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Abstract

Seasonal variation in serum concentration of the vitamin D metabolite 25(OH) vitamin D [25(OH)D], which contributes to
host immune function, has been hypothesized to be the underlying source of observed influenza seasonality in temperate
regions. The objective of this study was to determine whether observed 25(OH)D levels could be used to simulate observed
influenza infection rates. Data of mean and variance in 25(OH)D serum levels by month were obtained from the Health
Professionals Follow-up Study and used to parameterize an individual-based model of influenza transmission dynamics in
two regions of the United States. Simulations were compared with observed daily influenza excess mortality data. Best-
fitting simulations could reproduce the observed seasonal cycle of influenza; however, these best-fit simulations were
shown to be highly sensitive to stochastic processes within the model and were unable consistently to reproduce observed
seasonal patterns. In this respect the simulations with the vitamin D forced model were inferior to similar modeling efforts
using absolute humidity and the school calendar as seasonal forcing variables. These model results indicate it is unlikely that
seasonal variations in vitamin D levels principally determine the seasonality of influenza in temperate regions.
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Introduction

Hypotheses attempting to explain the seasonality of epidemic

influenza transmission in temperate regions fall into 3 broad

categories: 1) seasonal changes in host behavior, mixing patterns

and contact rates [1,2]; 2) seasonal changes in host immune

function [3,4]; and 3) seasonal changes of environmental

conditions that affect virus survival and transmissibility [5,6].

These 3 hypotheses are not mutually exclusive, and influenza

transmission dynamics are potentially affected in some fashion by

all 3 processes.

Here we explore the second effect, the role that seasonal

changes of host immune function may have on influenza infection

rates. In particular, we focus on the effect of vitamin D, which is

converted from 7-dehydrocholesterol in the skin upon absorption

of UVB rays from the sun [3]. The resulting product converts to

25-hydroxy-vitamin D3 [25(OH)D] and subsequently to 1,25-

dihydroxy-vitamin D3, which in combination with vitamin D

receptors triggers innate immune responses [7,8] that may be

effective against influenza infection [9,10], particularly at high

levels [11].

An association between vitamin D and likelihood of influenza

virus infection was first noted in laboratory experiments with

animal models [12]. A study on prevention of industrial

absenteeism also found that cod liver oil rich in vitamin D

reduced lost time due to respiratory illness [13]. Since those early

findings, a number of investigators have hypothesized that the

decreased sunlight levels in temperate regions during winter,

which decrease vitamin D concentrations and host immune

function, increase susceptibility to influenza infection [4,14].

Further, observational studies and a placebo-controlled trial also

found that higher levels of vitamin D or vitamin D supplemen-

tation prevented respiratory tract infections [15–17]. In this study

we explore whether seasonal vitamin D changes are by themselves

pronounced enough to modulate influenza infection rates.

Specifically, observed seasonal changes in vitamin D levels are

here used to modulate the probability of infection of individuals

within an agent-based model and determine whether a realistic

seasonal cycle of influenza infection rates can be simulated.

Methods

We compute monthly means and standard deviations of

25(OH)D levels in a sample of individuals enrolled in vitamin D

substudies in the Health Professionals Follow-up Study, a

prospective investigation of the causes of chronic diseases in male

health professionals [18]. We include 722 observations from

individuals residing in the Great Lakes region and 701

observations from those in the Northeast region whose blood

was drawn between the years 1993–1995 (Table 1).
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We use an agent-based version of the perfectly-mixed SIRS

model previously described in Shaman et al. [6], but here adapted

for forcing with observed 25(OH)D levels, rather than absolute

humidity (AH). Briefly, the 25(OH)D level of each individual, or

agent, within the model is tracked explicitly. Each individual is

ranked and, based on this percentile, assigned a monthly 25(OH)D

level using the 1993–1995 average monthly mean and variance of

25(OH)D levels for the region modeled (e.g. the northeastern

U.S.); these average monthly 25(OH)D levels were approximately

normally distributed. To allow for additional daily variation

among individuals, each person was randomly allowed to drift

from their prescribed monthly 25(OH)D percentile by 60.1% per

day.

The 25(OH)D level, Vi,t, of individual i on day t was then

transformed into an adjustment of individual likelihood of

infection, ci,t, via (Figure 1):

ci,t~1{
ki,tz1

Q
ð1Þ

where ki,t is

ki,t~tanh
Vi,t{l

g

� �
,

l determines the inflection point of the hyberbolic tangent

function, g modifies the slope through this inflection, and Q scales

ci,t to a value between 0 and 1. By defining the inflection point of

the hyperbolic tangent function, l sets the [25(OH)D] level at

which ci,t changes most precipitously (Figure 1). By modifying the

slope through the inflection point, g delineates whether the change

in ci,t as 25(OH)D level varies is gradual or more like a step

function.

The daily probability that a susceptible individual is infected, ni,t

is then scaled by this adjustment:

ni,t~ci,t

bIt

N
ð2Þ

where b is the transmission rate constant, It is the daily number of

infectious people, and N is the population size. By construct,

persons with higher 25(OH)D levels have smaller ci,t and reduced

risk of infection. For the population as a whole, the daily mean

value of ci,t modifies the basic reproduction number, R0, such that

an instantaneous basic reproduction number for the population

can be defined as R0t~E ct½ �R0. R0trepresents the number of

secondary cases a primary case would infect if no one were

immune and the distribution of ci,t were that observed on day t.

This instantaneous basic reproduction number accounts for

changes in the likelihood of infection due to population mean

Vitamin D levels; however, this quantity does not account for

susceptibility to influenza, i.e. immune status. The actual mean

number of secondary cases per case at a given time is the effective

reproductive number, which is approximatelyREt&R0t

St

N
and

determines whether total cases are increasing or declining in the

population. This relation is approximate because it does not take

account of the possible correlation between an individual’s vitamin

D status and whether or not s/he is in the immune category. The

model accounts for such correlations by modeling transmission

(and vitamin D status) at the individual level.

The model includes 6 free parameters and was run in ensembles

of 3000 simulations. Parameters l and g were fixed for all 3000

runs of an ensemble, but varied between ensembles. The

remaining 4 parameters—Q, R0
*, the value R0 would have if ci,t

equaled one for the entire population, D, the mean infectious

period, and L, the average duration of immunity—were varied

among the simulations within an ensemble using a Latin

hypercube sampling structure with uniform distribution, as in

Shaman et al. [6]. Parameter ranges were: l~½20,25�ng=ml;
g~½2,10�ng=ml; Q~½2{10�; R0

�~ 0:8,4:0½ �; D~½2,7�days;

L~½2{10�years. The range of l was assigned to match levels

below which parathyroid hormone levels are elevated [3,19]; the

Table 1. 1993–1995 average monthly mean and standard deviation of 25-hydroxy-vitamin D levels for the Great Lakes and
Northeast U.S. regions.

Great Lakes Northeast

Month Number Mean Standard Deviation Number Mean Standard Deviation

January 25 24.28 8.39 16 25.44 7.52

February 24 23.05 6.92 23 26.83 9.01

March 47 25.04 9.49 35 23.77 10.32

April 31 24.81 6.35 25 23.59 11.78

May 49 26.60 7.67 57 26.79 9.69

June 94 28.57 8.45 105 27.99 13.85

July 78 32.46 11.34 96 29.51 9.17

August 73 32.14 9.52 85 31.52 9.47

September 156 32.13 10.74 98 31.63 12.62

October 68 28.82 10.70 68 28.65 9.83

November 46 27.94 9.13 60 25.89 9.87

December 31 26.71 8.34 33 24.26 7.53

The Great Lakes includes the states of Illinois, Indiana, Iowa, Michigan, Minnesota, Montana, and Wisconsin. The Northeast includes the states of Connecticut, Delaware,
Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, West Virginia, Vermont and the District of Columbia.
doi:10.1371/journal.pone.0020743.t001
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ranges of R0
*, D, and, L match those employed previously for this

model [6]; g and Q were varied to consider a wide range of

potential responses to higher 25(OH)D levels. R0
* was allowed to

drop below critical levels for some simulations, though these few

runs fail to sustain continued influenza transmission; more often

R0
* was prescribed to be above 2, though daily modulation of R0

*

by ci,t typically produced instantaneous basic reproduction

numbers (R0t) of much lower magnitude within such simulations.

Each simulation used a population of N = 100,000 persons and

was run for 31 years. The model simulates two influenza virus

groupings (A-H3N2 and a grouping of the A-H1N1 and B

subtypes) without cross immunity. The quality of each simulation

was evaluated based on root mean squared (RMS) error with daily

observed 1972–2002 excess pneumonia and influenza (P&I)

mortality [20,21]. Simulations for the northeast U.S. region were

evaluated with New York state excess P&I mortality. Simulations

for the Great Lakes region were evaluated with Illinois state excess

P&I mortality.

To test the sensitivity of model outcome to stochastic processes

we re-ran the 10 best-fitting parameter combinations for certain

ensembles. Each of these parameter combinations was run 100

additional times, each time with different random seeding, to

examine the role stochasticity had in producing well-matched

simulations. An analogous test was performed in Shaman et al. [6]

for simulations forced with either AH or the school calendar.

Additionally, to determine whether the vitamin D-forced

simulations were corrupted by the coarse monthly temporal

resolution of the data, we interpolated the mean and variance of

the monthly vitamin D data to daily values using a cubic spline

and used these daily-interpolated values to force the influenza

model. Simulations were repeated in this fashion for both the

Northeast and Great Lakes regions, and the role of stochasticity

was also examined, as described above. For these daily

interpolated runs individuals were still ranked but were instead

assigned a daily 25(OH)D level based on the daily mean and

variance.

Figure 1. ki,t and ci,t plotted as a function of 25(OH)D level for
various parameter combinations. a) ki,t plotted for different
combinations of l and g. b) ci,t plotted for l = 20 ng/ml and
g = 10 ng/ml and different levels of Q. c) ci,t plotted for l = 20 ng/ml
and g = 2 ng/ml and different levels of Q.
doi:10.1371/journal.pone.0020743.g001

Table 2. Parameter combinations for the 10 best-fit
simulations for the Great Lakes region as validated with Illinois
P&I mortality data.

Rank RMS Error
Correlation
Coefficient (r)

L
(years)

D
(days) Q R0

*

1 0.0049 0.93 5.74 4.58 5.11 2.35

2 0.0061 0.87 3.81 2.08 3.33 2.84

3 0.0062 0.84 9.78 2.68 4.92 1.90

4 0.0062 0.86 3.54 3.60 2.85 3.18

5 0.0064 0.86 3.66 3.29 3.67 2.29

6 0.0064 0.88 4.39 6.47 7.13 2.69

7 0.0065 0.83 7.65 2.42 2.79 3.69

8 0.0066 0.82 4.59 2.71 3.30 2.34

9 0.0069 0.82 4.81 6.53 3.15 3.32

10 0.0069 0.91 7.41 5.80 7.71 2.14

3000 simulations were performed at each site with the parameters L (mean
duration of immunity), D (mean infectious period), Q (vitamin D scaling), and
R0

* (the basic reproduction number if ci,t = 1) randomly chosen from within
specified ranges. Parameters l (inflection point) and g (inflection point slope)
were fixed at l~20ng=ml and g~10ng=ml. Best-fit simulations were selected
based on RMS error after scaling the 31-year mean daily infection number to
the 31-year mean observed daily excess P&I mortality rate.
doi:10.1371/journal.pone.0020743.t002
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Vitamin D simulations were also compared with previously-run

simulations forced with either AH or the school calendar for New

York state and Illinois; the descriptions and parameterizations of

these models can be found in Shaman et al. [6]. In addition, new

AH-forced simulations were run for both New York state and

Illinois in which the 1972–2002 time series of daily AH conditions

for each of these states was replaced with 31-year daily average

values. This averaging eliminates year-to-year variability from the

AH-forcing and provides a more fair comparison with the vitamin

D- and school calendar-forced model runs, which also lack year-

to-year variability.

Results

Best-fitting simulations are presented for the Great Lakes

region using l~20ng=ml and g~10ng=ml (Table 2) and the

northeast U.S. using l~25ng=ml and g~4ng=ml (Table 3).

Results with other combinations of l and g, as well as with

forcing using daily interpolated 25(OH)D levels were compara-

ble (not shown). The quality of these simulations in terms of

RMS error and correlation with observed P&I mortality is

comparable to simulations with the AH and school calendar

forced SIRS model (see Tables S2 and S5 in Shaman et al. [6]).

Simulated daily average infection rates capture the seasonal

cycle of P&I mortality (Figure 2).

Only a portion of the population seasonally crosses the

inflection point for ci,t as 25(OH)D levels change (Figure 1b,c)

such that only a portion of the population experiences a

pronounced modulation of the likelihood of infection. When

the slope of ki,t at its inflection is steep (i.e. g small) large

portions of the population experience little seasonal change in

ci,t. Still, the portion that is modulated is sufficient at times to

phase peak infection during winter and produce a realistic

seasonal cycle.

However, best-fitting model parameter combinations are not

consistent among best-fitting runs (Tables 2 and 3), unlike what

has been found for simulations forced with observed absolute

humidity. Furthermore, some simulations with similar parameter

combinations produce anti-correlated seasonal cycles of influenza

infection (r~{0:69). These findings indicate that the quality of fit

might be heavily influenced by stochastic events, such that

particular parameter combinations could on occasion produce a

realistic seasonal cycle, but would not reliably do so. To test this

hypothesis, we re-ran the simulations with the top 10 parameter

combinations as described in the Methods section. An identical

test had previously been performed for SIRS simulations forced

with either AH or the school calendar [6] and both these alternate

forcing mechanisms prove more resilient to changes in random

seeding with AH performing the best (Figure 3).

As a reference, a simple sine function with annual period, if

appropriately phased, is highly correlated with the seasonal cycle

Table 3. Parameter combinations for the 10 best-fit
simulations for the northeastern U.S. as validated with New
York state P&I mortality data.

Rank RMS Error

Correlation
Coefficient
(r)

L
(years)

D
(days) Q R0

*

1 0.0070 0.94 5.59 5.69 3.83 2.83

2 0.0071 0.94 5.64 5.43 4.99 2.48

3 0.0071 0.90 9.78 5.59 2.43 3.69

4 0.0072 0.88 9.80 3.59 2.55 3.83

5 0.0072 0.90 2.53 6.04 2.86 2.44

6 0.0073 0.89 9.71 3.68 5.54 1.94

7 0.0074 0.89 3.28 4.31 2.13 3.22

8 0.0075 0.90 8.73 3.74 6.79 3.02

9 0.0077 0.91 6.44 5.72 4.24 2.59

10 0.0077 0.91 6.29 3.17 9.27 1.74

3000 simulations were performed at each site with the parameters L (mean
duration of immunity), D (mean infectious period), Q (vitamin D scaling), and
R0

* (the basic reproduction number number if ci,t = 1) randomly chosen from
within specified ranges. Parameters l (inflection point) and g (inflection point
slope) were fixed at l~25ng=ml and g~4ng=ml. Best-fit simulations were
selected based on RMS error after scaling the 31-year mean daily infection
number to the 31-year mean observed daily excess P&I mortality rate.
doi:10.1371/journal.pone.0020743.t003

Figure 2. Best-fitting SIRS model simulation for the northeastern U.S. with parameters l and g fixed at l~25ng=ml and g~4ng=ml.
Other parameters are shown in the top line of Table 3. The 31-year simulated mean daily infection number has been scaled to the observed 1972–
2002 mean daily excess P&I mortality rate for New York state.
doi:10.1371/journal.pone.0020743.g002
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of observed excess P&I mortality (e.g. r = 0.80 for New York

state, Figure 3). One might expect that a credible process-based

model of the seasonal influenza cycle would consistently improve

on this correlation. However, in comparison to school-term

forcing and AH forcing, the re-run top parameter sets for

25(OH)D forcing performed considerably worse, as measured by

the Pearson correlation between re-run simulations and observa-

tions. Specifically, the additional AH forced simulations are much

more consistently matched with observations (mean r = 0.912;

minimum r = 0.670; maximum r = 0.981) than the additional

school calendar forced simulations (mean r = 0.704; minimum

r = 20.024; maximum r = 0.962) or the additional vitamin D

forced simulations (mean r = 0.490; minimum r = 20.512;

maximum r = 0.950) (Figure 3a). Both the school and vitamin D

Figure 3. Test of the effect of stochasticity within the SIRS model on well-matched simulations verified with New York state P&I
mortality data. a) The 10 best-fit parameter combinations for the SIRS model forced with observed New York school calendar (Shaman et al., 2010:
Table S5), observed New York absolute humidity (Shaman et al., 2010: Table S2), and northeastern U.S. vitamin D metabolite levels (Table 3) were
each run an additional 100 times, each time with different random seeding. Histograms of correlations with 1972–2002 New York state observed
excess P&I mortality are shown. The green line indicates the correlation of an optimally phased sine function with annual periodicity with 1972–2002
New York state observed excess P&I mortality (r = 0.80). b) As in a), but for the 10 best-fit simulations using 1972–2002 daily average New York
absolute humidity and daily interpolated northeastern U.S. vitamin D metabolite levels.
doi:10.1371/journal.pone.0020743.g003
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models, on average, fall below the correlation level of the naı̈ve

sine function model.

A similar test of the effect of stochasticity for the model forced

with daily-interpolated vitamin D levels was also not consistently

well matched with observations (mean r = 0.516; minimum r =

20.550; maximum r = 0.965) (Figure 3b). Conversely, the same

test applied to daily-averaged AH-forced simulations was consis-

tently well matched with observations (mean r = 0.904; minimum

r = 0.558; maximum r = 0.984). These last two ensembles both use

daily forcing without any year-to-year variability, yet the AH-

forced model is much more consistently highly correlated with

observations than the vitamin D model and on average is better

correlated than the naı̈ve sine function model.

Discussion

Simulation of the seasonal cycle of influenza infection in regions

of the U.S. is possible using an SIRS model forced with observed

vitamin D levels. However, secondary evidence casts doubt on the

validity of this outcome. Parameter combinations that produce a

good seasonal cycle of influenza are not similar to one another,

and multiple stochastic runs do not reproduce the seasonal cycle

reliably, in contrast to similar runs with the other candidate drivers

of seasonality, in particular AH.

Any forcing with a strong seasonal cycle will produce an

appropriate seasonal cycle of influenza infection when applied to

an SIRS model with an appropriate combination of parameters

and stochastic events. For such results to be credible, however, it is

necessary that the parameter combinations that produce best-

fitting simulations are biologically plausible, approximately

consistent from one simulation to another, and are not easily

affected by random events within the model. The model presented

here fails the latter 2 conditions and therefore suggests that

seasonal changes in vitamin D levels are not the predominant

determinant of influenza seasonality in temperate regions.

The generalizability of our study may be limited by the fact that

vitamin D levels were measured only in male health professionals;

nonetheless, the mean 25(OH)D values were similar to those of a

nationally representative study population [22]. Within the Health

Professionals vitamin D dataset used here [18], no age-related

differences in seasonal vitamin D levels were evident. In the future,

should more detailed data representing a broader demography

become available in which age-stratified vitamin D effects are

evident, these effects could be incorporated and tested within the

model framework.

Given that vitamin D affects the immune system [7,8], one can

hypothesize that severity and duration of influenza infection would

also be modulated by vitamin D levels; however, we are unaware

of any observational evidence supporting this hypothesis. Should

such findings emerge in the future, this evidence would motivate

proper testing of vitamin D-induced changes in the severity or

duration of infection on the seasonality of influenza. This study

was also limited by a lack of detailed daily 25(OH)D data; however,

25(OH)D levels are not subject to drastic day-to-day variations so

this shortcoming likely did not affect our results.

Previous work indicates that increased solar radiation anomalies

are associated with the onset of individual influenza outbreaks [6].

This association between increased sunlight availability and

increased influenza transmission is incongruous with the vitamin

D hypothesis (i.e. of the wrong sign) and also undermines the

notion that vitamin D is a dominant driver of influenza

transmission in temperate regions. While it remains possible that

low levels of vitamin D could contribute to influenza occurrence,

we conclude that present evidence for seasonal variation in serum

vitamin D metabolite levels as a driver for influenza seasonality is

considerably weaker than that for other proposed mechanisms, in

particular seasonal variation in AH and seasonal changes in host

aggregation driven by school terms.
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