(miRNA), a class of molecules previously shown to play an

important role in the regulation of muscle development [45].

Among a total of five miRNAs found deregulated in the present

work, two (mir186 and mir15a) were previously reported to be

commonly deregulated in more than three (including FSHD) types

of muscular disorders [46]. The remaining three miRNAs were

detected in FSHD-1 myoblasts (mir-23b) and in FSHD-2

myotubes (mir-149, mir-26a2 and mir-23b). Interestingly, one

predicted target of the supposedly FSHD-specific miRNA 23b is a

gene involved in the chromatin conformation of the 4q D4Z4

array (HMGB2 down-regulated in FSHD-1 myoblasts) [15].

Although future work is certainly needed to confirm the herein

derived observations, taken together our results seem to recapit-

ulate previously reported defects of FSHD-1, and to add new

insights into the gene deregulation characterizing both FSHD-1

and FSHD-2. In general, FSHD-1 cells showed an alteration of

cell cycle control, a defect in cholesterol homeostasis and

presumably in the mitochondrial capacity to buffer oxidative

stress. With the exception of cholesterol homeostasis, FSHD-2 cells

shared all these features by deregulating different genes. FSHD-2

cells also showed a general deregulation of protein synthesis and

degradation. In this regard, proteasome ubiquitin-dependent

protein degradation could be viewed as an impairment in exit

from the cell cycle. Thus both FSHD manifestations presented

cellular deficiencies that do not arise from a 4q position effect

mechanism, but rather from a general alteration of gene

expression in which miRNA deregulation may play a role.
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