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Abstract

Legionella pneumophila is the primary etiologic agent of legionellosis, a potentially fatal respiratory illness. Amongst the
sixteen described L. pneumophila serogroups, a majority of the clinical infections diagnosed using standard methods are
serogroup 1 (Sg1). This high clinical prevalence of Sg1 is hypothesized to be linked to environmental specific advantages
and/or to increased virulence of strains belonging to Sg1. The genetic determinants for this prevalence remain unknown
primarily due to the limited genomic information available for non-Sg1 clinical strains. Through a systematic attempt to
culture Legionella from patient respiratory samples, we have previously reported that 34% of all culture confirmed
legionellosis cases in Ontario (n = 351) are caused by non-Sg1 Legionella. Phylogenetic analysis combining multiple-locus
variable number tandem repeat analysis and sequence based typing profiles of all non-Sg1 identified that L. pneumophila
clinical strains (n = 73) belonging to the two most prevalent molecular types were Sg6. We conducted whole genome
sequencing of two strains representative of these sequence types and one distant neighbour. Comparative genomics of the
three L. pneumophila Sg6 genomes reported here with published L. pneumophila serogroup 1 genomes identified genetic
differences in the O-antigen biosynthetic cluster. Comparative optical mapping analysis between Sg6 and Sg1 further
corroborated this finding. We confirmed an altered O-antigen profile of Sg6, and tested its possible effects on growth and
replication in in vitro biological models and experimental murine infections. Our data indicates that while clinical Sg1 might
not be better suited than Sg6 in colonizing environmental niches, increased bloodstream dissemination through resistance
to the alternative pathway of complement mediated killing in the human host may explain its higher prevalence.

Citation: Khan MA, Knox N, Prashar A, Alexander D, Abdel-Nour M, et al. (2013) Comparative Genomics Reveal That Host-Innate Immune Responses Influence the
Clinical Prevalence of Legionella pneumophila Serogroups. PLoS ONE 8(6): e67298. doi:10.1371/journal.pone.0067298

Editor: Yousef Abu Kwaik, University of Louisville, United States of America

Received March 18, 2013; Accepted May 16, 2013; Published June 27, 2013

Copyright: � 2013 Khan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Ontario Agency for Health Protection and Promotion (http://www.oahpp.ca/) and the Canadian Institutes of Health
Research (MOP-102514) (http://www.cihr-irsc.gc.ca/). AP and MT are supported by the Natural Sciences and Engineering Research Council of Canada (http://www.
nserc-crsng.gc.ca/) and the Ontario Association of Medical Laboratories grants (http://www.oaml.com/). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cyril.guyard@oahpp.ca

Introduction

Legionellosis is a potentially fatal infectious disease caused by

Gram-negative, aerobic bacteria belonging to the genus Legionella

[1,2]. Among 54 known Legionella species, L. pneumophila is the

major cause of outbreaks (91.5%), and was the etiological agent of

the first recognized outbreak in 1976 during a convention of the

American Legion in Philadelphia [3,4,5,6]. The severity of this

disease ranges from a mild respiratory illness to a rapidly fatal

pneumonia [1,7]. The case fatality rate of legionellosis is between

40–80% in untreated immuno-suppressed patients but can be

reduced to 5–30% with appropriate case management [7].

Legionellosis is a major public health concern in industrialized

nations [8,9,10]. From 2000 to 2009, a 217% increase in

legionellosis cases was reported in the United States [11,12].

Legionella spp. are found worldwide and can be detected in up to

80% of man-made freshwater sites [13,14,15,16,17,18,19]. More

recently, a study showed that Legionella spp can persistently

colonize aquifers over several years [19]. In natural and in man-

made water systems, L. pneumophila may exist as planktonic cells or

as biofilms [20,21]. The bacteria can also be isolated from different

protozoa in the environment [22,23,24]. This is an essential step in

L. pneumophila’s life cycle, since the bacteria are able to replicate in

the environment within the protozoa host [23,25]. The human

infection results from the inhalation of aerosols contaminated with

either infected protozoa or free floating L. pneumophila [26,27]. The
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general model predicts, that upon inhalation, the infection starts

with the invasion and replication in macrophage and epithelial

cells of the lung [28,29]. Once inside the cell, Legionella replicate

with in a non-acidified vacuolar environment [30,31]. While many

genes required for surviving in amoeba are yet to be described,

some like the dot/icm genes [32,33] have shown to be essential for

survival in both the amoeba and the human host.

L. pneumophila have been classified into sixteen serogroups based

on reactivity to specific monoclonal antibodies [34,35]. While

these serogroups have been reported worldwide, Sg1 has

historically been identified in most clinical cases (84.2%) [6].

The most widely used clinical diagnostic method for all suspected

legionellosis cases are rapid, non-invasive, urine detection tests that

recognize the presence of soluble antigen [36]. These clinical tests

provide high sensitivity for Sg1 infection diagnosis but they are

unable to detect most non-Sg1 strains [37,38]. Recently, we

reported that 34% of culture confirmed cases of legionellosis in

Ontario (n = 351) were caused by non-Sg1 L. pneumophila species in

the last 3 decades [39]. Interestingly such a high percentage of

non-Sg1 was also reported in some Scandinavian countries [40].

In a comparative clinical and environmental distribution analysis

study, Sg1 was shown to constitute 28.2% of the Legionella spp.

bacteria isolated from man-made water systems (n = 2,747) but

95.4% of clinical samples (n = 259) [41]. This suggests that the

clinical prevalence of Sg1 might be independent of predominance

in the environment, but rather to fitness or virulence advantages in

the human host.

The underlying reasons for the clinical prevalence of Sg1 strains

are a subject of active debate. A large, microarray multigenome

analysis of 217 L. pneumophila isolates previously suggested that the

clinical predominance of Sg1 may be linked to its specific

lipopolysaccharide [42]. In this study, thorough population-based

molecular epidemiology, we first identified the most clinically

prevalent Sg6 strain among non-Sg1 clinical isolates in Ontario.

Next, by combining next-generation sequencing with in vitro and

in vivo experimental models, we performed a comparative analysis

with the closest identified phylogenetic Sg1 (strain Philadelphia).

Our results support a model in which increased resistance to

serum complement, rather than variation in environmental fitness,

explains the relative clinical prevalence of Sg1.

Results

Identification of Phylogenetic Clusters within non-Sg1 L.
pneumophila Clinical Isolates

To identify prevalent population based clusters of non-Sg1 L.

pneumophila clinical strains in Ontario, we conducted a phyloge-

netic analysis on 73 clinical isolates recovered between 1980 and

2009 using sequence based typing (SBT) and multiple-locus

variable number tandem repeat analysis (MLVA). SBT based

phylogenetic comparisons between different strains is accom-

plished by observing sequence variations of 7 allelic markers

including house-keeping genes and known virulence factors

[43,44]. MLVA takes advantage of the polymorphisms of 9

tandemly repeated DNA sequences [45]. The UPGMA analysis

based on a matrix of pairwise allelic differences between all the

sequence types (ST) of our dataset identified a large cluster (n = 40)

comprising most of the Sg6 isolates of our repository. Isolates of

this large cluster showed less phylogenetic diversity compared with

other clusters and it encompassed 2 two main subclusters (Figure

S1). The phylogenetic subcluster 1 included 17 isolates of Sg6 and

ST 187 (Figure S1), while the phylogenetic subcluster 2 included 9

isolates who were all identified as Sg6 ST 68 (Figure S1). MLVA

typing of this dataset, identified a large phylogenetic cluster as well,

comprising two subclusters, where cluster 1 grouped 20 isolates,

and included Sg6 ST 187 and Sg6 ST 68, along with Sg4, Sg8 and

Sg10 strains (Figure S2). Interestingly, cluster 2 had 10 isolates, out

of which 8 were Sg6 ST 187, 1 was a Sg6 ST242 and 1 was a Sg3

ST93 (Figure S2). To further increase the discriminatory power of

the molecular typing methods [46], we next constructed a

phylogenetic tree combining SBT and MLVA profiles (Figure 1).

This combined analysis confirmed that the largest phylogenetic

cluster of non-sg1 clinical isolates comprised mainly of Sg6 ST187

and Sg6 ST68. In contrast to several other molecular types such

Sg6 ST407 which had only been isolated over a period of 5 years,

Sg6 ST187 and Sg6 ST68 strains seemed clonally stable, since

isolates with identical sequence types have been obtained for 25 to

30 year periods of our repository (initiated in 1980). For the

purposes of further analysis we selected strain Thunder Bay,

Sudbury and Mississauga isolates as the representative ST187,

ST68 and ST407, respectively. The high-prevalence of Sg6 among

non-Sg1s was also confirmed through an inspection of the

European Working Group for Legionella Infections (EWGLI)

database (http://www.ewgli.org/) and has been reported inde-

pendently elsewhere [41].

The Optical Map of L. pneumophila Sg6 str. Thunder Bay
and Sg12 str. 570-CO-H are Identical

Optical mapping is an emerging technology used for accurate

genome assemblies [47] and for conducting comparative chromo-

somal analysis [48]. It allows for rapid identification of divergent

regions, chromosomal rearrangement, and inversions [48,49,50].

We compared the relatedness of Sg6 str. Thunder Bay with other

non-Sg1 and Sg1 strains, whose genomic sequences are available.

First, we constructed an optical map of Sg6 str. Thunder Bay and

compared it to in silico maps of Sg1 str. Philadelphia and Sg12 str.

570-CO-H (Figure 2A). The optical maps of Sg6 str. Thunder Bay

and Sg1 str. Philadelphia only showed divergence in a 40 kB

segment. This segment corresponded to genes involved in O-

antigen biosynthesis. In contrast, Sg12 str. 570-CO-H showed a

similar restriction pattern with Sg6 str. Thunder Bay. Secondly,

we constructed an evolutionary tree based on optical maps of Sg6

str. Thunder Bay, Sg12 str. 570-CO-H and all sequenced and fully

assembled Sg1 strains (Figure 2B). This analysis confirmed that the

clinical non-Sg1 strains, Sg6 str. Thunder Bay and Sg12 str. 570-

CO-H share a high degree of homology, and are phylogenetic

neighbours of Sg1 str. Philadelphia.

L. pneumophila Sg6 str. Thunder Bay Generates Higher
Amounts of Biofilm Compared to Sg1 str. Philadelphia

The comparative optical map analyses identified possible

serogroup specific genomic parameters. In order to investigate if

these differences result in possible serogroup specific advantages

between Sg1 str. Philadelphia and Sg6 str. Thunder Bay, we

conducted comparative biological analysis at different stages of the

L. pneumophila life-cycle. A strategy used by L. pneumophila to survive

in anthropogenic aqueous environment is to generate biofilms

[51]. The ability to generate higher amounts of biofilm can be

directly correlated with persistence in the environment [52]. We

determined that Sg6 str. Thunder Bay produces significantly

higher levels of biofilm compared to Sg1 str. Philadelphia by 48

hours (P,0.05; Figure 3A). Furthermore, this difference further

increased by 72 hours (P,0.05). This suggests that while Sg1 are

able to generate significant amounts of biofilm, the Sg6 might

possess an advantage that could explain its higher reported

prevalence in some environmental surveys [53].

Pathogenomics of L. pneumophila Serogroups
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L. pneumophila Sg6 str. Thunder Bay Replicates more
Efficiently than Sg1 str. Philadelphia within A. castellani
Amoebae and U937 Derived Macrophages, but not in
Lung Epithelial Cells

In order to determine a possible advantage that either Sg1 or

Sg6 may possess in infecting humans and surviving in the

environment, we compared the replication rates of Sg1 str.

Philadelphia and Sg6 str. Thunder Bay over 48 hours in the

human lung epithelial cell line H292, U937 macrophages and

Acanthamoeba castellani amoeba models [54,55,56]. While no

differences were observed in the lung epithelial cells (Figure 3B),

significant increase of Sg6 str. Thunder Bay counts over Sg1 str.

Philadelphia was seen by 48 hours in the macrophage model

(Figure 3C). Similarly in amoeba, while no discernable difference

was observed between the Sg1 and Sg6 strains one hour after

uptake, by 24 hours, counts for the Sg6 strain were 28-fold higher

compared to Sg1 str. Philadelphia (Figure 3D). At 48 hours, this

difference had increased to 168-fold, suggesting that Sg6 str.

Thunder Bay is able to infect and replicate more effectively than

Sg1 str. Philadelphia in A. castellani model. Taken together, these

results suggest that the Sg6 str. Thunder Bay replicates more

efficiently than Sg1 str. Philadelphia within amoebae and

macrophages. Thus Sg6 str. Thunder Bay might possess a fitness

advantage in the environmental niche over the Sg1 str.

Philadelphia, which is an unlikely explanation for the observed

differences in clinical prevalence.

The most Prevalent Molecular Types of Sg6 Strains Share
a High Degree of Genomic Similarity

To identify the factors that may be contributing to the

population structure of L. pneumophila in clinical settings, we

performed whole genome sequencing of Sg6 str. Thunder Bay.

The L. pneumophila Sg6 str. Thunder Bay (accession number:

CP003730) genome consists of a 3455167-bp chromosome with an

average GC content of 38.24% (Table S1). A total of 3052 protein-

encoding genes are predicted, 2299 (75.3%) of which have been

assigned a putative function. A BLAST map analysis of Thunder

Bay against five reference Sg1 strains showed several conserved

regions (Figure 4A). Furthermore, high genomic strand asymmetry

identified through the GC skew suggested no abnormalities in the

assembly of the genome [57] (Figure 4A). To determine plasticity

of the Sg6 genomes, we selected two additional strains from our

clinical repository, Sg6 str. Sudbury (Accession number

Figure 1. Hybrid SBT-MLVA typing of a population based clinical repository of L. pneumophila. Phylogenetic clusters were formed by
UPGMA analysis of the combined typing data. Cluster 1 is identified in blue, while cluster 2 and 3 are shown in green and red, respectively.
doi:10.1371/journal.pone.0067298.g001

Figure 2. Optical Maps and genome based comparisons of L. pneumophila strains. (A) Optical map of L. pneumophilla Sg6 str. Thunder Bay
(Middle) compared to Sg1 strains Philadelphia (Top) and Sg12 570-CO-H (Bottom). The regions in white indicate unique gene clusters, while areas in
blue depict high similarity to Sg6. Regions in red are conserved between all three genome sequences. (B) UPGMA based cluster analysis of optical
maps of sequenced L. pneumophila.
doi:10.1371/journal.pone.0067298.g002
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PRJNA170020) and Sg6 str. Mississauga (Accession number

PRJNA170014), and sequenced their genome using Illumina

technology (paired-end). The genomes were de novo assembled into

29 and 37 contigs, respectively. By including these strains in our

analysis, we report genomic data on most sequence types that were

identified as Sg6 in our database. The genome size of Sg6 str.

Sudbury (3351893 bp) and Sg6 str. Mississauga (3384301 bp) were

comparable to that of the Sg6 str. Thunder Bay. Reference

assembly of raw Illumina reads to the finished Sg6 str. Thunder

Bay genome also indicated that Sg6 str. Sudbury was more closely

related to Sg6 str. Thunder Bay (,4800 SNPs) than Sg6 str.

Mississauga (,79,000 SNPs) (data not shown). Taking these SNP

variations into consideration, the overall polymorphism between

Sg6 str. Thunder Bay and Sg6 str. Sudbury only represents 0.13%

of the Sg6 str. Thunder Bay genome while the polymorphism

between Sg6 str. Mississauga and Sg6 str. Thunder Bay represents

2.28% of Sg6 str. Thunder Bay genome.

The in silico optical maps deducted from concatenated whole

genome sequencing contigs of Sg6 str. Sudbury and Sg6 str.

Mississauga were next compared to the optical maps of Sg6 str.

Thunder Bay, Sg1 str. Philadelphia and Sg12 str. 570-CO-H

(Figure 5A). Similarly to Sg12 str. 570-CO-H and Sg6 str.

Thunder Bay, Sg6 str. Sudbury showed high similarity with Sg1

str. Philadelphia with the exception of the O-antigen biosynthesis

segment. In contrast, differences between optical maps of Sg6 str.

Mississauga and other strains were distributed around the

chromosome whereas the O-antigen biosynthesis segment was

only partially conserved. An evolutionary tree based on optical

maps of all sequenced Sg6 strains of our study, Sg12 str. 570-CO-

H and all sequenced and fully assembled Sg1 strains was next

constructed (Figure 5B). This analysis identified a cluster of strains

with a relative low diversity compared to other genomes, this

cluster included Sg6 str. Thunder Bay, Sg6 str. Sudbury, and Sg12

str. 570-CO-H and Sg1 str. Philadelphia. In contrast, the low

prevalent Sg6 str. Mississauga did not cluster with Sg6 str.

Thunder Bay and was relatively distant from its closest phyloge-

netic neighbours including Sg1 str. Alcoy and Sg1 str. Corby.

Sg6 Genes Involved in O-antigen Biosynthesis Share Little
Homology to the Sg1 Genomes

In order to identify genes that might confer differential

prevalence of L. pneumophila serogroups, we compared the 2486

Sg1 proteins that have been previously described as the Sg1 core

[58] for amino acid sequence homology with the Sg6 str. Thunder

Bay predicted proteins. Forty three Sg1 core proteins shared less

than 65% homology and were defined as divergent (Table S2,

Figure 4B). While 35 amongst these were described as hypothetical

proteins (HP), there was a cluster (,40 kB) of 11 predicted

proteins that corresponded to O-antigen biosynthesis (lpg0738 to

lpg0786). This result is in agreement with the optical map based

comparative analysis between Sg1 str. Philadelphia and Sg6 str.

Figure 3. Intracellular growth of L. pneumophila. (A) Biofilm production by Sg1 and Sg6 (crystal violet staining, OD600 nm). (B) Binding and
invasion of Sg6 str. Thunder Bay compared to Sg1 str. Philadelphia to/within human NCI-H292 lung epithelial cells. (C) Intracellular replication of L.
pneumophilla in A. castellani. The magnitude of replication is reported in log10 CFU/ml. (D) Intracellular growth of Sg6 str. Thunder Bay (square)
compared to Sg1 str. Philadelphia (diamond) within U937 derived Human Macrophage cells. Each data point is an average of three independent
experiments. For each experiment data was collected from 3 wells and a mean value was determined. *denotes statistical significance as determined
by a two-tailed student’s t-test with a P-value ,0.05.
doi:10.1371/journal.pone.0067298.g003
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Thunder Bay, which identified the O-antigen biosynthetic cluster

of Sg1 as divergent. This is also in agreement with a previous study

revealing that Sg1 LPS gene cluster spaning lpp0827 (galE) to

lpp0843 of L. pneumophila Sg1 str. Paris is highly divergent from

those of Sg6, Sg10, Sg12, Sg13 and Sg14 [59]. Some other

predicted proteins that were outside of this cluster included MreD

(lpg0813) and LvrB (lpg1258). The role of LvrB has been

characterized in several bacterial pathogens and has been shown

to be essential in the formation of the Type IVA (lvh) secretion

system [60,61,62,63]. MreD has also been described in several

bacteria, and has been shown to be involved in controlling cell wall

biosynthesis and bacterial morphology [64,65]. In our study, no

morphological difference was observed between the Sg1 and Sg6

using differential interference contrast microscopy (data not

shown).

In a reverse comparison, 581 Sg6 str. Thunder Bay proteins

were defined as divergent compared to the Sg1 core. Amongst

these only 41 were considered divergent to all L. pneumophila in the

Genbank database (Table 1, Figure 4C). Twenty three of these

Sg6-specific proteins were identified from the O-antigen biosyn-

thetic cluster, and included proteins like Wzm (lp6_749), Wzt

(lp6_750), GalE (lp6_758) and WecA (lp6_759), whose role in O-

antigen biosynthesis is well described [66,67,68,69]. Notably a

previous study failed to identify the presence of many of the genes

coding for O – antigen biosynthesis proteins by DNA microarray

in all non-Sg1 tested [42]. Our results suggest that this may have

been due to low sequence homology of these genes with their Sg1

orthologs. Interestingly, the Thunder Bay O-antigen cluster was

fully conserved in the Sg6 str. Sudbury, but showed low homology

in Wzt and N-actyltransferase when compared to Sg6 str.

Mississauga.

Four Sg6 str. Thunder Bay proteins were defined as unique

based on sequence homology with predicted proteins from all Sg1

genomic sequences (Table 1). Amongst these, three predicted

proteins are coded by genes laying outside the O-antigen cluster

and were classified as hypothetical proteins and XerD (lp6_1224),

a site specific recombinase (Blakely and Sherratt, 1994). The

remaining two proteins are coded by genes situated within the O-

antigen cluster and included PseG (lp6_763), whose homologs

have been shown to play a role in pseudaminic acid biosynthesis in

Campylobacter jejuni and Pseudomonas aeruginosa [70,71]. Even though

pseudaminic acid has not been detected in L. pneumophila, a nine-

carbon alpha-keto acid called legionaminic acid which belongs to

the sialic acid family is generated by NeuA, NeuB and NeuC

(Glaze et al., 2008). This acid is known to be a structural

component of the L. pneumophila O – antigen. In agreement with a

previous comparative analysis of L. pneumophila serogroup LPS

clusters [59], this divergent O – antigen biosynthesis cluster were

100% homologous with corresponding L. pneumophila Sg12 str.

570-CO-H proteins (Table 2). At the DNA level, the region

spanning Lp6_758 (galE) to Lp6_782 of Sg6 str. Thunder Bay

showed respectively a 99% and 100% identity with the previously

reported regions of Sg6 str. ATCC33215 and Sg12 str.

ATCC43290 [59].

We next defined a non-Sg1 core of 2946 proteins, by comparing

Sg6 str. Thunder Bay and Sg12 str. 570-CO-H predicted proteins

[72] (Table S3). Upon comparing with the Sg1 core, 435 proteins

were defined as divergent from the non-Sg1 core. This included

the O-antigen biosynthetic cluster, flagellar assembly, T4SS

substrates and some metabolic enzymes. Interestingly, amongst

the 2486 Sg1 core proteins, only 79 were defined as divergent

compared to the non-Sg1 core (Table S4), and included genes

from O-antigen biosynthetic cluster and the Lvh region of the type

IV-A secretion system [73]. These differences might reflect the

discrepancy in growth and replication in the environment or the

human host.

Differences in the O-antigen Structure of Sg1 Confer
Resistance to the Alternative Complement Pathway

Comparative genomics and optical mapping analysis of the Sg6

str. Thunder Bay genome revealed that the O-antigen biosynthetic

proteins present major variations with respect to the Sg1str.

Philadelphia (Figure 6A). Therefore, we predicted that there might

be changes in the O-antigen generated by Sg1 str. Philadelphia

and Sg6 str. Thunder Bay. To verify this hypothesis, purified

lipopolysaccharide (LPS) from these strains were visualized

through SDS-PAGE. Sg1 displayed a classic ladder pattern (Tsai

and Frasch, 1982), which suggests that the O-antigen is highly

decorated [74]. Conversely, the Sg6 O-antigen appears to be

minimally decorated and lacked higher molecular weight species

(Figure 6B). Our Sg6 str. Thunder Bay profile is in agreement with

a previous study that analyzed LPS from Sg6 str. MP [75].

Previously, differences in O – antigen profiles have been used to

Figure 4. Pangenome comparison of L. pneumophila. (A) BLAST
map of L. pneumophila Sg6 str. Thunder Bay against several Sg1 strains.
(B) Number of conserved (.65% identity) and divergent (,65%
identity) proteins between Sg6 and a subset of core 5proteins of Sg1.
Numbers showed in italics represent number of proteins that were
considered homologous. (C) Conserved (.65% identity) and divergent
(,65% identity) proteins among the unique Sg6 genes from panel B
and all known Sg1 genes.
doi:10.1371/journal.pone.0067298.g004
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define distinct serogroups [76,77], and are hypothesized to be

associated to differences in virulence of L. pneumophila serogroups in

humans [42].

Variations in the outer-membrane O – antigen segment of the

LPS can provide resistance to complement mediated serum killing

in pathogenic bacteria [78,79,80]. The differences observed in the

O – antigen structure of Sg1 str. Philadelphia and Sg6 str.

Thunder Bay indicated that there might be differential sensitivity

to serum complement. Indeed when the Sg6 was treated with

Non-immune Human Serum (NHS), a 35% and a 73% decrease

in colony forming units (CFUs) was seen by 45 and 120 min,

respectively (Figure 6C). However, no effect was observed for Sg1.

Sg6 and Sg1 viability was not affected by decomplemented (heat

inactivated) NHS, consistent with a Sg6-specific killing by heat-

sensitive complement. These results suggest that Sg6 O-antigen is

unable to provide any appreciable resistance to serum comple-

ment, whereas Sg1 O-antigen may allow the bacteria to escape

complement mediated killing by naive human serum.

We next measured the sensitivity of Sg1 str. Philadelphia and

Sg6 str. Thunder Bay to the classical complement pathway using

sera obtained from patients diagnosed with either Sg1 or Sg6

infections (Figure 7A). Presence of either Sg1 or Sg6 specific

antibodies was previously confirmed through IFA (data not

shown). The Sg1 str. Philadelphia isolate showed a 72.5%

decrease in CFU after a 60 min incubation in sera containing

Sg1 antibodies, an effect that was not observed in decomplemen-

ted patient sera. In presence of Sg6 specific antibodies, the Sg1 str.

Philadelphia CFUs were decreased by 31.5% at 60 min. The Sg6

Figure 5. Optical Maps and genome based comparisons of L. pneumophila strains. (A) Optical map of L. pneumophilla Sg6 str. Thunder Bay
(Middle) compared to Sg1 strains Philadelphia (Top) and Sg12 570-CO-H (Bottom). The regions in white indicate unique gene clusters, while areas in
blue depict high similarity to Sg6. Regions in red are conserved between all three genome sequences. (B) UPGMA based cluster analysis of optical
maps of sequenced L. pneumophila. Percent difference at each node is indicated.
doi:10.1371/journal.pone.0067298.g005
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str. Thunder Bay counts, when incubated with Sg1 antibodies were decreased by 98.8%, and similarly decreased by 99.3% in

Table 1. Divergent proteins present in Sg6 str. Thunder Bay compared to all sequenced Sg1 genomes in the Genbank database.

Sg6 Locus Gene Name Gene Description
Identity
to Sg1

Sg1
Locus

Gene
Name Gene Description

Lp6_186 HP 43 lpg0112 HP

Lp6_749 Wzm LPS O-antigen ABC transporter 48 lpp0837 Wzm LPS O-antigen ABC transporter

Lp6_750 Wzt LPS O-antigen ABC transporter 63 lpg0773 Wzt LPS O-antigen ABC transporter

Lp6_755 HP 52 lpg0763 HP

Lp6_758 GalE UDP-glucose 4-epimerase 61 lpg0761 HP

Lp6_759 WecA a-N-acetylglucosaminyltransferase 57 lpg0762 WecA O-antigen initiating glycosyl
transferase

Lp6_761 HP 48 lpg0788 HP

Lp6_762 GCN5-related N-acetyltransferase 29 lpp1089 Streptomycin 3’’-
adenylyltransferase

Lp6_763 PseG Pseudaminic acid biosynthesis-associated protein

Lp6_764 Glutamate-1-semialdehyde 2,1-aminomutase 37 lpg0467 LasB Zinc metalloprotease

Lp6_765 GlmU1 Acylneuraminate cytidylyltransferase 31 lpg1919 KdsB 3-deoxy-manno-octulosonate
cytidylyltransferase

Lp6_766 Acetyltransferase 50 lpg2848

Lp6_767 HisF4 Imidazoleglycerol-phosphate synthase 35 lpg0749 HisF Imidazole glycerol phosphate
synthase

Lp6_768 HisH2 Imidazole glycerol phosphate synthase 48 lpp2859 HisH Imidazole glycerol phosphate
synthase

Lp6_769 LPS biosynthesis protein 38 lpg0786 HP

Lp6_770 Aryl-alcohol dehydrogenase-like oxidoreductase 24 lpg2848 Ribonuclease

Lp6_771 DegT Aminotransferase 52 lpl0206 HP

Lp6_772 CapD Polysaccharide biosynthesis protein 59 lpg0561 PhaB Acetoacetyl-CoA reductase

Lp6_773 HP 38 lpg0635

Lp6_774 Capsule polysaccharide biosynthesis protein

Lp6_775 NeuB N-acetylneuraminic acid synthetase 38 lpp0818 NeuB N-acetylneuraminic acid
synthetase

Lp6_776 HP 47 lpa3427 HP

Lp6_777 HP

Lp6_780 HP 31 lpg0774 HP

Lp6_781 Dehydrogenase 29 lpg1888 HP

Lp6_782 Dehydrogenase 36 lpg2974 Psd Phosphatidylserine decarboxylase

Lp6_825 HP 47 lpg1344 DedE Colicin V

Lp6_828 UDP-N-acetyl-D-galactosamine dehydrogenase 23 lpg1942 3-hydroxyacyl CoA dehydrogenase

Lp6_829 UDP-glucose 4-epimerase 33 lpg2214 Nucleoside-diphosphate sugar
epimerase

Lp6_830 Starch synthase 35 lpp3018 HP

Lp6_831 HP 22 lpg2485 HP

Lp6_832 HP 32 lpg2015 ProC Pyrroline-5-carboxylate reductase

Lp6_833 Glycosyl transferase family 2 35 lpg1183 HP

Lp6_976 HP 56 lpg0981 HP

Lp6_977 YwfO Phosphohydrolase 45 lpg1267 HP

Lp6_1186 HP

Lp6_1249 XerD Integrase/recombinase

Lp6_2002 integrase 59 lpc1833 HP

Lp6_2003 Protein of unknown function DUF1016 34 lpg1228 HP

Lp6_2041 HP 50 lpp0850 HP

Lp6_2164 HP 44 lpg1480 MutH DNA mismatch repair protein

Proteins were defined as divergent when they shared less than 65% homology and 75% coverage. HP identifies hypothetical proteins.
doi:10.1371/journal.pone.0067298.t001
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Table 2. Comparative proteomics analysis between divergent proteins identified in Table 1 and L. pneumophila Sg12 str. 570-CO-
H.

Sg6 Locus
Gene
Name Gene Description

Identity to
Sg12

Sg12
Locus Gene Name Gene Description

Lp6_186 HP 82 lp12_2703 Phenylalanyl tRNA synthetase

Lp6_749 Wzm LPS O-antigen ABC transporter 100 Wzm lp12_0766 Polysaccharide ABC transporter

Lp6_750 Wzt LPS O-antigen ABC transporter 100 Wzt Lp12_0767 LPS O-antigen ABC transporter

Lp6_755 HP 100 lp12_0772 HP

Lp6_758 GalE UDP-glucose 4-epimerase 100 lp12_0775 Putative NAD dependent epimerase

Lp6_759 WecA a-N-acetylglucosaminyltransferase 100 lp12_0776 a-N- acetylglucosaminyltransferase

Lp6_761 Hypothetical protein 100 lp12_0778 HP

Lp6_762 GCN5-related N-acetyltransferase 100 lp12_0779 N-Acyltransferase

Lp6_763 PseG Pseudaminic acid biosynthesis-associated
protein

100 lp12_0780 putative polysaccharide biosynthesis protein

Lp6_764 Glutamate-1-semialdehyde 2,1-aminomutase100 lp12_0781 Putative aminotransferase class-III

Lp6_765 GlmU1 Acylneuraminate cytidylyltransferase 100 lp12_0782 Putative glycosyltransferase

Lp6_766 Acetyltransferase 100 lp12_0783 Putative N-acetyltransferase

Lp6_767 HisF4 Imidazoleglycerol-phosphate synthase 100 HisF lp12_0784 Putative imidazole glycerol phosphate
synthase

Lp6_768 HisH2 Imidazole glycerol phosphate synthase 100 HisH lp12_0785 Putative imidazole glycerol phosphate
synthase

Lp6_769 LPS biosynthesis protein 100 lp12_0786 LPS biosynthesisprotein

Lp6_770 Aryl-alcohol dehydrogenase-like
oxidoreductase

100 lp12_0787 Putative aldo/keto reductase

Lp6_771 DegT Aminotransferase 100 lp12_0788 AHBA synthase

Lp6_772 CapD Polysaccharide biosynthesis protein 100 CapD lp12_0789 Putative polysaccharide biosynthesis protein

Lp6_773 HP 100 lp12_0790 HP

Lp6_774 Capsule polysaccharide biosynthesis protein 100 lp12_0791 HP

Lp6_775 NeuB N-acetylneuraminic acid synthetase 100 NeuB lp12_0792 Putative N-acetylneuramic acid synthetase

Lp6_776 HP 100 lp12_0793 Putative methyltransferase

Lp6_777 HP 100 lp12_0794 Putative aminopeptidase

Lp6_780 HP 100 lp12_0797 HP

Lp6_781 Dehydrogenase 100 lp12_0798 Putative dehydrogenase

Lp6_782 Dehydrogenase 100 lp12_0799 Oxidoreductase domain-containing protein

Lp6_825 HP 48 FtsY lp12_2663 Cell division membrane protein

Lp6_828 UDP-N-acetyl-D-galactosamine
dehydrogenase

100 lp12_0849 UDP-glucose/GDP-mannose dehydrogenase

Lp6_829 UDP-glucose 4-epimerase 100 lp12_0850 NAD dependent epimerase

Lp6_830 Starch synthase 100 lp12_0851 Putative Starch synthase

Lp6_831 HP 100 lp12_0852 TRP containing protein

Lp6_832 HP 100 lp12_0853 HP

Lp6_833 Glycosyl transferase family 2 100 lp12_0854 Glycosyl transferase

Lp6_976 HP 54 lp12_1008 Putative integrase

Lp6_977 YwfO Phosphohydrolase 63 lp12_1057 Deoxyguanosine triphosphate
triphosphohydrolase

Lp6_1186 HP 38 lp12_0204 Cytochrome D ubiquinol oxidase

Lp6_1249 XerD Integrase/recombinase 62 lp12_2416 HP

Lp6_2002 integrase 100 lp12_2057 integrase

Lp6_2003 Protein of unknown function DUF1016 100 lp12_2058 HP

Lp6_2041 HP 100 lp12_2105 HP

Lp6_2164 HP 100 lp12_0810 HP

HP identifies hypothetical proteins.
doi:10.1371/journal.pone.0067298.t002
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Sg6 patient sera. Taken together, these results suggest that while

Sg1 str. Philadelphia is resistant to the alternate complement

system, it is highly sensitive to the classical pathway of complement

mediated killing. Furthermore, Sg1 are more sensitive to this

pathway in the presence of Sg1 specific antibodies, while the Sg6

can be targeted by both Sg1 and Sg6 antibodies.

The above experiments suggested that the high prevalence of

Sg1 in patient cases might be related to higher resistance to serum

complement. We hypothesized that we might observe a similar

correlation between clinical prevalence and resistance to the

alternative complement pathway amongst the non-Sg1 strains in

our repository. From this set, we selected the most prevalent

sequence type for each serogroup, and measured their survival in

NHS (Figure 7B). The highest CFU/ml counts were obtained for

Sg6 strains Thunder Bay and Sudbury, which account for 20%

and 10.6% of all non-Sg1 infections, respectively. Interestingly Sg6

str. Mississauga, which account for only 2.35% of all clinical cases,

showed a marked reduction in survivability compared to Thunder

Bay and Sudbury strains (Figure 7C). All other serogroups that

shared similar prevalence as Sg6 str. Mississauga, exhibited high

sensitivities to serum complement. These results strongly indicate

that while all non-Sg1’s are sensitive to serum complement, the

degree of susceptibility correlates strongly with clinical prevalence.

Figure 6. The O-antigen locus of L. pneumophila. (A) Layout of O-antigen region in Sg1 str. Philadelphia and Sg6 str. Thunder Bay in the area of
highest dissimilarity, corresponding to the LPS gene cluster. (B) 16% SDS gel analysis of purified LPS from Sg1 str. Philadelphia and Sg6 str. Thunder
Bay. (C) Comparative serum resistance of (Sg1) Sg1 str. Philadelphia and (Sg6) Sg6 str. Thunder Bay in Non-immune Human Serum. Presented data are
an average of three independent experiments. *denotes statistical significance as determined by a two-tailed student’s t-test with a P-value ,0.05.
doi:10.1371/journal.pone.0067298.g006
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Serum Complement Proteins are able to Bind to the
Surface of Sg6 but not Sg1

Serogroup specific differences in complement resistance may be

reflected in the efficiency to avoid the formation of membrane

attack complex (MAC) [81,82]. MAC forms transmembrane

channels in the bacterial membrane, leading to depolarization and

cell death [83]. We compared the binding of complement proteins

C3 and C9 to the surfaces of Sg1 str. Philadelphia and Sg6 str.

Figure 7. Serum Resistance of non-Sg1 L. pneumophila. (A) Percentage survival of Sg1 str. Philadelphia vs Sg6 str. Thunder Bay in the presence
of no Serum (NS), serum with Sg1 antibodies (S1), S1 heated for 30 min at 56uC (S1DH), serum with Sg6 antibodies (S6) and S6 heated for 30 min at
56uC (S6DH). (B) Percentage survival of L. pneumophila serogroups after incubation in 90% non-immune human serum for 1 hour at 37uC. Both panels
A and B are an average of three independent experiments. (C) Relative prevalence of non-SG1 in the clinical isolates database maintained at Public
Health Ontario Laboratories. (D) Immunodetection of complement proteins C3 and (E) C9 at the surface of NHS treated Sg1 str. Philadelphia vs Sg6 str.
Thunder Bay. Panels on the left are fluorescent captures of the differential interference contrast images on the right. The bacteria are seen as
individual rods in these images. Images were acquired using Quorum Optigrid microscope with a 636oil immersion objective (Leica DMI6000B stand
with a Hamamatsu EM-1K, EMCCD camera). Image acquisition and post-acquisition processing was performed using Volocity 4.3 software
(Improvision).
doi:10.1371/journal.pone.0067298.g007
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Thunder Bay by indirect fluorescent antibody (IFA). C3 protein is

able to bind to the LPS of bacteria and provides the scaffold for the

membrane attack complex [84,85]. The binding of the C9 protein

completes the membrane attack complex, which leads to bacterial

death [85,86,87]. Our experiments indicate that while only

residual amounts of C3 bind Sg1 (Figure 7D i), significant

quantities were detected on the Sg6 surface (Figure 7D iii). This

subsequently led to the detection of C9 on Sg6 (Figure 7E iii), but

absent from Sg1 surfaces (Figure 7E i). This result suggests that the

membrane attack complex can be assembled in Sg6 but not in

Sg1, highlighting Sg6’s sensitivity to the alternative complement

pathway.

Sg1 Disseminates more Efficiently than Sg6 in the A/J
Mice Infection Model

The different serum resistance profiles of Sg1 and Sg6 suggested

that these serogroups might differ in their ability to cause infection

in the lungs and/or dissemination to other organs. In order to test

this hypothesis, we infected A/J mice intratracheally with Sg1 str.

Philadelphia or Sg6 str. Thunder Bay and determined the severity

of the disease 48 hours post intra-tracheal inoculation [88,89].

Forty eight hours post infection, mice infected (n = 5) with Sg1

showed symptoms of distress as indicated by ruffled fur, loss of

appetite and lethargy. Conversely, mice infected with Sg6 (n = 5)

displayed no deviation from normal behaviour and appearance.

Furthermore, while no significant differences were seen in

bacterial counts in the lungs, a 100-fold increase was noted for

Sg1 in blood. Similarly, 100-fold and 10-fold increases were also

seen for Sg1 in kidneys and liver, respectively (Figure 8).

Surprisingly, no differences were observed in the spleens. This

data suggests that while both Sg1 and Sg6 cause similar level of

infections in the lung, they differ in their ability to induce

bacteraemia and disseminate to other organs. Severe complica-

tions associated with Legionnaire’s disease are well documented

and include septicemia and multi-organ failure [90,91]. Therefore,

our data are in agreement with the clinical manifestations of

Legionnaire’s disease, and suggests that bloodstream dissemination

of L. pneumophila is a key determining factor of the severity of

legionellosis.

Discussion

The human host provides a challenging environment for the

survival of pathogens. Given that no human to human transmis-

sion has been reported for L. pneumophila, the clinical prevalence of

L. pneumophila Sg1 over other serogroups poses a puzzling problem,

since any Sg1 specific advantage in the human host must be a

secondary consequence to an environmental benefit. Here, we

thoroughly investigated this question by reporting a comprehen-

sive study comparing the genomes, the clinical impact, the

environmental fitness and the pathogenicity of a clinically

prevalent Sg6 strain with a phylogenetically related Sg1 strain.

By combining MLVA and SBT analyses of a population based

repository of non-Sg1 clinical isolates, we could identify a large

cluster of prevalent molecular types presenting a low diversity. At

the phylogenetic level, isolates from this cluster seem clonally

stable as they have been collected for over 30 years. Based on this

finding, a member of this cluster, Sg6 str. Thunder Bay, was

selected for further analyses. Given the high plasticity of previously

reported Legionella genomes, the optical maps of Sg6 str. Thunder

Bay and Sg1 str. Philadelphia showed a high degree of similarity in

genomic structure and restriction pattern, except for one large

divergent region that includes several genes involved in O-antigen

biosynthesis [49]. Furthermore, a comparison of Sg6 str. Thunder

Bay and Sg12 str. 570-CO-H optical maps identified the O-

antigen region to be conserved between these two sequenced non-

Sg1 strains. Comparative genomics analysis was consistent with

our optical mapping experiments, where a majority of genetic

differences between Sg1 str. Philadelphia and Sg6 str. Thunder

Bay were identified in the O-antigen biosynthetic cluster. The

potential role of the LPS cluster in the predominance of Sg1 was

initially hypothesised in a large multigenome microarray analysis

of L. pneumophila strains [42]. More recently, the O-antigen regions

of several serogroups were sequenced and compared using a

PCR/Sanger sequencing approach. Using this approach, O-

antigen biosynthetic genes wzt, wzm and lag1 were only identified

in Sg1 and it was postulated that these genes might be absent in

other serogroups [59]. Here, while at the protein level they only

share low homology with the Sg1 and discrepancies with previous

reports may be explained by the use of different comparative

genomics cut-off values, next generation sequencing approaches

allowed us to identify distant homologues of wzm, wzt and galE

genes in Sg6. Together Wzm and Wzt form the inner membrane

O-antigen transporter [92,93] and GalE is a cytoplasmic

epimerase that converts UDP-Galactose to UDP-Glucose upon

which the remaining O-antigen sugars are assembled [94]. Lag1

was previously described as an O-acetyltransferase in some Sg1

strains [95], shared less than 50% sequence identity with a

predicted AlgL an alginate acetyltransferase in all three Sg6 strains

and Sg12 str. 570-CO-H. Although, mutations in lag-1 have been

associated with lack of the 8-O-acetyl groups in legionaminic acid

leading to polymorphic changes in the LPS, these modifications

were shown to have no effect on serum resistance or uptake in

amoeba [96]. Interestingly, it has been proposed that the 8-O-

acetylation of first three O-antigen sugars, which are located

closest to the core sugars, might occur via a Lag1 independent

pathway [95].

The chemical structure of Sg1 O-antigen is very unusual due to

its atypical hydrophobic nature, owing to the presence of a

homopolymer of legionaminic acid on its surface [97]. Previous

analysis of the LPS from non-Sg1 suggested that L. pneumophila O-

Figure 8. Sg1 and Sg6 infections in A/J mice. CFU counts of Sg1
and Sg6 in different organs and blood 48 h post-intratracheal
inoculation. Both Sg1 and Sg6 groups consisted of 5 mice each.
doi:10.1371/journal.pone.0067298.g008
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antigens are structurally conserved, since legionaminic acid was

identified in all serogroups, although they lacked O-acetylation

[98]. This finding was further substantiated when O-antigens from

different L. pneumophila serogroups were visualized through SDS-

PAGE, and polymorphic changes compared to Sg1 were reported

[99]. Our analysis indicates that while Sg6 does generate an O-

antigen, it might lack high molecular weight species.

The structural differences in the O-antigen leading to the

increased clinical prevalence of Sg1 may be the result of a selective

pressure from the natural bacterial reservoir. In other pathogens,

O-antigen plays a role in biofilms architecture [100] and predation

by environmental amoebae [101]. Furthermore, GalE, which

showed serogroup specific differences in our study, has previously

been shown in Porphyromonas gingivalis to play a significant role both

in O-antigen biosynthesis and biofilm production [102]. In light of

these studies, we hypothesized that the O-antigen differences

between Sg1 and Sg6 might confer an advantage for Sg1 in

surviving in the environment. Comparative analysis showed that

Sg6 str. Thunder Bay generates increased levels of biofilm

compared to Sg1 str. Philadelphia, suggesting that the Sg6 might

possess an advantage when it comes to colonizing water systems. A

second strategy employed by L. pneumophila to survive within

environmental water systems is to replicate within the amoeba

host. Although our analysis was limited to one reference amoebae

species model [103], Sg1 str. Philadelphia and Sg6 str. Thunder

Bay were equally effective in infecting A. castellani, while Sg6 str.

Thunder Bay is able to replicate better within these amoebae.

These findings, in combination with the conclusions drawn from

our biofilm analyses, suggest that Sg1 may not possess environ-

mental advantage upon other serogroups. Furthermore, the

increased efficiency of Sg6 in replicating in amoebae should most

likely permit its transmission in larger doses. This is in agreement

with previous studies that have either detected similar levels of Sg1

and non-Sg1 in environmental surveys, or have reported the

environmental prevalence of Sg6 over all serogroups

[104,105,106,107]. More specifically, studies report that Sg6

strains are more abundant in urban water sources in Ontario [53],

and are also more prevalent than Sg1 strains in environmental

niches, like the Great Lakes [108]. More so, in absence of an

obvious demonstrated environmental advantage for Sg1 strains, it

remains unknown why certain LPS structures have been selected,

but we speculate it may protect Sg1 strains from being

compromised by exposure to environmental stress factors.

In several pathogens, highly decorated O-antigens structures

provide protection against serum complement [79,109,110].

Therefore, we hypothesized that different O-antigen profiles of

Sg1 and Sg6 might confer different levels of resistance to serum

complement. Our data indicates that Sg1 str. Philadelphia is

highly resistant to the alternative complement system, while both

Sg1 str. Philadelphia and Sg6 str. Thunder Bay are susceptible to

the classical complement pathway. Interestingly, differences in

serum resistance amongst different serogroups correlated to their

clinical prevalence, since Sg6 str. Thunder Bay and Sudbury, the

two most predominant non-Sg1 strains in Ontario exhibited the

least sensitivity to the alternative complement system. L.

pneumophila’s susceptibility to the classical complement pathway

has previously been reported [111]. Unlike the classical comple-

ment pathway where complement proteins bind the surface of

bacteria opsonised with IgG/IgM [112], in the alternative

pathway the spontaneous hydrolysis of C3 into C3a and C3b

fragments triggers the activation of the complement cascade [113].

C3 was previously shown to bind MOMP on L. pneumophila

surfaces in small quantities, which may lead to the activation of the

alternative complement system [114]. Perhaps, the highly deco-

rated LPS of Sg1 interferes with this interaction, and therefore,

would lead to a limited binding of C3, resulting in increased

resistance to serum complement [115]. This is in agreement with

previous evidence that suggests that certain strains of Sg1 might be

resistant to alternative complement pathway as well [116]. A

previous study also suggested that C3 cannot be detected on Sg1

surfaces using IFA in the absence of serum antibodies [117].

Similarly, we could not detect C3 on Sg1 str. Philadelphia surface,

but it was present on the surface of Sg6 str. Thunder Bay. We also

detected C9 on the surface Sg6 str. Thunder Bay indicating the

activation of the complement cascade.

We next compared the virulence of Sg1 str. Philadelphia and

Sg6 str. Thunder Bay using in vitro and in vivo experimental

models. Both strains showed equal ability to infect and replicate

within human lung epithelial cells. Unexpectedly, Sg6 str.

Thunder Bay showed a high propensity to replicate inside

macrophages compared to Sg1 str. Philadelphia. In intratracheally

infected naı̈ve mice, our findings indicate that both strains have

comparable ability to colonize lungs, suggesting that complement

mediated killing via the alternative pathway does not play a

significant role in the immune response against L. pneumophila

within lungs. Previously, the alternative complement cascade was

shown to be limited within lungs [118]. From the lung alveoli, the

bacteria may disseminate to other organ systems by crossing the

lung endothelium as either free bacteria or inside macrophages

[119]. Strikingly, Sg1 str. Philadelphia and Sg6 str. Thunder Bay

differed in their potential to disseminate to other organs and to

induce bacteraemia. In blood, where complement mediated lysis is

most active, the Sg6 counts were 100-fold lower than Sg1.

Significantly lower Sg6 counts were also seen in the liver and

kidney. This is presumably due to the blood processing roles of

these organs. The lower counts of Sg6 str. Thunder Bay in the

blood suggests that after the first cycle of replication in circulating

macrophages, the bacteria lyse the cells for a second round of

infection, and in doing such exposes itself to the complement

system. Surprisingly, no serogroup specific difference was seen in

the spleen. Dissemination to kidneys and liver requires transit

through blood, but both lymphatic and the circulatory system are

directed to the spleen. Taking this into account, the data suggests

that Sg6 and possibly L. pneumophila use the lymphatic system for

dissemination beyond the lungs. All together our in vitro and in vivo

results support that resistance to the alternative complement

system may play a crucial role in the high clinical prevalence and

severity of L. pneumophila Sg 1 infections.

The analysis of the role of O – antigen would be better

examined by swapping the large O – antigen biosynthetic cluster

between L. pneumophila Sg1 and Sg6. However, genetic tools to

achieve this exchange have yet not been developed. Furthermore,

the region in question has previously been shown to be an essential

element in the genome of L. pneumophila [120], therefore limiting

the likelihood of obtaining knockout mutants. Thus, the data

presented in this comprehensive study combining long term

molecular epidemiology, comparative genomics and pathogenicity

analyses provide a unique perspective on the role of serogroups in

L. pneumophila infections. The ability of Sg1 strains to tolerate the

alternative complement cascade may allow it to disseminate to

other organs via transit through blood, which is in agreement with

the septicaemia and bacteraemia associated with the disease

[90,91]. Because there appears to be no immediate benefit of these

differences within biofilms or a natural amoebal host, future

investigations explaining why this specific trait is sequestered

amongst the Sg1 strains will provide critical insight into the

environmental factors and hosts that shape the evolution of this

important pathogen’s virulence.
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Materials and Methods

Ethics Statement
The collection of control human blood from healthy volunteers

used in this study was approved by the Research Ethics Board of

the Mount Sinai Hospital (Toronto, Canada). As approved by the

Research Ethics Board of the Mount Sinai Hospital, a written

informed consent to participate in this study was provided by all

participants. The Keenan Research Centre of the Li Ka Shing

Knowledge Institute, Animal Care and Use Committee reviewed

and approved our study protocol for infecting and sampling mice

with Legionella pneumophila. All work in our study was conducted

adhering to the institution’s guidelines for animal husbandry, and

followed the guidelines Canadian council on animal care for the

care and use of Laboratory Animals.

Strains used in this Work
Legionellosis is a notifiable disease in Ontario (population 13

million persons). Since 1978, the diagnosis of Legionella infections

has been centralized at the Ontario Public Health Laboratory.

This laboratory serves as the Legionella reference laboratory and

performs all testing for outbreak investigations and most testing of

clinical specimens. Therefore, isolates analyzed in this study are

representative of the non-Sg1 strains isolated in Ontario in the past

3 decades. The proportion of culture-confirmed case-patients with

L. pneumophila infection remained stable during the period of

analysis, and 34% of the isolates were non-SG1 [39]. Species and

serogroups were confirmed by direct immunofluorescent antibody

assay and slide-agglutination [121,122]. Isolates (n = 81) were

stored at –80uC in trypticase soy broth supplemented with 5%

horse blood. Eight isolates could not be resuscitated and were

omitted from our analysis. With the exception of 2 Sg6 isolates

collected at the same date in the same hospital, none of the isolates

were epidemiologically related. L. pneumophila ST 39 (Sg2–3

culture confirmed cases), ST 68 (str. Sudbury (CG346); Sg6–9

culture confirmed cases), ST 187 (str. Thunder Bay (CG315); Sg6–

17 culture confirmed cases), ST 378 (Sg4–2 culture confirmed

cases), ST 407 (str. Mississauga (CG331); Sg6–2 culture confirmed

cases), ST 465 (Sg3–5 culture confirmed cases), ST 466 (Sg8–1

culture confirmed case), ST 470 (Sg10–1 culture confirmed case),

ST 471 (Sg5–1 culture confirmed case) were selected among the

73 typable isolates for further analyses. Reference clinical strain L.

pneumophila subspecies pneumophila str. Philadelphia-1 (ST 36) was

obtained from ATCC (#33152).

Molecular Typing Schemes
The initial molecular typing of L. pneumophila strains was

conducted using Legionella Sequence based Typing (SBT) scheme

[43,44,123]. Molecular typing was also concurrently done through

the Multiple-Locus VNTR Analysis Typing Scheme (MLVA), as

formerly reported [45]. A combined MLST-MLVA dendrogram

was also prepared according to a recently described method [46].

The serogroups of patient isolated strains was determined using a

method previously described [39].

The Sg6 str. Thunder Bay optical map was generated according

to the manufacturer’s protocol (OpGen). In short, the strain was

grown for four days on buffered charcoal yeast extract (BCYE)

agar at 37uC with 5% CO2. Genomic DNA was extracted using

the OpGen DNA extraction kit from a single colony. DNA

purification via this method generated concentrated, non-sheared

DNA. The DNA was allowed to relax overnight and its quality was

checked via a Q-Card. The DNA was next applied to a special

cover slip using a wide-bore pipette, and as a result of capillary

action the DNA was stretched in channels. The DNA was stained

with a fluorescent dye and in the presence of an antifade solution,

and was visualized through a laser microscope. The DNA

concentration was adjusted to achieve 20–30 DNA fragments/

frame, with a minimum size of 150 kB. The diluted DNA was

applied to the M-card, and was treated with NheI for 30 min. The

digested pieces of DNA were visualized via the Optical mapping

array and fragment length was assigned by the onboard software

(MapManager). These fragments were aligned to generate a

circularized map with a minimum coverage of 65 X. Optical maps

for reference strains were constructed in silico by providing genome

sequences from public databases. The optical maps were used to

construct an evolutionary tree using Mapsolver (OpGen) based on

the UPGMA algorithm.

In vitro Biofilm Assays
Biofilm assays were conducted according to a previously

published protocol [124]. Briefly, single clones grown for 4 days

on BCYE agar at 37uC and 5% CO2 were used to inoculate broth

cultures, which were allowed to reach an OD of 2.0 and diluted in

fresh medium to give a final OD at 600 nm of 0.2. In a 96 well

plate, 200 ml of this suspension was dispensed, and the plates were

incubated at 37uC and 5% CO2 for 2 and 4 days. Biofilms were

stained with 40 ml 0.25% crystal violet in each well for 15 min and

washed 3 times in deionized water, and the crystal violet stain was

solubilized in 95% ethanol. Absorbance was read at 600 nm.

Three independent experiments were performed using eight

replicates.

Acanthamoeba castellani and U937 Derived Macrophage
Inoculations
A. castellani was obtained from ATCC (50739) and was cultured

in peptone yeast glucose (PYG) broth (2% Peptone, 0.1% Yeast

Extract, 0.1 M Glucose, 4 mM MgSO4, 0.4 M CaCl2, 0.1%

HOC(COONa)(CH2COONa)2 ? 2H2O, 0.05 mM

Fe(NH4)2(SO4)2-6H2O, 2.5 mM NaH2PO3, 2.5 mM K2HPO3,

pH 6.5) as previously described [125]. U937 monocytes were

obtained from ATCC (CRL-1593.2) and cultured in Roswell Park

Memorial Institute (RPMI) media, supplemented with Glutamine

and 10% heat inactivated fetal bovine serum. All cells were

passaged 3 times before inoculation assays were carried out. U937

cells were differentiated into adherent macrophages by treatment

with 1.061023 mg/ml 12-O-Tetradecanoylphorbol-13-Acetate

for 48 hours. L. pneumophila Sg1 and Sg6 patches were grown on

BCYE agar for 4 days at 37uC with 5% CO2 and suspended in

PBS. In a 24 well plate, 105 amoebae/macrophages were

incubated with 106 bacteria for a multiplicity of infection (MOI)

of 10. The incubation was carried out for 2 hours at 37uC with 5%

CO2, after which free bacterial cells were removed by washing the

wells 3 times with AC buffer (4 mM MgSO4, 0.4 M CaCl2, 0.1%

HOC(COONa)(CH2COONa)2 ? 2H2O, 0.05 mM

Fe(NH4)2(SO4)2-6H2O, 2.5 mM NaH2PO3, 2.5 mM K2HPO3,

pH 6.5) or PBS. Next the infected cells were treated with

gentamicin (100 mg/ml) for 1 hour to kill extracellular bacteria

and synchronize the infections. The amoebae/macrophages were

washed 3 times with AC buffer/PBS and incubated for 0, 24 and

48 hours in AC buffer/PBS at 37uC with 5% CO2. At the end of

the incubation period the cells were lysed by incubating them for

5 min in ice-cold filter sterilized tap water, followed by successive

passes through a 27.5 gauge needle. Serial dilutions of lysate and

supernatant mixture were plated on BCYE agar and incubated for

4 days at 37uC with 5% CO2 for CFU enumeration.
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NCI-H292 Lung Epithelial Cell Infections
Binding and invasion assays of NCI-H292 (ATCC, CRL-1848)

cells from human lung mucoepidermoid carcinoma with L.

pneumophila str. Philadelphia and Thunder Bay were conducted

as previously described [124], but with the following modifications:

Bacteria were resuspended in PBS from 4 day old plates that had

been incubated at 37uC with 5% CO2, and lung epithelial cells

were inoculated at an MOI of 10 and were lysed by incubation in

filter sterilized tap water for 5 minutes and passed through a 27.5

gauge needle.

LPS Purification and O-antigen Analysis
LPS were purified from L. pneumophila str. Philadelphia and

Thunder Bay as previously described [99]. In brief, bacterial

suspensions (OD600 2.0) were centrifuged at 10,0006g for 5 min.

The pellets were washed twice in 5 ml PBS (pH 7.2) containing

0.15 mM CaCl2 and 0.5 mM MgCl2. Pellets were then resus-

pended in 10 ml PBS (pH 7.2) and sonicated at 4 W three times at

an output setting of 0.5 (Misonix S3000) for 10 min on ice. In

order to eliminate contaminating protein and nucleic acids,

samples were treated with proteinase K (100 mg/mL) at 65uC
for 2 hours, followed by DNaseI (20 mg/mL) and RNase (40 mg/

mL) treatments at 37uC overnight. The extraction of LPS was

initiated by adding an equal volume of hot (65–70uC) 90% phenol

with vigorous shaking at 65–70uC for 2 hours. Suspensions were

cooled on ice, transferred to 1.5 mL polypropylene tubes and

centrifuged at 85006g for 15 min. Supernatants were transferred

into 15 mL conical centrifuge tubes and phenol phases were re-

extracted using 300 mL dH2O. Sodium acetate at 0.5 M final

concentration followed by 10 volumes of 95% ethanol were added

to the extracts and samples were stored at 220uC overnight in

order to precipitate LPS. Tubes were centrifuged at 20006g, 4uC
for 10 min and the pellets were resuspended in 1 ml distilled

water. Extensive dialysis against distilled water at 4uC was carried

out to remove any residual phenol. Purified LPS was solubilized in

Laemmli buffer and boiled for 5 min to achieve a final

concentration of 1 mg/ml. 20 mL/well from each sample was

separated on 15% SDS gel with a 4% stacking gel under reducing

condition at 100 mA for 2 hrs, using a mini-PROTEAN

electrophoresis instrument (Bio-Rad Laboratories). Silver staining

of the gels was performed according to the manufacturer’s

protocol (Bio-Rad Laboratories).

DNA Extraction, Sequencing and Genome Assembly
The genome of L. pneumophila str. Thunder Bay was sequenced

using a combination of Sanger, Roche-454 and Illumina

sequencing platforms. All general aspects of Roche-454 library

construction and sequencing were conducted according to the

manufacturer’s directions. Preparation of Illumina libraries and

sequencing were conducted as previously described [126].

Sequencing using the Roche-454 platform generated individual

reads at a minimum 196 coverage, while Illumina paired-end

reads were obtained at 996 coverage. Initial genome assembly of

454 reads via the Newbler software package (Roche) generated 36

large contigs. The order of the contigs was determined via optical

mapping and gaps between these contigs were closed via primer

walking to generate a single molecule. A total of 440 Sanger

finishing reads were produced to close gaps, while Illumina reads

were used to resolve repetitive regions, and raise the quality of the

finished sequence. Sequencing errors were corrected by mapping

Illumina reads to the assembled L. pneumophila str. Thunder Bay

genome using CLC Genomics Workbench (Ver 5.1.1). single 454

contig. The closed genome was annotated through the GenDB

platform. All gene annotations calls were checked manually and

corrected based on greater than 95% homology with other L.

pneumophila homologs, Pfam domains, TIGRFAM domains and

SignalP predictions. Raw reads of Sg6 str. Sudbury (ST 68) and

Mississauga (ST 407) were de novo assembled using CLC Genomics

Workbench (Ver 5.1.1), and were transitively annotated against L.

pneumophila str. Thunder Bay using the GenDB platform. The L.

pneumophila str. Sudbury and L. pneumophila str. Mississauga

genomes were compared with L. pneumophila str. Thunder Bay

using GenDB (ver 5.1.1) for Single Nucleotide Polymorphism

(SNP) analysis and gene content.

Genome Annotation and Comparative Genomics
The single chromosome of L. pneumophila str. Thunder Bay was

annotated using a modified version of the GenDB platform as

previously described [127,128]. In short, ORF prediction was

done in GenDB using REGANOR [129], which uses CRITICA

[130] and Glimmer [131] in addition to RBSFinder [132] to make

ribosomal binding site and gene predictions. Ribosomal predic-

tions are done using tRNA-Scan-SE [133] and RNAmmer [134].

All intergenic regions were elongated with a 25 base pair overlap

on each end and run through a pipeline for identification of

potential frameshifts and short genes overlooked by GenDB

regional prediction pipeline. Regions found with significant

BLASTX [135] hits to EMBL database [136] were identified,

added as new CDS regions in GenDB. All coding regions were ran

through the functional annotation pipeline by running a BLAST

of each region against the following databases: PFAM [137],

TIGRFAM [138], KEGG [139], NCBI’s non-redundant protein

database, TMHMM [140], and SignalP [141].

Comparative proteomics was conducted by first comparing the

L. pneumophila str. Thunder Bay translated genes against Sg1 core,

which has previously been described [58]. Predicted proteins of L.

pneumophila str. Thunder Bay that exhibited greater than 65%

sequence identity were defined as the conserved group. These

were then compared against the entire public database of known

L. pneumophila proteins, in order to establish a list of unique proteins

of L. pneumophila str. Thunder Bay. Furthermore, a list of unique

proteins of the Sg1 core was compiled, by including proteins which

showed less than 65% homology to L. pneumophila str. Thunder Bay

predicted proteins. The pangenome of L. pneumophila was created

using GView ver 1.6 [142].

Serum Resistance Assays
Human blood was collected from 4 healthy volunteers and

allowed to coagulate at room temperature for 30 min. The plasma

was collected by centrifuging the tubes for 10 min at 10006g and

aspirating the supernatant. The plasma was analyzed via

immunofluorescence assays (IFA) to confirm absence of L.

pneumophila antibodies against Sg1 and Sg6 [143], and then was

flash frozen in liquid nitrogen for storage at 280uC. Similarly, IFA

was used to confirm the presence of Sg1 and Sg6 specific

antibodies in patients diagnosed with Legionnaire’s disease.

L. pneumophila str. Philadelphia and Thunder Bay were grown

for 4 days on BCYE agar at 37uC with 5% CO2. The bacteria

were suspended in PBS to a final concentration of 106 CFU/ml.

The suspensions were diluted 10-fold in 90% non- immune human

serum (NHS) and incubated at 37uC for 45 min and 90 min. In

the experiments comparing serum resistance of several serogroups,

a single incubation time of 60 min was selected. Similarly,

experiments involving immune human serum (IHS) were carried

out for 60 min. As controls, bacteria were also incubated with heat

inactivated serum for the corresponding periods. Next bacteria

were pelleted and washed 3 X with PBS, and CFU were

determined by plating several serial dilutions on BCYE agar and
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incubated as before. These CFU values were compared to the

inoculums and the data is reported as % survival.

Immuno-fluorescence Asssays (IFA)
L. pneumophila str. Philadelphia and Thunder Bay were grown

for 4 days on BCYE agar at 37uC with 5% CO2, were

resuspended in 16 PBS and adjusted to OD 2.0. Bacteria were

incubated in NHS for 25 min at 37uC and washed 26with PBS.

Bacterial suspensions were smeared onto glass slides and allowed

to air dry. The smears were then heat fixed, followed by fixation in

4% paraformaldehyde for 15 min. Cells were blocked in 5% fetal

calf serum in PBS for 1 hour at room temperature, followed by a 1

hour incubation with C3, C5 and C9 primary antibodies diluted

(1:10) in the blocking solution (Hycult Biotech). Images were

acquired using Quorum tech Canada Optigrid structure illumi-

nation system in a Leica DMI6000B stand with a with a

Hamamatsu EM-1K, EMCCD camera.

A/J Mice Model
Six to eight week old female A/J mice (Jackson Laboratories)

were infected with 50 ml of 106 bacterial suspensions of either Sg1

str. Philadelphia or Sg6 str. Thunder Bay as previously described

(Brieland et al., 1994). The bacterial suspensions were prepared in

PBS from bacteria grown on BCYE agar plates for 4 days at 37uC
with 5% CO2. The mice were infected via intra-tracheal

inoculations. Forty eight hours post infection, the mice were

sacrificed and organs were harvested. Homogenized organs and

blood were plated on BCYE agar plates and grown for 4 days at

37uC with 5% CO2. The counts are reported as log10 CFU. The

experiment was conducted in accordance with the approved

protocol at the research vivarium of St. Michael’s hospital

(Toronto, Ontario).
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