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Abstract

We employed a multi-scale clustering methodology known as ‘‘data cloud geometry’’ to extract functional connectivity
patterns derived from functional magnetic resonance imaging (fMRI) protocol. The method was applied to correlation
matrices of 106 regions of interest (ROIs) in 29 individuals with autism spectrum disorders (ASD), and 29 individuals with
typical development (TD) while they completed a cognitive control task. Connectivity clustering geometry was examined at
both ‘‘fine’’ and ‘‘coarse’’ scales. At the coarse scale, the connectivity clustering geometry produced 10 valid clusters with a
coherent relationship to neural anatomy. A supervised learning algorithm employed fine scale information about clustering
motif configurations and prevalence, and coarse scale information about intra- and inter-regional connectivity; the
algorithm correctly classified ASD and TD participants with sensitivity of 82:8% and specificity of 82:8%. Most of the
predictive power of the logistic regression model resided at the level of the fine-scale clustering geometry, suggesting that
cellular versus systems level disturbances are more prominent in individuals with ASD. This article provides validation for
this multi-scale geometric approach to extracting brain functional connectivity pattern information and for its use in
classification of ASD.
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Introduction

Recent joint advances in functional magnetic resonance

imaging (fMRI) technology and in graph theoretical analysis have

allowed neuroscientists to devote great amount of research

attentions and efforts on constructing complex networks of

functional brain connectivity [1]. The ultimate goal is to

understand how the brain works. This understanding can be

facilitated by discovering both macro- and micro-scopic connec-

tivity patterns that bear future diagnostic tools for brain related

disorders like autism spectrum disorders (ASD), for example. This

research direction has become one of the major trends in

neurosciences [1]. Hence developing effective methodology for

network analysis that reliably extracts informative patterns of

functional brain connectivity will be the focus of the paper.

However there are several challenges facing scientific endeavors

for functional brain connectivity patterns and their clinical

associations. One of the challenges is the complexity due to

clinical heterogeneity. For instance ASD are heterogeneous neuro-

developmental disorders that involve diverse neuropathology [2].

Perhaps the most consistent finding about ASD is that they are

disorders of functional connectivity [3–5]. It is natural to ask what

typical ASD connectivity patterns may be identified? Currently

there are few coherent arguments (whether empirical or theoret-

ical) on the status of short- and long-range vs. over- or under-

connectivity reported in literature [6–10]. Such paucity of

explanation points to the need for cohesive framework for

accurately describing the distribution and network connectivity

pertinent to abnormalities [11].

The pattern extraction methodology presented here contributes

to the necessary conditions to establish this type of cohesive

framework. They are necessary conditions because pattern

information is practical and instrumental for devising classification

or diagnostic tests [5,12]. The case of ASD illustrates the

computational challenges that we wish to address by means of a

supervised learning rule. When analyzing functional connectivity

under both resting state and task related neural activity [1,13,14],

local regional data of time series from brain scans are used to

construct a correlation matrix, known as a functional brain graph.

This is typically followed by some form of ‘‘thresholding’’ on the

matrix to identify significant connections. Finally, topological

properties of these may be investigated with graph theoretical

metrics that describe networks including those assessing small-

worldness [1] and community structure [15].

Several methodological difficulties are evident with these

approaches and others related to thresholding and prescribing of

network topology based on correlation matrices. The problem of

thresholding is complex given multiple scales being present in most

networks and the consequent need to correct for multiple

comparisons. And thresholding is a type of truncation that results

in information loss [1]. Another critical problem, which is typically

unnoticed, is that results with different scales across participants
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are produced, and then potentially distorted information is

summarized. There are three immediate scenarios that propagate

local information distortion to global errors. First, a slightly

perturbed correlation matrix might fail to retain the original

relational structure among ROIs. Second, many connectivity

clusters of ROIs could have been truncated due to their

heterogeneous connectivity scales. Third, the geometry of several

clusters merging into a larger conglomerate would be completely

missed.

It is reasonable to assume that solutions to these computational

challenges will facilitate translational medical outcomes for

diseases like ASD. Specifically, we demonstrate how to effectively

extract multiscale pattern information of functional brain connec-

tivity from fMRI based correlation matrix data. We then construct

a learning algorithm for classification of ASD. The key compu-

tational methodology employed here is the data cloud geometry

algorithm developed by Fushing and McAssey [16]. Each subject-

specific correlation matrix is converted into connectivity clustering

geometry built according to a sequence of critical scales. In a

hierarchy format, each level of such geometry is a clustering

configuration partitioning 106 ROIs into subsets of ROIs being

close or similar to each other on a relevant scale. In contrast, ROIs

that are not similar with respect to the scale are parsed into

separate clusters. All computations for cluster membership and

cluster number per level are data-driven. The number of clusters

at each scale is determined by an eigenvalue plot derived from the

normalized graph Laplacian of a computed matrix of cluster-

sharing probability. Then cluster memberships are extracted

accordingly. The bottom level of the hierarchy corresponds to a

fine scale and consists of many small clusters (2 or 3 ROIs each).

As the scale gets larger, small clusters close to each others on the

lower level merge, which leads to larger and fewer clusters. The

top of the hierarchy consists of a single cluster.

In data cloud geometry algorithmic computations, this scale-

sensitive matrix of cluster-sharing probability summarizes the

result of regulated Markovian mechanisms, that reflect the

‘‘distance’’ between ROIs as well as its clusters, as would be clear

in Materials and Methods Section. But very briefly, a scale determines

the closeness between any two ROIs, so a Markov chain can be

built with higher probability to move from one ROI to its closer

neighbors than to one far apart. Then this Markov chain would

tend to go around and tentatively be trapped within a cluster.

Therefore one clustering configuration pertaining to a scale could

be found based on a large collection of specially designed Markov

chains, so-called regulated Markov random walks, which are

capable of exhaustively exploring the whole connectivity among all

ROIs; and different scales could bring out significantly different

clustering configuration. Collectively we find a hierarchy of such

configurations and call it a connectivity clustering geometry. This

is the basic idea of data cloud geometry. Since this hierarchy is

constructed using one individual’s correlation matrix, it bears a

geometric structure that is specific to this individual. Though the

sequences of critical scales used for connectivity clustering

geometries vary from individual to individual, the collection of

connectivity clustering geometries constructed as such from the

participants are compatible in the sense that we individually tune

to a ‘‘right scale’’ for a common clustering structure across all

participants. This is similar to what is done when focusing a

microscope. Since the focus is on functional connectivity, the

‘‘tuning’’ produces more or less the same number of clusters across

participants in the data set. It is our contention that when

individuals are tuned to the same clustering structure, character-

istics of their functional connectivity can be most readily and

legitimately compared.

For each participant in ASD group and TD group, two separate

multi-scale connectivity clustering geometries are derived via data

cloud geometry based on each individual’s fMRI-based correlation

matrix constructed from the 106 ROIs during red and green trials

in the cognitive control task, respectively. A 3-D functional

connectivity network is built based on each multi-scale geometry of

each individual subject. Network representation of such geome-

tries might be taken as subject’s pseudo-neuroanatomy, so they

could be compared based on their differences in network patterns

for classification and other purposes. Here, by looking at one fine

and one coarse scale level of connectivity clustering geometry, we

demonstrate how to devise a supervised learning algorithm for

classifying members between ASD group and TD group.

Materials and Methods

Data Description
Participants included 58 adolescent subjects: 29 with ASD, and

the other 29 typical developing (TD) individuals. Participants with

ASD were assessed with standard measures. All these individuals

participated in the study of Solomon et al [10], and measures were

described therein. The study included 5 female subjects in each

group to approximate the male to female gender ratio in the

population of individuals with autism. Functional time series from

106 ROIs were collected during both red and green trials of the

Preparing to Overcome Prepotency Task (POP; [17–20]). The

regions were defined using the aal atlas [21], which parses the

brain into 116 regions; this 116-region partition has been used in

both task-related functional MRI studies and resting-state func-

tional MRI studies [22]. 10 regions were removed from the

analysis due to coverage issues (noisy signal). The 106 ROIs’ 3-D

locations are shown in Fig. 1 for reference convenience. Also see

supplementary file S1 for the names of the 106 ROIs and their 3-

D coordinates. Two 106|106 beta-series correlation [23]

matrices are derived corresponding to the two trials from each

participant. To calculate correlation between ROIs, beta-series

correlation method is employed, which is different from the time

series method. For this method, a generalized linear model (GLM)

was constructed to include every stage of every trial with a separate

covariate to obtain trial-to-trial parameter estimates of stage-

specific activity. All estimated parameter values from each trial

were sorted according to task stage into sets of condition specific

betas, i.e., beta series, and correlated across brain regions. [10].

Each of this beta-series correlation matrix is the basis for subject

and trial specific functional brain connectivity.

Data Cloud Geometry
In this section we will illustrate how to obtain connectivity

clustering geometry from a similarity measure via data cloud

geometry algorithm proposed by Fushing and McAssey [16]. Then

in the following section Temperature Tuning we will schematically

present the connectivity clustering geometry via a cluster-sharing

probability matrix, and display part of this geometric structure

through a 3-D network of functional brain connectivity. At the last

we will show an overall view of a coherent relationship among all

participants’ geometries of functional brain connectivity.

The advantage of the algorithm is that the geometry of a data

cloud could be computed on multiple scales without prior

knowledge about its structure. The concepts of ÒtimeÓ and

ÒtemperatureÓ are introduced to construct a hierarchical

geometry based on local information provided by a similarity

measure. Specifically, along the time axis, a regulated random

walk incorporated with recurrence-time dynamics detects infor-

mation about the number of clusters and the corresponding cluster

Multiscale Brain Connectivity for Autism
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membership of each node; along the temperature axis, a few

temperatures corresponding to phase transitions will be utilized to

build the geometric hierarchy of a data cloud. At each chosen

temperature, a cluster-sharing probability matrix is constructed to

summarize information extracted from a number of regulated

random walks [16].

First a correlation matrix is used to construct a similarity matrix,

i.e., the absolute value of its (i, j){th entry is used as a similarity

measure between the ith and jth ROIs. Rigorously this measure-

ment has an inherent and unknown initial scale T0 that may differ

significantly among participants. Hence, we need to employ a

scale-standardization analogous to the tuning resolution in the

hypothetical microscope described in the introduction.

For the k-th subject, the correlation measurement between the

pair of the i-th and j-th ROIs is denoted as rk½i, j�. Its absolute

value could be expressed as

Drk½i, j�D~e
{

dk ½i,j�
Tk

0

where dk½i, j� denotes the corresponding hypothetical underlying

distance between the i-th and j-th ROIs with respect to the

unknown initial scale Tk
0 .

Consider the following power transformation,

sT
k ½i, j�~Drk½i, j�D1=T~e

{
dk ½i,j�
Tk

0
T

which results the similarity sT
k ½i, j� between the two ROIs under

the power transform scale T . It is noted that the scale underlying

this computable similarity is the unknown Tk
0 T . However we will

apply a very wide range of T values in order to reveal the whole

geometry of 106 ROIs embedded within the correlation matrix rk.

That is, the product Tk
0 T in the sT

k ½i, j� would take values in a wide

range. Hence the unknown Tk
0 parameter becomes irrelevant in

the whole process of constructing connectivity clustering geometry.

Here we denote the collection of similarity matrix as

Sk~fST
k DT[Rzg.

Figure 1. 106 ROIs’ 3-D locations on brain regions.
doi:10.1371/journal.pone.0045502.g001
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For each chosen temperature T , we applied the data cloud

geometry algorithm illustrated above to construct the cluster-

sharing probability matrix. The information of number of clusters

is typically obtained through an eigenvalue plot of the normalized

graph Laplacian of the cluster-sharing probability matrix. The

number of significantly non-zero normalized eigenvalues is taken

to be the number of clusters. Information about clustering

membership is acquired from pruning the hierarchical clustering

(HC) tree [24], which is constructed based on the cluster-sharing

probability matrix. Therefore, ROIs with high cluster-sharing

probability would be clustered together, and ROIs with low

cluster-sharing probability would be separated into different

clusters. This clustering result is termed by the level of connectivity

clustering geometry on the 106 ROIs at temperature T .

Temperature Tuning. By tuning the temperature T , we

observe that, when T is very small, sT
k ½i, j� can be close to 0 for any

correlation Drk½i, j�D being only slightly less than 1; sT
k ½i, j� is

significantly larger than 0 only when Drk½i, j�D is very close to 1.

That is, most similarity measurements are close to 0, except for

those pairs which have very high correlation under the very small

focal scale. This scale leads us to see many small core clusters. On

the other end of extreme of the focal scale, when T is very large,

most similarity measurements are very close to 1. Here there

would be only one cluster for all the nodes. Therefore we could

visualize an evolution of clustering structures from fine to coarse

with T going from small to large. In fact this evolution is

characterized by a sequence of critical temperatures where phase

transitions of clustering geometry occur. This fact can be seen

from the trajectory of number of clusters with respect to

temperature in Fig. 2. The common pattern is as follows. When

temperature is relatively low, the number of clusters remains high,

then there is a steep drop and then the number of clusters slowly

converges to 1 as temperature increases.

The hierarchical levels of clustering configurations correspond-

ing to this sequence of critical temperatures are jointly called

connectivity clustering geometry. A schematic representation of

such connectivity clustering geometry is given in Fig. 3. In Fig. 3(a),

the small circles with highest color intensity correspond to clusters

found at lowest temperature, so are the small squares with same

color intensity on the matrix’s diagonal in Fig. 3(b). As color

gradually fades, the larger circles and larger squares are standing

for conglomerated clusters by merging small clusters contained

within. The vertical scale on the Fig. 3 (b) is the temperature scale.

Another way to visualize such connectivity clustering geometry

on 106 ROIs is to wire any pair of cluster-sharing ROIs on the

brain’s 3-D Euclidean coordinate. Fig. 4 (a) shows a network of

connectivity viewing from the right brain hemisphere, while Fig. 4

(b) shows the same network viewing from the back of a brain. The

latter view reveals evidently strong connectivity between ROIs

corresponding located on the right and left brain hemispheres.

This connectivity pattern is real because majority of ROIs are

matched in a form of left-and-right correspondence pair.

The individual trajectories in Fig. 2 further reveal the important

common multi-scale feature of data cloud geometry: there are

initially more than 40 clusters. This number slowly decreases and

then drops steeply to ten before slowly decreasing to one, in spite

of the fact that their initial scale was unknown. fTk
0 g are

apparently heterogeneous. To further confirm this common multi-

scale feature, we compile the 29 trajectories together according to

two different trial types and groups in Fig. 5. Together they reveal

an overall view of a coherent clustering geometric relationship

among all the participants’ functional brain connectivity.

Fig. 5 shows overall strong evidence of the multi-scale clustering

structure embedded within each correlation matrix with hetero-

geneous initial scales fTk
0 g. Hence it is essential to emphasize that

any task involving comparing two or more correlation matrices

needs to be performed on the base of matching clustering

Figure 2. Eight individuals’ evolution of number of clusters via eigenvalue plot. Top four panels for ASD subjects and bottom four panels
for TD subjects in green trials.
doi:10.1371/journal.pone.0045502.g002
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structures. Specifically two levels of connectivity clustering

configurations on two different hierarchies respectively match

when they both have the same number of clusters. This procedure

is referred as ‘‘tuning’’ among different connectivity clustering

geometries.

We further illustrate that such tuning is a necessary step in

extracting comparable functional connectivity pattern information

across subjects. For example, consider the scenario with T = 1,

without making power transformations on all correlation matrices.

Since T = 1 is way out of the range of horizontal T axis in Fig. 2

and 5, there would be only one cluster for all individual subjects.

Hence, if a network such as that shown in Fig. 4 is constructed for

each subject, each will have a complete graph since all ROIs are

connected. However if a fixed number, more than one, of clusters

are imposed on this scale, and any popular clustering approach,

such as k-means or spectral clustering algorithm, is used, we would

expect random partition which barely bears any useful informa-

tion. If consider a scenario on the other extreme with a fixed small

T(0:01vTv0:03) being used for all subjects, then all subjects will

have rather heterogeneous numbers of clusters on the level of data

cloud geometry. The heterogeneity would blur sensible pattern

information for between-group comparison. By avoiding these two

extreme scenarios, we demonstrate the merit of this tuning-to-right

connectivity clustering geometry in the rest of this paper by

developing an effective supervised learning based classification

approach for ASD.

Extracting function connectivity pattern information
Based on the two collections of 29 matrices frakg29

k~1 from ASD

group and 29 matrices frckg29
k~1 from TD group for both green

and red trials, applications of data cloud geometry algorithm

Figure 3. Schematic figure for final results of data cloud geometry applied on relational data. (A) Multiscale clustering geometry; (B)
matrix representation.
doi:10.1371/journal.pone.0045502.g003

Figure 4. 3-D functional brain connectivity. Patterns of network connectivity under four different temperatures. (A) Viewing from the same
direction of the brain presented in Fig. 1; (B) Viewing from nearly back of a brain.
doi:10.1371/journal.pone.0045502.g004
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produce collections of subject-specific connectivity clustering

geometry. In this paper we consider extracting pattern information

from both fine and coarse scale connectivity clustering geometry

for supervising learning purposes. The extraction of coarse scale

pattern information is illustrated first, followed by that of fine scale

pattern information.

Coarse scale pattern information. Autism is a disorder of

diverse neuropathology, i.e., atypical functioning has been

reported at a ‘‘coarse scale’’ across multiple brain regions,

structures, and neural circuits [25]. For connectivity information

pertaining to this scale, we employ an atlas of brain with 10 brain

regions [21]. The distribution of the 106 ROIs on these 10 regions

is reported in Table 1. Specifically, subcortical region is the

collection of ROIs classified as subcortical structure, including

amygdala nucleus, caudate nucleus, palladium, putamen and

thalamus; central region refers to the collection of ROIs between

the frontal lobe and the parietal lobe, including pre central gyrus,

post central gyrus and rolandic operculum. With respect to this

anatomic structure, we tune each of 58 participants’ connectivity

clustering geometries to the level with 10 clusters. We first address

the question of whether this level of connectivity clustering

Figure 5. Group based multi-scales. The data are grouped into four by (ASD, TD)|(Green, Red). The numbers of clusters are plotted against the
temperatures for all the participants in each group. (A) is for ASD group when green trials were performed and (C) is for ASD group when red trials
were performed. The right two panels are the plots for TD group, in which (B) is for green trials and (D) is for red trials.
doi:10.1371/journal.pone.0045502.g005
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geometry is consistent with the deterministic anatomical brain

regions.

Firstly, we calculate a measure of concordance between these

two grouping approaches on 106 ROIs for each individual via

Rand index [26]. A Rand index is defined as the proportion of

concordant grouping with respect to the two grouping on all pairs

of ROIs, i.e.,

C

CzD

where C is the number of pairs with which both grouping methods

reach concordant decisions: both determine the pair of ROIs

being in the same group or in different groups; D is the number of

pairs with which the two grouping methods reach different

decisions. We report the Rand indices for the four categories:

(ASD, TD)|(Green-trial, Red-trial). The four histograms in Fig. 6

show that this 10-cluster level of connectivity clustering geometry

has very high concordance with the anatomical structure.

This result of high concordance between the two ROIs

grouping approaches strongly implies that our connectivity

clustering geometry is not only realistic, but can also provide

pattern information for constructing a supervised learning

algorithm with potential power of classifying ASD memberships

against TD’s. The reasoning behind this heuristics is as follows.

One intra-regional connectivity remaining as one intra-cluster

connectivity is likely to be corresponding short-range connectivity,

while one inter-regional connectivity remaining as one inter-

cluster connectivity is likely to be corresponding long-range

connectivity. If such correspondences are reasonable, then we

can test whether there are connectivity pattern differences of such

kinds existing between ASD and TD groups. Thus these testings

are somehow checking all possible short- and long-range vs.

under- or over-connectivity status across 10 brain regions. For

extracting this coarse level pattern information, we compute the

proportion of intra-connectivity within each anatomical region

that remains as intra-connectivity under the connectivity clustering

geometry, as well as the inter-connectivity between all possible

45~
10
2

� �
region pairs in each individual that remain. The

computations result 55(~45z10, 45 inter-regional connectivity

and 10 intra-regional connectivity) two-sample data sets: 29

measurements for ASD and control group each. Two-sample t-

tests were performed on each two-sample data set to identify

potentially abnormality on regional connectivity for ASD, which is

taken as one piece of pattern information on the coarse level.

Upon red and green cognitive trials and among 55 multiple t-

statistics, we report those testing results exceeding a 10% critical

value in Table 2. We found 10 pieces of pattern information: 7

regional or inter-regional ones on the red trial and 3 on the green

trial. A positive t-value in Table 2 means more connectivity in the

autistic group, and a negative value indicates more connectivity in

the control group.

Fine scale pattern information. In this section we extract

pattern information from a fine scale of connectivity clustering

geometry. We consider the finest possible scale (T = 0.001) that

corresponds to the bottom level of the hierarchy consisting of 49 or

50 clusters. This bottom level is selected primarily due to its

robustness to temperature changes, as seen in Fig. 2 and 5. It has

the potential to reveal the anatomical left-and-right relational

patterns among the 106 ROIs.

To begin our formal development, each identified small core

cluster in this bottom-level clustering configuration is called a

motif, and the subject-specific collection of motifs is termed as a

motif configuration. These motifs constitute the building blocks of

clusters on upper levels of the geometry. It is similar with network

motifs in [27]. And the concept of motif configurations is

analogous to Pott’s model of ferromagnetism in statistical

mechanics where particles with the same spin state belong to the

same cluster [28]. The ensemble of 29 individuals’ motif

configurations makes up one of (ASD,TD)|(Green,Red)
group-trial specific motif domain, which is characterized by its

motif ’s prevalence (the frequency of a motif in 29 subjects). The

fine scale pattern information is to be extracted from the

relationship between an individual motif configuration and a

corresponding motif domain with motif prevalence.

The detailed algorithmic computation for motif configuration

and domain is given as follows. By tuning bottom-level connec-

tivity clustering geometry, we identify a very low temperature with

which the eigenvalues of the normalized graph Laplacian of the

cluster-sharing probability matrix indicates around 50 clusters. We

construct a hierarchical clustering (HC) algorithm (with complete

module) based on this cluster-sharing probability matrix, as shown

in Fig. 7(a). A range of threshold values on the vertical axis,

½0:85,0:95�, would prune the HC-clustering tree into nearly 50

branches. The average branches number is 48:5 over all

participants (at threshold 0.85). Here one branch is one motif.

The set of motifs is a subject-trial specific motif configuration. We

excluded singletons in the motif information considered here. We

use the notation mga(h) for the motif configuration of h-th ASD

subject on green trials, and mga(h)i as its i-th motif element. And

Vga stands for the motif domain and Pga(:) is defined as a motif

prevalence function on this domain. Similar notations are used for

red trials and for those pertaining to the TD group. Here we

report a partial list of a motif domain Vga and values of the motif

prevalence function Pga(:) in Table 3 with 0:85 chosen as a

threshold for pruning HC Trees. See supplementary file S3 for the

HC trees of the 106 ROIs for all the 58 subjects in the green trials.

We see some motifs having relative large differences in

prevalence between ASD group and TD group. These are the

potential discriminating motifs. Essentially the fine scale pattern

information that we try to extract comes from two distinct aspects

of motif prevalence: 1) prevalence ratio as an odds; 2) number of

missing motifs with respect to a restricted motif domain via a

prevalence thresholding. We illustrate these two aspects of

information content by taking motif-(87,88) as an example. For

the first aspect, the prevalence ratio of this motif in ASD group

and TD group is 10=21. That is, a subject having such a motif is

Table 1. Distribution of 106 ROIs on the brain atlas with 10 regions.

Anatomical
Region Subcortical Parietal Occipital Cerebelum Frontal Temporal Limbic Insular Central Cingulum

Number of ROIs 10 10 14 20 22 8 8 2 6 6

doi:10.1371/journal.pone.0045502.t001

Multiscale Brain Connectivity for Autism

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e45502



twice more likely to be coming from TD group than from ASD

group. For the second aspect, let h be a prevalence threshold. For

instance h~15, then restricted motif domain Vga(Dh~15) is a

subset of Vga and is only consisting of motifs with prevalence being

more than or equal to 15, so is Vgc(Dh~15) defined. Hence motif-

(87,88) is not in Vga(Dh~15), but in Vgc(Dh~15). This member-

ship difference becomes one piece of important pattern informa-

tion since odds are only computed for motifs belonging to

Vga(Dh~15)\Vgc(Dh~15). It is proved in the next section that

these two aspects of extracted fine scale pattern information bear

greater potential to discriminate ASD subjects from TD subjects

than the coarse scale connectivity pattern information.

In Table 4, we provide the names of brain regions associated

with a short list of potentially discriminating motifs, or functional

brain connectivity via networking. This table clearly indicates the

heterogeneity in motif prevalence.

At the end of this section we briefly compare the two trees

corresponding to the fine and coarse scales in Fig. 7 (a) and (b) with

Figure 6. Rand index: tuned at 10-cluster-scale. For each group ((ASD, TD)|(Green, Red)), the histogram of the Rand index is given.
doi:10.1371/journal.pone.0045502.g006

Table 2. Significant differences in connectivity, t test statistic, and p-value.

Red Green

Connectivity t-value p-value Connectivity t-value p-value

Within Parietal 1.85 0.070 Between Subcortical and Frontal 1.68 0.099

Between Cerebelum and Central 1.80 0.078 Between Parietal and Occipital 1.94 0.058

Between Temporal and Limbic 2.37 0.022 Within Occipital 22.79 0.008

Within Insular 21.67 0.101

Between Subcortical and Occipital 2.05 0.046

Between Limbic and Parietal 2.03 0.048

Between Limbic and Occipital 1.79 0.080

doi:10.1371/journal.pone.0045502.t002
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the HC-trees based on the ‘‘raw’’ correlation matrix in Fig. 7(c).

This comparison intends to bring out why the ‘‘raw’’ HC tree

could not retain the essential motif information. The key reason is

its lacking of stability in motif configuration across different

subjects. That is, a collection of branches resulted from any small

threshold for pruning contains heterogeneous sizes. It is evident

that it misses a significant proportion of motifs with left-and-right

matching patterns, and at the same time contains large branches

that are hardly observed again across different subjects. This

unstable phenomenon can be partly attributed to the heterogene-

ity of hidden scales fTk
0 g, and partly to its employed construction

procedure. Again we emphasize that a relational data matrix

always needs scale-standardizing procedure in order to reveal

embedded pattern information.

Application to classification of ASD
We are interested in predicting the probability of someone

belonging to ASD group based on the fine and coarse scale pattern

information extracted from the previous sections. We construct a

supervised learning algorithm based on the leave-one-out cross-

validation procedure [5,29] in this section. We first develop the

logistic regression set-up for accommodating the two aspects of

fine scale pattern information with a range of a prevalence

threshold h between 2 and 22. The extracted coarse scale pattern

information would be accommodated into the logistic regression as

covariates later.

Feature extraction. Consider restricted group-trial specific

motif domains by leaving out one subject. Firstly, in the green

trials and within the ASD group, a chosen subject h[f1, � � � ,29g, is

to be left out from the ASD group of 29 subjects. The remaining

28 individuals’ motif configurations under the threshold h are

assembled into a restricted motif domain Vga(hDh) with motif

prevalence function Pga(:Dh,h). Secondly, within the TD group, we

have Vgc(h’Dh) and Pgc(:Dh’,h) with h’[f1, � � � ,29g as the subject left

out.

For the odds aspect of fine scale pattern information, we

compute the ASD vs. TD group-membership odds for subject h in

ASD group on green trials based on its motif configuration mga(h).

That is , we compute the odds for subsets of motifs mga(h)i[mga(h)

contained in both Vga(hDh) and Vgc(h’Dh) based on prevalence

function Pga(:Dh,h) and Pgc(:Dh’,h):

Oga(hDh)~ P
mga(h)i[fVga(hDh)\Vgc(h’Dh)g

Pga(mga(h)i Dh,h)

Pgc(mga(h)i Dh’,h)
:

Similarly, for subject h’ in TD group on green trials, we have the

ASD vs. TD odds for the subsets of motifs mgc(h’)i’ [mgc(h’)
contained in both Vga(hDh) and Vgc(h’Dh) based on prevalence

Figure 7. Three version of HC trees. (A) Fine scale HC-tree based on cluster-sharing probability matrix; (B) Coarse scale HC-tree based on cluster-
sharing probability matrix; (C) HC-tree based on ‘‘raw’’ correlation matrix.
doi:10.1371/journal.pone.0045502.g007
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function Pga(:Dh,h) and Pgc(:Dh’,h):

Oga(h’Dh)~ P
mgc(h’)i’[fVga(hDh)\Vgc(h’Dh)g

Pga(mgc(h’)i’Dh,h)

Pgc(mgc(h’)i’Dh’,h)
:

For the aspect of number of motifs missing from various

restricted motif domains, we count two membership numbers for

each individual motif configuration. For mga(h), we count how

many its members being missing in Vga(hDh) and Vgc(h’Dh), so is for

mgc(h’). The two membership numbers are calculated in the

following:

Ngc(hDh)~#fi : mga(h)i =[Vgc(h’Dh)g

Nga(hDh)~#fi : mga(h)i =[Vga(hDh)g:

We calculate similar information fNga(h’Dh), Ngc(h’Dh)g for

subject h’ in TD group on green trials. Similarly we extract

corresponding information for subject h in ASD group and subject

h’ in TD group on red trials:

fOra(hDh), Ora(h’Dh), Nra(hDh), Nrc(hDh), Nra(h’Dh), Nrc(h’Dh)g

In summary we extract six-dimensional fine scale pattern

information as

fOga(hDh), Ora(hDh), Nga(hDh), Ngc(hDh), Nra(hDh), Nrc(hDh)g

for subject h in ASD group, and

fOga(h’Dh), Ora(h’Dh), Nga(h’Dh), Ngc(h’Dh), Nra(h’Dh), Nrc(h’Dh)g

for subject h’ in TD group.

Logistic regression leave-one-out cross-validation. We

then perform the following logistic regression leave-one-out cross-

validation procedure. Response variable group membership Yj~1
for ASD subjects j[f1, � � � ,29g and Yj~0 for TD subjects

j[f30, � � � ,58g. Four predictor variables are defined as transfor-

Table 3. Hierarchical Clustering Motifs Summarization.

motif prevalence prevalence prevalence motif prevalence prevalence prevalence

difference (autism) (control) difference (autism) (control)

87 , 88 11 10 21 42 , 43 3 25 22

63 , 79 8 13 21 57 , 58 3 14 17

89 , 90 8 9 17 93 , 94 3 11 14

69 , 70 7 13 6 13 , 14 3 16 13

19 , 20 6 16 22 73 , 75 3 18 15

85 , 86 6 22 16 61 , 62 2 26 28

48 , 82 6 18 12 105 , 106 2 12 10

55 , 56 6 12 18 21 , 22 2 27 29

11 , 101 6 4 10 74 , 76 2 21 19

103 , 104 5 10 15 3 , 4 2 13 11

13 , 102 5 5 10 27 , 28 2 15 17

51 , 52 5 16 21 1 , 2 2 10 12

45 , 46 5 14 19 49 , 50 2 10 12

64 , 80 5 14 19 7 , 8 1 27 28

15 , 16 5 9 14 31 , 32 1 12 13

95 , 96 5 11 6 97 , 98 1 27 26

5 , 6 5 16 11 83 , 84 1 26 27

81 , 95 5 5 10 25 , 26 1 27 26

47 , 81 4 11 7 23 , 24 1 28 27

30 , 34 4 17 13 71 , 72 1 18 17

37 , 41 4 17 13 59 , 60 1 10 11

40 , 44 4 19 15 65 , 66 1 11 10

9 , 10 4 15 19 91 , 92 1 19 20

99 , 100 4 13 9 38 , 39 0 17 17

35 , 36 3 25 22 29 , 33 0 21 21

11 , 100 3 8 11 67 , 68 0 27 27

17 , 18 3 11 14 77 , 78 0 28 28

5 , 53 3 7 10 53 , 54 0 13 13

doi:10.1371/journal.pone.0045502.t003
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mation of the six-dimensional fine scale pattern information:

ln Oga(jDh), ln
Ngc(jDh)

Nga(jDh)
, ln Ora(jDh), ln

Nrc(jDh)

Nra(jDh)
, j[f1, � � � ,58g.

Let k[½1,58� be the subject being left out in the leave-one-out

cross-validation procedure, and the remaining 57 subjects as

training data in the logistic regression. Denote the regression

parameter estimate vector by b̂b{k(h)~(b̂b0({kDh), b̂b1({kDh),

b̂b2({kDh), b̂b3({kDh), b̂b4({kDh)) when leaving subject k out. Then

the predicted probability of k belonging to ASD group based on

these leave-one-out logistic regression model coefficients will be

calculated as

bPrPr (Yk~1)~Pr½Yk~1Db̂b{k(h)�~ O(b̂b{k(h))k

1zO(b̂b{k(h))k

where

O(b̂b{k(h))k~expfb̂b0({kjh)zb̂b1({kjh)ln Oga(kjh)

zb̂b2({kjh)ln
Ngc(kjh)

Nga(kjh)
zb̂b3({kjh)ln Ora(kjh)

zb̂b4({kjh)ln
Nrc(kjh)

Nra(kjh)

�

We then classify subject k according to bPrPr(Yk~1): into ASD

group if bPrPr(Yk~1)w1=2, otherwise into TD group. By system-

atically varying subjects k, we are able to calculate the sensitivity

Se(h) as the correct classification rate of ASD cases, and specificity

Sp(h) as the correct classification rate of TD cases.

Results

In this section we report the results of our supervised learning

rules based on coarse and fine scales pattern information. We first

report Se(h) and Sp(h) with h varying from 2 to 22 based on the

fine scale patten information in Table 5. Based on the fine scale

pattern information from the combination of green trials and red

trials, Se(h) and Sp(h) are rather high with h~14. This empirical

fact highlights that the counts of missing motifs are particularly

informative. Its implication in functional brain connectivity is very

clear: it is crucial to find one potential connection or motif being

missing, and equally crucial to find an extra connection being

present.

Table 5 also reveals that incorporating fine scale pattern

information from red trials only incrementally increases Se(h)s and

Sp(h)s. This empirical fact might not be surprising because the

correlation matrices derived from red trials are less stable due to

fewer trials comparing with the green ones.

Next we report the performance of all our supervised learning

rules, which are likewise developed based on pattern information

extracted at different levels, in Table 6. The fine scale pattern

information is based on green and red trials with prevalence

threshold at 14. The third and fourth learning algorithms are

results of model selection among the 10 extracted coarse scale

information given in Table 1.

VS-Fine Fine scale variable set: ln Oga, ln
Ngc

Nga

, ln Ora, ln
Nrc

Nra

at

prevalence threshold 14.

VS-coarse-1 Coarse scale connectivity variable set 1: Within

Parietal; Between Cerebelum and Central; Between Temporal

and Limbic; Within Insular; Between Subcortical and Occipital;

Between Limbic and Parietal; Between Limbic and Occipital;

Between Subcortical and Frontal; Between Parietal and Occipital;

Within Occipital.

VS-coarse-2 Coarse-scale connectivity variable set 2: Within

Insular; Between Subcortical and Occipital; Between Subcortical

and Frontal; Within Occipital.

VS-coarse-3 Coarse-scale connectivity variable set 3: Between

Limbic and Parietal; Between Subcortical and Frontal; Between

Parietal and Occipital; Within Occipital.

Based on the results in Table 6, we conclude that most of the

predictive power of the logistic regression model resides at the level

of the fine scale pattern information, suggesting that cellular versus

systems level disturbances are more prominent in individuals with

ASD.

Discussion

In this study we demonstrate how to apply the data cloud

geometry algorithm on relational connectivity data to construct

Table 4. Potential motif’s brain location.

Motif ASD Prevalence TD Prevalence Name ROI1 Name ROI2 Anatomical Region

87,88 10 21 Temporal Inf L Temporal Inf R Temporal

63,79 13 21 Pallidum L Putamen L Subcortical

64,80 14 19 Pallidum R Putamen R Subcortical

19,20 16 22 Cerebelum Crus1 L Cerebelum Crus1 R Cerebelum

51,52 16 21 Insula L Insular R Insular

85,86 22 16 SupraMarginal L SupraMarginal R Parietal

74,76 21 19 PostCentral R PreCentral R Central

73,75 18 15 PostCentral L PreCentral L Central

91,92 19 20 Temporal Pole Mid L Temporal Pole Mid R Limbic

40,44 19 15 Frontal Mid R Frontal Sup R Frontal

37,41 17 13 Frontal Mid L Frontal Sup L Frontal

48,82 18 12 Heschi R Rolandic Oper R Temporal/Central

47,81 11 7 Heschi L Rolandic Oper L Temporal/Central

doi:10.1371/journal.pone.0045502.t004
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the multiscale connectivity clustering geometry. We extract

potential motifs as functional brain connectivity patterns on the

fine scale level and potential regional abnormality of connectivity

on the coarse level. The two different aspects of connectivity

patterns are brought together for constructing a reasonably

effective classification for ASD. One essential message derived

from this study is the following: most relational connectivity data

in a form of correlation matrix of ROIs are typically embedded

with multi-scale structure. Different scales give rise to different

information contents.

Our computational data cloud geometry based connectivity

clustering geometry is potentially useful in neurosciences in

general. More research efforts are needed in order to make our

3-D functional brain connectivity network (as ‘‘pseudo-neuroanat-

omy’’ together with the computed collection of motifs and their

prevalence information) accessible for clinicians to ‘‘visualize’’

potential abnormal connectivity patterns among ROIs. Our

computational supervised learning approach proposed in this

paper has successfully addressed more general questions of how to

detect functional brain connectivity patterns for classifying and

diagnosing ASD. Though our computational and methodological

developments are exclusively illustrated via ASD, they are equally

applicable for other brain disorders.

Our computed fine scale information, including identifying a

collection of motifs and their prevalence, significantly brings out

the potential for discriminating abnormal and pathological ASD

subjects. Similarly in [5], fine scale information, which is the

exclusive presence of pairwise connectivity among 7266 ROIs, is

also extracted. The discriminating potential is also demonstrated.

The coarse scale information via the high accordance between

our connectivity clustering geometry and anatomical brain region

is a more systematic alternative to approaches used in [25] and

[30]. Though confirmations of status of short- and long-range vs.

under- or over-connectivity across 10 brain regions are beyond the

scope of this paper, our computed coarse scale information is

shown to bear potential information for differentiating ASD and

TD. In contrast the approaches used in [25] compared the ASD

group’s rates activation with that of control group among all

anatomical regions. While the approaches used in [30] summa-

rized structural MRI information into five dimensions and applied

supported vector machine learning algorithm to derive the

diagnostic test for ASD. Besides, the regions that discriminate

autistic and non-autistic participants only partially overlap with

regions identified by existing research [31].

We successfully develop a supervised learning rule, or so-called

classification or diagnostic test for ASD, by combining the fine and

coarse scales information. This methodological development could

be applied to other brain disorders based on fMRI data. As for the

Table 5. Logistic regression leave-one-out cross-validation classification rate.

classification green green & red red

prevalence § Se Sp Se Sp Se Sp

2 10/29 10/29 12/29 14/29 13/29 14/29

3 14/29 13/29 16/29 14/29 19/29 16/29

4 13/29 14/29 19/29 19/29 21/29 22/29

5 16/29 16/29 15/29 16/29 15/29 15/29

6 13/29 15/29 18/29 18/29 19/29 17/29

7 16/29 17/29 15/29 20/29 15/29 14/29

8 17/29 13/29 17/29 19/29 20/29 18/29

9 17/29 17/29 17/29 16/29 19/29 17/29

10 16/29 19/29 18/29 18/29 19/29 20/29

11 19/29 18/29 21/29 23/29 19/29 19/29

12 16/29 17/29 19/29 18/29 16/29 16/29

13 17/29 15/29 17/29 20/29 14/29 17/29

14 22/29 19/29 21/29 24/29 19/29 20/29

15 18/29 20/29 16/29 18/29 16/29 16/29

16 17/29 20/29 20/29 20/29 18/29 16/29

17 22/29 21/29 21/29 21/29 16/29 15/29

18 17/29 19/29 18/29 20/29 13/29 16/29

19 22/29 17/29 19/29 19/29 20/29 18/29

20 16/29 17/29 12/29 15/29 7/29 6/29

21 20/29 22/29 19/29 25/29 20/29 17/29

22 15/29 16/29 14/29 14/29 15/29 17/29

doi:10.1371/journal.pone.0045502.t005

Table 6. Performance of four supervised learning rules.

Supervised learning rules Sensitivity Specificity

VS-coarse-1 18/29 19/29

VS-Fine 21/29 24/29

VS-Fine & VS-coarse-2 24/29 24/29

VS-Fine & VS-coarse-3 24/29 24/29

doi:10.1371/journal.pone.0045502.t006
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effectiveness issue, we attempt to perform extensively tests in

various simulation settings (see supplementary file S2). It is worthy

noting that, though our simulated relational data sets are

generated via a design mimicking intra- and inter-regional

functional connectivity with respect to brain anatomical structure,

our supervised learning rules always provide perfect classification

on a wide spectrum of settings. This phenomenon clearly indicates

that the subtlety and complexity embraced within real fMRI data

is far beyond our modeling capabilities. In other words, how to

realistically model and simulate brain’s functional connectivity are

very complex issues [32,33].

Here again we reiterate that functional brain connectivity has

the essential merit of elucidating how the anatomical architecture

supports neurophysiological dynamics in brain [1]. This functional

approach can also complement the approach of structural brain

connectivity [34] in many areas of brain research, especially on

linking the changes in connectivity patterns to biological and

evolutionary phase shifts. Nevertheless the extent of merit and

success via functional connectivity could well depend on how the

connectivity is constructed and how patterns are extracted [33].

Thresholding based connectivity together with social network

measurements are likely to have rather limited effectiveness.

Finally whether our results are clinically coherent with the

under-connectivity hypothesis of autism being put forth in [4]

needs further investigations. The hypothesis posits that autism is

marked by under-functioning high-level neural connections and

synchronization, along with an excess of low-level processes.

Evidence for this theory has been found in functional neuroim-

aging studies on autistic individuals and by a brain wave study that

suggested that adults with autism spectrum disorders (ASD) have

local over-connectivity in the cortex and weak functional

connections between the frontal lobe and the rest of the cortex.

If such coherence is confirmed, our learning rule should

accommodate this prior knowledge to be more effective.

Supporting Information

Text S1 The file contains the table of ROI names and
coordinates.

(PDF)
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figures. The figures display the hierarchical clustering tree of 106

ROIs for each subject in ASD group and TD group during green

trials based on ensemble matrix obtained at T = 0.001.

(PDF)
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