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Abstract

Several computer programs are available for detecting copy number variants (CNVs) using genome-wide SNP arrays. We
evaluated the performance of four CNV detection software suites—Birdsuite, Partek, HelixTree, and PennCNV-Affy—in the
identification of both rare and common CNVs. Each program’s performance was assessed in two ways. The first was its
recovery rate, i.e., its ability to call 893 CNVs previously identified in eight HapMap samples by paired-end sequencing of
whole-genome fosmid clones, and 51,440 CNVs identified by array Comparative Genome Hybridization (aCGH) followed by
validation procedures, in 90 HapMap CEU samples. The second evaluation was program performance calling rare and
common CNVs in the Bipolar Genome Study (BiGS) data set (1001 bipolar cases and 1033 controls, all of European ancestry)
as measured by the Affymetrix SNP 6.0 array. Accuracy in calling rare CNVs was assessed by positive predictive value, based
on the proportion of rare CNVs validated by quantitative real-time PCR (qPCR), while accuracy in calling common CNVs was
assessed by false positive/false negative rates based on qPCR validation results from a subset of common CNVs. Birdsuite
recovered the highest percentages of known HapMap CNVs containing .20 markers in two reference CNV datasets. The
recovery rate increased with decreased CNV frequency. In the tested rare CNV data, Birdsuite and Partek had higher positive
predictive values than the other software suites. In a test of three common CNVs in the BiGS dataset, Birdsuite’s call was
98.8% consistent with qPCR quantification in one CNV region, but the other two regions showed an unacceptable degree of
accuracy. We found relatively poor consistency between the two ‘‘gold standards,’’ the sequence data of Kidd et al., and
aCGH data of Conrad et al. Algorithms for calling CNVs especially common ones need substantial improvement, and a ‘‘gold
standard’’ for detection of CNVs remains to be established.
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Introduction

Copy number variation (CNV) is loosely defined as a deletion,

duplication or inversion of a DNA sequence longer than one

kilobase. CNVs have recently attracted considerable interest as a

source of genetic variation because they may play an important

role in the etiology of complex diseases and in evolution [1–14].

Because association studies of CNV and disease have become

popular, genome-wide oligonucleotide arrays are now designed to

detect both single nucleotide polymorphisms (SNPs) and CNVs

[15]. The Affymetrix Genome-Wide Human SNP Array 6.0, for

example, includes 906,600 SNP probes and 940,000 CNV probes.

A number of computer programs have been designed to detect

CNVs using the intensity of the hybridization of sample DNA to

the array probes. The underlying detection algorithm types are

generally Hidden Markov model (HMM) [16], [17], or circular

binary segmentation (genomic segmentation) [18]. PennCNV and

QuantiCNV were first developed on an HMM-based algorithm

for an Illumina platform [17], [19], then later modified to be

compatible with Affymetrix platforms as well. Birdseye, another

HMM-based approach, was developed to detect CNVs in SNP

genotyping arrays specifically for Affymetrix platforms [16]. Two

commercial software, Partek (Partek Inc., St. Louis, MO) and

HelixTree (Golden Helix, Inc.), have implemented circular binary

segmentation method.

Baross et al found considerable variation among the outputs

from different programs, as well as substantial false call rates for

CNVs, when they compared four CNV detection programs [20]:

Copy Number Analyser for GeneChipH arrays (CNAG) [21],

DNA-Chip Analyzer (dChip) [22], Affymetrix GeneChipH Chro-

mosome Copy Number Analysis Tool (CNAT)[20,23] and Gain

or Loss Analysis of DNA (GLAD) [24]. Winchester et al. reviewed

12 programs and assessed 7 of them using published CNV data in

HapMap samples [25]. The programs they assessed were

Birdsuite, CNAT, Genome Alteration Detection Algorithm

(GADA) [26], PennCNV, QuantiSNP, CNVPartition (Illumina

Inc. CA), and Nexus (BioDiscovery, Inc. CA). Like the other

papers, they observed large variation among different programs as

well as different platforms (Illumina vs. Affymetrix). However,

Winchester et al did not draw any conclusions on the performance

of the programs, and it is difficult to judge which program was

superior based on the data they provided.
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Korn et al compared their program, Birdsuite, with two

commercial tools, Partek and Nexus [16]. They tested the three

programs using eight HapMap samples in which 893 CNVs had

been previously identified by Kidd et al using fosmid end-pair

sequencing (EPS) and validated by array comparative genomic

hybridization or full-length resequencing [13]. They calculated and

compared the rates at which the programs recovered these CNVs

[16]; a reference CNV was considered recovered if the program

called a CNV that shared at least 25% of the length spanned by the

reference and called CNV together. The recovery rate of the three

programs ranged from 11.6% for Partek to 93.8% for Birdsuite for

regions containing more than 20 probes. However, note that

Birdsuite was originally developed on HapMap data.

None of the previous studies evaluated rare and common CNV

calls separately, even though common CNVs are more difficult to

call accurately than rare ones. This difference may arise because

some programs use all the samples in a given batch to create a

reference signal at a given SNP, to which individual signals from

that batch can be compared. For example, HelixTree and

PennCNV-Affy establish a reference in this way, then use the

log2 of the ratio of the hybridization intensity of an individual

subject to the intensity of the reference (log2 R (subject/reference))

for further segmentation or for modeling copy number status [17].

As a result, frequently-occurring variations make it harder to

establish a true reference signal. The same problem occurs in

Partek if the option to use the log2 ratio for segmentation is

selected.

In the Birdsuite package, on the other hand, the Canary

program is designed to call common CNVs previously established

by McCarroll et al [15]. The designers constructed a series of prior

models based on summarized intensity measurements of HapMap

samples with different copy number states for the established

common CNVs. This approach avoids the common variant

reference problem, but it is still problematic because the HapMap

sample is not necessarily an appropriate reference for a given study

population. For rare or de novo CNVs, Birdsuite has an entirely

different program, Birdseye, which establishes a reference intensity

similar to that of HelixTree or PennCNV-Affy. It extracts the

intensity of all samples in a given batch, then excludes those

regions already determined to be copy-variable via Canary, and

also excludes the 10% of samples with the highest intensities and

the 10% of samples with the lowest intensities [16]. It uses the

results to estimate the mean and variance of the normal

distribution of two copies.

In this study, we assessed four currently used CNV detection

software programs for their accuracy in detecting both rare and

common CNVs in the Affymetrix 6.0 platform. We used

Affymetrix SNP Array 6.0 data in 270 HapMap samples and

1001 bipolar cases and 1033 controls of European ancestry from

Bipolar Genome Study (BiGS). The software packages tested were

Birdsuite (version 1.5.2), PennCNV-Affy (a trial version), Helix-

Tree (Version 6.4.2), and Partek (Version, 6.09.0129). We assessed

their recovery rate per Korn et al ’s method with modifications as

described below [16]. In addition, based on qPCR, we estimated

their false positive and false negative call rates for three common

CNVs, as well as their positive predictive values for singleton

CNVs, i.e., those that occur once in a dataset.

Results

Recovery test based on sequencing data of eight
HapMap samples

We used the same 893 CNVs used by Korn et al. as a reference

to compare the recovery rates of Birdsuite, Partek, PennCNV-Affy

and HelixTree [16]. Korn et al.’s Birdsuite recovered CNVs

spanning more than 20 markers at a rate (88.5%) comparable to

that of Korn et al (93.8%) when using their criteria (File S1: Table

S1) [16]. With our additional requirement of copy number

consistency (the CNV status identified by the programs should be

in the same direction as the reference CNV), the recovery rate of

Birdsuite decreased from 88.5% to 70%, whereas PennCNV-Affy,

Partek and HelixTree had relatively smaller decreases (5–6%).

Consistent with the results of Korn et al [16], the recovery rate

increased with the number of probes spanned by the CNV for all

algorithms (Table 1). The sensitivity of PennCNV-Affy increased

from 55.4% to 58.5% when pedigree information was used, which

is a unique option of PennCNV-Affy.

Closer inspection of the frequency of 130 CNVs (112 regions

containing more than 20 markers) revealed that 100 of these CNV

regions occurred only once in the eight HapMap samples. The

recovery rate of individual CNVs decreased as the frequency of the

CNVs increased (File S1: Figure S1). We further looked at the size

of CNVs that spanned more than 20 markers and calculated the

recovery rate in each size bin. There was no correlation between

the size and the recovery rate when the analysis was limited to

CNVs containing more than 20 markers (data not shown).

Recovery test based on array CGH data of 90 CEU
HapMap samples

We used 51,440 CNVs detected and validated in 90 CEU

samples by Conrad et al as a reference to compare the recovery

rate of Birdsuite, Partek, PennCNV-Affy and HelixTree [14]. The

recovery rate also increased with the number of probes spanned by

the CNV for all algorithms (Table 2). However, the highest

recovery rate for any program on detection of CNVs with .20

markers was only 47.69% by Birdsuite.

We further calculated the average recovery rate of CNVs with

different frequency spanned by more than 20 makers. The average

recovery rate decreased with the increased frequency of CNVs.

The average recovery rate of CNVs with a frequency #20%

ranged from 65.62% by Partek to 85.95% by PennCNV-Affy with

pedigree information incorporated (See Table 3). CNVs with a

frequency larger than 80% were difficult to recover (average

recovery rate: 10.81%–30.50%).

CNV regions spanned by more than 20 markers were compared

across programs. Birdsuite, PennCNV-Affy and Helixtree can

recover about 50% of CNV regions with a sensitivity $90% and

30% of CNV regions with a sensitivity #10%. For example,

Birdsuite recovered 58.21% of CNV regions with a very high

sensitivity (.90%), and 34.83% regions with a sensitivity #10%.

The percentage of CNV regions, with a recovery rate higher than

90%, decreased from 66.39% to 28.13% when the frequency of

CNVs increased from #20% to .80% (File S1: Table S2). 21

highly frequent (.80%) but poorly recovered (#10%) CNVs were

all duplications. Seven out of nine highly frequency regions with

high recovery rates were deletions (File S1: Table S2, Birdsuite

data).

Separately, we compared the consistency of the CNVs reported

by Kidd et al and by Conrad et al in the same 8 HapMap

individuals. Two CNVs identified by Conrad et al and Kidd et al

were considered as the same if they shared at least 25% of the total

length spanned. 3,024 out of 4,537 CNVs (66.65%) from Conrad

et al were not larger than 5 kb while 89.33% of CNVs from Kidd et

al were larger than 10 kb. This is expected because of the greater

density of probes in Conrad et al. But overall, there was not an

impressive degree of overlap between the two studies, even for the

larger CNVs (Table 4). Yet each of these studies has been

considered as a potential ‘‘gold standard’’ for CNV calling.

Four CNV Detection Softwares
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Evaluation of CNV calls in the BiGS data set
The average number of CNVs called per individual varied

greatly among programs (Figure 1); for example, for CNVs larger

than 100 kb, PennCNV-Affy called an average of 8, while

HelixTree called an average of 27. The differences declined when

the size of CNVs increased, so when selecting CNVs for qPCR

validation, we chose CNVs larger than 100 kb.

Singleton deletions and duplications in the BiGS data set
The largest number of program-specific singleton deletion calls

was made by HelixTree (Table 5), at a surprisingly higher

frequency than Birdsuite, Partek and PennCNV-Affy, which

tended to agree with each other. Although software agreement

does not necessarily correspond with the validity of the calls, the

program-specific calls tended not to be validated, as demonstrated

below. More singleton duplications were identified by each

program than singleton deletions (Table 5); however, substantial

variation among programs was observed in the number of

singleton duplications. HelixTree produced the highest percentage

of program-specific singleton duplications.

qPCR validation of selected singleton CNVs in the BiGS
data set

The positive predictive values of Birdsuite and Partek for the

sampled deletions were 100%. This finding agrees with our previous

finding of a positive predictive value for Birdsuite using 19 singleton

deletions [10]. Strikingly, none of the five sampled deleted regions

called by HelixTree were confirmed by qPCR. Three out of five

deleted regions called by PennCNV-Affy were confirmed as

deletions by qPCR, a positive predictive value of 60% (Table 6).

For each program, we also randomly selected five to six

program-specific singleton duplications for qPCR validation. None

of the programs had all the selected program-specific duplications

validated: positive predictive values ranged from 40% to 66.7%.

Common CNVs in the BiGS dataset
We observed that unlike rare CNV calls, common CNVs calls

were influenced by plate effects. Common CNVs called by

Birdsuite’s Canary program were tested for plate effects by doing a

series of GWASs plate by plate. We compared the CNV

frequencies measured for each plate against those of all other

plates in each analysis, using PLINK. About 44% of common

CNVs showed a plate effect (data not shown).

Three common CNV regions frequently called by Canary were

randomly selected for qPCR investigation: CNP1293, which

showed no plate effect, and CNP2157 and CNP2057, which both

had plate effects; these CNVs are located on chr8:39354760-

39506122 (56 CN and 3 SNP probes), chr16:22465433-22612022

(61 CN and 16 SNP probes), and chr15:19803370-20089386 (104

CN and 60 SNP probes), respectively. The frequencies of

duplication and deletion of these three regions as called by each

program are shown in Table 7.

To validate these CNV calls, we validated 3 CNPs with qPCR.

We assayed 69 samples with qPCR for CNP2157 and found that

CNV calls by all of the programs in this region were imprecise

(Table 8). For CNP2057, we quantified 87 samples; none of the

programs performed satisfactorily. When 85 samples were studied

for CNP1293, which had no plate effect, we found that, strikingly,

Birdsuite achieved a 0% false positive rate and a 1.9% false

negative rate, while the other three programs all had a low

sensitivity (i.e., 1 - the false positive rate) and specificity (i.e., 1 - the

Table 1. The recovery rates of each of the CNV-calling programs depending on CNV length based on data of Kidd et al.

# markers

# CNVs in the
reference list
from Kidd et al.

# CNVs recovered
by Birdsuite

# CNVs recovered
by Partek

# CNVs recovered by
PennCNV-Affy_trios*

# CNVs recovered
by PennCNV-Affy

# CNVs recovered
by HelixTree

1 329 6 (1.8%) 0 0 0 2 (0.6%)

2–5 249 71 (28.5%) 0 3 (1.2%) 2 (0.8%) 19 (7.6%)

6–10 112 47 (42.0%) 10 (8.9%) 20 (17.9%) 11 (9.8%) 28 (25%)

10–20 73 32 (43.8%) 26 (35.6%) 27 (37.0%) 24 (32.9%) 17 (23.3%)

.20 130 91 (70.0%) 70 (53.8%) 76 (58.5%) 72 (55.4%) 54 (41.5%)

*The pedigree information was incorporated with the calling of CNVs.
Recovery rate was calculated with the requirement of copy number consistency.
doi:10.1371/journal.pone.0014511.t001

Table 2. The recovery rates of each of the CNV-calling programs depending on CNV length based on data by Conrad et al. in 90
CEU samples.

# markers
# CNVs in the reference
list from Conrad et al. *

# CNVs recovered by
Birdsuite

# CNVs recovered by
Partek

# CNVs recovered by
PennCNV-Affy_trios**

# CNVs recovered by
HelixTree

1 28366 88 (0.31%) 2 (0.007%) 111 (0.39%) 110 (0.39%)

2–5 11837 1362 (11.51%) 8 (0.068) 138 (1.17%) 486 (4.11%)

6–10 3142 926 (29.47%) 209 (6.65%) 599 (19.06%) 720 (22.92%)

10–20 2754 973 (35.33%) 507 (18.41%) 747 (27.12%) 711 (25.82%)

.20 5341 2547 (47.69%) 1400 (26.21%) 1883 (35.26%) 1770 (33.14%)

*5,341 CNVs spanned by .20 markers were included in this analysis.
**The pedigree information was incorporated with the calling of CNVs.
doi:10.1371/journal.pone.0014511.t002

Four CNV Detection Softwares
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false negative rate) for this CNV. The performance of each

program varied greatly from CNV to CNV; none performed

consistently. The results observed here were consistent with the

recovery rate evaluated in HapMap samples especially for

Birdsuite (see above).

Discussion

The sensitivity and specificity of CNV identification is an

essential component of association studies of CNVs with disease.

In our evaluation of two commercial programs and two publicly

available programs widely used for CNV identification in GWAS

data, we found considerable variation among the programs in the

number of CNVs called. The differences declined when the size of

CNVs increased, but substantial variation still existed in the

accuracy of CNV calls as determined by the recovery test and by

qPCR validation, even for large CNVs containing more than 20

markers or larger than 100 kb in length.

For recovery of CNVs detected by Korn et al in eight HapMap

samples, Birdsuite was superior to the other three programs, as it

recovered more CNVs in each category. However, the sensitivity

of all four programs was poor when the number of probes spanned

by a CNV was small. For CNVs containing more than 20 markers,

Birdsuite recovered 88.5% of CNVs, which is comparable to Korn

et al’s finding of 93.8% for Birdsuite [16]. Some of the discrepancy

may be explained by the fact that Korn et al. analyzed the same

samples but with different. CEL files produced by different labs;

the files used in the present study were obtained from Affymetrix,

while Korn et al. used. CEL files produced in their own lab [16].

Also, their Birdsuite recovery rate was inflated since no agreement

on CNV state (deletion or duplication) was required by Korn et al.

just after the development of Birdsuite; we found that only 70% of

CNVs containing 20 or more markers were recovered by Birdsuite

with an agreement on CNV state.

Birdsuite’s recovery rate of common CNVs containing more

than 20 markers varied across genomic regions. For example,

there were eight CNV regions carried by any two of the eight

HapMap individuals, and therefore common. Six of those eight

regions were recovered in both individuals by Birdsuite, but the

other two regions were not recovered. Poor recovery rates of

CNVs with high frequency (i.e., carried by more than three of the

eight HapMap samples), was also observed (File S1: Figure S1).

As expected, the sensitivity of Partek showed a 5.2-fold increase,

to 60.7%, after using quantile normalization, as compared to Korn

et al.’s finding of 11.2% without using quantile normalization. A

very recent study has shown that normalization can improve

performance in analysis of miRNA array data and that quantile

normalization is the most robust normalization method [27]. Like

all microarrays, Affymetrix SNP arrays are affected by systematic

sources of experimental variation. Normalization can help reduce

or remove noise that distorts the distribution of observed array

data, and thus improve the accuracy of genotyping calls and copy

number calls.

For our recovery test in 90 CEU HapMap samples, the highest

recovery rate was only 47.91% from Birdsuite, in detecting CNVs

spanned by more than 20 markers. Consistent with the recovery

rate shown above, the average recovery rate decreased with

increased CNV frequency. On closer inspection, it is clear that

Birdsuite’s recovery rate of most CNVs containing more than 20

markers was either #10% or .90% (File S1: Table S2). For

example, there were 32 CNV regions that showed a very high

frequency in CEU HapMap samples (.80%). Six out of 32 CNV

regions were 100% recovered but the recovery rates of 21 CNV

regions were less than 10%, which is consistent with our qPCR

Table 3. The average recovery rates of each of the CNV-calling programs depending on CNV frequency based on data by Conrad
et al. in 90 CEU samples.

Frequency(a)
# CNVs in the reference
list from Conrad et al.*

# CNVs recovered
by Birdsuite

# CNVs recovered
by Partek

# CNVs recovered by
PennCNV-Affy_trios**

# CNVs recovered
by HelixTree

a, = 20% 669 537 (80.27%) 439 (65.62%) 575 (85.95%) 528 (78.93%)

20%,a, = 40% 488 270 (55.33%) 221 (45.29%) 329 (67.41%) 314 (64.34%)

40%,a, = 60% 793 579 (73.01%) 210 (26.48) 373 (47.04%) 442 (55.74%)

60%,a, = 80% 765 352 (46.01%) 105 (13.73%) 139 (18.17%) 123 (16.08%)

80%,a, = 1 2626 801 (30.50%) 284 (10.81%) 366 (13.94%) 342 (13.02%)

*CNVs spanned by more than 20 markers were included in this analysis.
**Pedigree information was incorporated.
doi:10.1371/journal.pone.0014511.t003

Table 4. CNVs detected in 8 HapMap individuals shared between two studies.

Size (kb)
# of CNVs in Conrad
et al (total 4,537)

# detected by Kidd
et al (Percentage) *

# of CNVs in Kidd
et al (total 9,513)

# detected by Conrad
et al (Percentage)

#5 3024 38 (1.27%) 441 1 (0.23%)

5to 10 647 149 (23.02%) 574 13 (2.26%)

10 to 50 514 146 (28.40%) 8174 300(3.67%)

50 to 100 180 19 (10.56%) 217 39 (17.97%)

100 to 1000 172 11 (6.40%) 107 11 (10.28%)

*Criterion: Two CNVs from Conrad et al and Kidd et al were considered as the same if they shared at least 25% of the total length spanned. One CNV from Conrad et al
can share with more than one CNV from Kidd et al, vice versa.
doi:10.1371/journal.pone.0014511.t004

Four CNV Detection Softwares
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results on tested common CNVs. Regardless the recovery rate, the

number of CNVs identified by different programs varied greatly.

The most CNVs were identified by Helixtree, almost 4 times the

number of CNVs detected by Birdsuite and 7 times that of CNVs

detected by PennCNV-Affy and Partek.

One possible reason for the discrepancy of recovery rate in two

datasets (Kidd et al and Conrad et al) is that the detection method:

very dense microarrays used by Conrad et al vs. sequencing used

by Kidd et al [13,14]. Conrad et al’s experiment design aimed to

discover CNVs of size greater than 500 bp. However, the median

size of insert clone is around 40 kb in paired-end sequencing by

Kidd et al., which would make detection of small CNVs more

challenging. Consequently, more small CNVs (#5 kb) were

validated by Conrad et al, and more median size CNVs (10–

50 kb) were reported by Kidd et al. This may also partially explain

the poor consistency rate of CNVs between the two studies.

There was significant variation in singleton deletion calls among

programs: HelixTree detected about two-fold more singleton

deletions in the BiGS data set (644 singleton deletions) than

Birdsuite, Partek, or PennCNV-Affy. However, more than half of

those detections were specific to HelixTree (59.3%), and the majority

of HelixTree program-specific calls of deletions were not validated by

qPCR. This meant that for program-specific singleton deletions, the

positive predictive value of HelixTree was zero based on the qPCR

validation of sampled regions. For Partek and Birdsuite, on the other

hand, all selected singleton deletions were validated by qPCR. In the

recovery test and in qPCR results on singletons, Birdsuite had the

best performance among the tested programs.

We checked closely the program-specific calls because some

authors have proposed to combine CNV calls from multiple

independent software calls to improve accuracy. The program-

specific calls in our data tended not to be validated (most likely to

be in error). Positive predictive value could not be calculated in an

unbiased manner in the present study since we only selected

program-specific CNVs for qPCR validation. A sampling from all

CNVs (both program-specific and shared calls) would provide a

more accurate measure of predictive values.

More singleton duplications were called by each program in the

BiGS dataset than singleton deletions, and each program called

singleton duplications that were not called by any of the other

three programs. The average positive predictive value for these

program-specific singleton deletions for all four programs (65%)

was higher than for singleton duplications (45%) in our tested

regions. We speculate that the performance of programs in the

detection of deletions is better than the detection of duplications

because a deletion represents a 2-fold change in copy number

while a duplication produces only a 1.5-fold change. As might be

expected, 21 highly frequent (.80%) but poorly recovered

(#10%) CNVs were all duplications (File S1: Table S2 Birdsuite’s

recovery data).

For common CNV regions identified by Canary in the present

study, we observed striking variation in the frequency of calls by

different programs. Each program had substantial false positive

and false negative rates in at least one of the three CNV regions

tested. The high false positive and negative rates observed here

may be due to the fact that common CNVs will affect the mean

Figure 1. The average number of CNVs per individual called by
each of the four CNV-calling programs. The average number of
CNVs per individual varies greatly among programs, especially for CNVs
less than 10 kb. The X axis represents length of CNVs. The Y axis is the
average number of CNVs per individual.
doi:10.1371/journal.pone.0014511.g001

Table 5. The number of singleton CNVs called by each program, and percentage by which they overlap with calls made by the
other programs.

Program Birdsuite HelixTree Partek PennCNV-Affy

Deletions Shared ** 306
(90.5%)*

250
(38.8%)

279
(90.0%)

228
(80.6%)

Program-specific *** 32
(9.5%)

394
(61.2%)

31
(10.0%)

55
(19.4%)

Total 338 644 310 283

Duplications Shared 401
(74.7%) *

332
(41.7%)

354
(90.8)

289
(85.3%)

Program-specific 136
(25.3%)

465
(58.3%)

36
(9.2%)

50
(14.7%)

Total 537 797 390 339

*Data format: number of events (percentage of events shared by other programs).
**Shared singleton deletions or duplications were defined as CNVs called by one program that overlapped at all with singleton deletions or duplications called by any
other program.
***Program-specific CNVs are those that did not overlap at all with any singleton deletions or duplications called by any other program.
doi:10.1371/journal.pone.0014511.t005

Four CNV Detection Softwares
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and variance of hybridization intensity over the region included

and thus affect the observed log2 ratio of the CNV. The fact may

also lead to the poor recovery rate of highly frequent CNVs.

Plate effects may play a significant role in the accuracy of

common CNVs called by Canary. CNP1293, which showed no

plate effect, had a high sensitivity and specificity, but CNP2157

and CNP2057 had plate effects and showed a very low sensitivity

and specificity. According to our limited qPCR results, the

algorithms evaluated here for calling common CNVs all need

improvement. We would conclude that without independent

experimental genotyping, software-called common CNVs based

on GWAS array data are not suitable for association studies. In

contrast, rare CNVs called by Birdsuite and Partek are of

substantially better quality. Similarly, Marenne et al concluded

that further validation was required to assess CNVs as risk factors

in complex diseases when they evaluated CNVpartition,

PennCNV and QuantiSNP using Illumina Infinium Human 1

Million SNP array data[28].

Recently, Mei et al developed two new methods to identify

common CNV regions [29]. They evaluated their methods with

sequencing-based results from Kidd et al. However, the lowest

discordance rate was 55% after excluding individual regions with a

confidence score (as developed by them) below the 80th percentile.

Two previously published methods, STAC and GISTIC had

similar performance at identifying CNVs with high frequency and

moderate confidence [30,31]. These reports further confirmed our

observation that common CNV detection methods still have much

room for improvement.

Winchester et al recommended using a second program to

generate the most informative results [25]. This recommendation

seems to be based on the assumption that the second program

performed similarly to the first one, and that their overlap

increases the reliability. This might not be a safe assumption when

not all software suites perform equally well. Birdsuite is a better

choice for identifying rare CNVs than the others in our evaluation.

One limitation of the present study is the small number of

CNVs tested by qPCR, particularly for the common CNVs.

Although the number of qPCR tests performed for validation was

limited, the overall trend of frequent non-validation is in

agreement with other results from larger datasets (the recovery

tests on HapMap samples). These two independent lines of

evidence support our concerns regarding the validity of CNV calls

based on GWAS data.

The intention of this study is to identify potential traps of

current practice in the GWAS-based CNV analysis, rather than an

attempt to provide a solution. It is possible that program tweaking

would improve accuracy, but it appeared reasonable to start with

the default parameters recommended by each program’s provider.

We evaluated the reproducibility of the two ‘‘gold standards’’

used in this study, the paired-end sequence data of Kidd et al, and

the very high density array Comparative Genomic Hybridization

(aCGH) in the same 8 HapMap individuals. We found relatively

poor consistency between the two ‘‘gold standards.’’ The lack of a

standard sets a limit on much of the recovery of GWAS-based

CNV calls, particularly for common CNVs since they would be

over-represented when 8 individuals are studied. Next-generation

sequencing of whole genome of population samples might be able

to provide an ultimate gold standard for identification of common

CNVs.

A more extensive list of independently validated CNV regions,

and the raw hybridization or other data files used to detect them,

should be made publicly available. A greatly expanded version of

Kidd et al ’s or Conrad et al ’s HapMap data set used in this and

previous studies [13], with all CNVs confirmed by high coverage

sequencing, and with the addition of parental data, might provide

an acceptable resource. The public data from dbGaP and similar

sources can also be used for this purpose, as can the CNV

validation data we have produced in this study and plan to

produce in future studies. Once these datasets are available,

independent validation studies must be performed, even though

they require the expenditure of valuable time and funds.

Materials and Methods

Subjects
To test the programs’ recovery rates, we obtained the

Affymetrix Genome-Wide Human SNP Array 6.0 data (SNP

Array 6.0) from 270 HapMap samples (90 CEPH, 90 YRI and 45

CHB and 45 JPT) from Affymetrix. To test the programs’ false

positive/negative rates for common CNVs and positive predictive

values for singletons, we obtained Bipolar Genome Study (BiGS)

genotype data from 1001 bipolar cases and 1033 controls of

European ancestry via dbGaP (phs000017.v1.p1); those data were

collected using the Affymetrix Genome-wide Human SNP Array

6.0, details described elsewhere [32].

Table 7. Frequencies with which each program calls three common CNVs identified by Canary in the BiGS dataset.

ID Birdsuite HelixTree Partek PennCNV-Affy

CNP2157 Frequency of Duplications 1833(90.1%) 29 (1.4%) 24 (1.2%) 15 (0.7%)

Frequency of Deletions 1 (0.05%) 187 (9.2%) 42 (2.1%) 38 (1.9%)

CNP1293 Frequency of Duplications 1 (0.05%) 664 (32.6%) 619 (30.4%) 508 (25.0%)

Frequency of Deletions 1277(62.8%) 449 (22.1%) 344 (16.9%) 262 (12.9%)

CNP2057 Frequency of Duplications 170(8.4%) 254 (12.5%) 197 (9.7%) 103 (5.1%)

Frequency of Deletions 653(32.1%) 248 (12.2%) 142 (7.0%) 188 (9.2%)

doi:10.1371/journal.pone.0014511.t007

Table 6. Positive predictive value for rare CNVs of each
program, based on qPCR validation of their program-specific
singletons.

Programs Birdsuite HelixTree Partek PennCNV-Affy

Deletions 5/5 = 100%* 0/5 = 0% 5/5 = 100% 3/5 = 60%

Duplications 2/5 = 40% 2/5 = 40% 2/6 = 33.3% 4/6 = 66.7%

*Positive predictive value: true positive/(true positive + false positive). For each
region, five samples were tested, one with a putative deletion/duplication, the
other four with two putative).
doi:10.1371/journal.pone.0014511.t006
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Software algorithms and parameters
We performed plate-wise quantile normalization, then identified

CNVs for each plate using each of the four programs. The settings

of the software packages are presented in Table 9. Since the

optimal parameters for a given dataset may not be optimal for

another dataset, we chose to mainly use the programs’ default

parameters to make the comparisons as fair as was possible. To

better compare HelixTree and Partek, log2 ratios were created by

normalizing raw intensity data against a set of reference samples

from a given batch in HelixTree, and then were called by Partek

and HelixTree for CNVs using segmentation. Genomic segmen-

tation was recommended by Partek and was therefore used for

evaluation here. For PennCNV-Affy, we ran the program with

and without the pedigree information.

Measuring CNV recovery rates in eight and 90 CEU
HapMap samples

For eight HapMap samples, we used the same recovery statistic

as Korn et al., with one modification. Since deletions identified by

one program could be called as duplications by another program,

an additional criterion was included that not only a variation be

called, but that it should be in the same direction as the reference

CNV, i.e., a CNV called as 0 copy or 1 copy had to correspond to

a deletion called in the eight validated HapMap samples in Kidd

et al [13]. If it did not match, the reference CNV was not

considered recovered. Similarly, another recovery rate was

calculated based on 51,440 reference CNVs validated in 90

CEU samples reported by Conrad et al [14]. Normalization was

done prior to segmentation when evaluating Partek. We used the

same inclusion criterion for CNV calls as Korn et al [16], requiring

CNV calls to have LOD scores (probability of the segment being

the stated copy number versus the copy number of the flanking

region) $5 for inclusion.

Consistency of CNVs Detected in 8 HapMap Individuals in
Two Studies (Conrad et al and Kidd et al)

CNVs validated by Conrad et al were compared with CNVs

reported by Kidd et al. Two CNVs from Conrad et al and Kidd et al

were considered as the same if they shared at least 25% of the total

length spanned. One CNV from Conrad et al can share with more

than one CNV from Kidd et al, vice versa.

Comparison and validation of CNV calls in the BiGS
dataset

In the BiGS dataset, all CNV calls made by all four programs

were compared (Figure 1). Birdsuite is the only one of the four that

filters out CNVs with LOD scores less than 10.

We are particularly interested in the role of singleton CNVs in

common diseases [10], so when choosing rare CNVs to validate,

we focused on singleton CNVs. Singletons were defined as

deletions or duplications that occurred only once in the entire

BiGS data set, including controls, and did not overlap with any

other CNVs. The analysis was done by PLINK (version 1.05) [33].

To validate the singleton CNVs called by the software packages

in the BiGS sample, quantitative real-time PCR (qPCR) with

SYBR-green dye was used to measure the copy number of a subset

of singleton CNVs using the ABI PrismH 7900HT Sequence

Detection System. The copy number at target regions relative to

the reference is approximately 22 DDCt (for more details see

elsewhere [10]), where Ct, the threshold cycle number, is a

function of the amount of starting template.

We selected a total of 20 singleton deletions and 22 singleton

duplications for qPCR validation. For each program, five or six

duplications and five deletions were randomly selected that were

uniquely called by that program, which we refer to as program-

specific calls. We then designed three pairs of primers for each

region and tested five samples for singleton duplications and five

other samples for singleton deletions. So, in each test, one sample

carried a program-specific singleton deletion or duplication, and

the other four samples did not carry any CNVs called that

overlapped that region, i.e., all programs called two copies for that

sample.

Table 9. Settings used for each of the four software suites.

Software Plate-wise quantile normalization Detecting algorithm Parameters

Birdsuite Yes (APT)* HMM Using population-specific prior models***

HelixTree Yes (HelixTree) Segmentation Default

Partek Yes (HelixTree) ** Segmentation Default

PennCNV-Affy Yes (APT) HMM No prior models

For HelixTree and Partek, default settings were used; normalization was done before CNV calling. For PennCNV-Affy, the standard procedure was followed without wave
adjustment. For Birdsuite, population-specific prior models were employed.
*Platewise normalization was done by Affy Power Tools (APT1.10.0) plug in Birdsuite/PennCNV-Affy.
**Normalization was done by HelixTree.
***For Canary, the appropriate prior model was selected based on the ancestry of the sample.
doi:10.1371/journal.pone.0014511.t009

Table 8. qPCR validation of the calls made by each program
for three common CNVs identified by Canary in the BiGS
dataset.

CNP Birdsuite HelixTree Partek
PennCNV-
Affy

CNP2157 False positive
rate

100% 8.5% 0.0% 0.0%

False negative
rate

100% 66.7% 66.7% 66.7%

CNP1293 False positive
rate

0.0% 96.9% 71.9% 71.9%

False negative
rate

1.9% 80.8% 80.8% 80.8%

CNP2057 False positive
rate

55.1% 0.0% 0.0% 0.0%

False negative
rate

62.5% 46.9% 62.5% 62.5%

doi:10.1371/journal.pone.0014511.t008
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To validate the common CNVs called by the software packages

for the BiGS sample, we randomly selected one common

duplication and two common deletions called by Canary for

qPCR validation. We used TaqManH Copy Number Assays from

ABI (Applied Biosystems Inc, CA) on the ABI PrismH 7900HT

Sequence Detection System for validation since the target and an

endogenous control can be amplified in the same reaction. Only

one probe was designed for each region, so CNVs called by

different programs were required to share at least 50% of the total

length spanned by the two calls combined to be considered the

same CNV. All the primers and probes designed for qPCR are

provided in supplementary data (File S1: Table S3).

To assess the relative accuracy of the programs in detecting rare

CNVs in the BiGS data set, we calculated and compared their

positive predictive values, i.e., the ratio of true positives to positive

calls both true and false; data to calculate false negative and false

positive rates were not collected, since these CNVs are, by

definition, rare. To compare the programs’ abilities to detect

common CNVs, we calculated and compared their specificities

and sensitivities.

Web resources
http://www.biodiscovery.com/index/nexus

http://www.goldenhelix.com

http://www.openbioinformatics.org/penncnv/penncnv_

tutorial_affy_gw6.html

http://www.hapmap.org/

http://www.affymetrix.com

http://www.ncbi.nlm.nih.gov/gap

http://pngu.mgh.harvard.edu/purcell/plink/)

http://www3.appliedbiosystems.com/AB_Home/index.htm

http://www.partek.com

Supporting Information

File S1. Includes Tables S1 to S3 and Figure S1.

Found at: doi:10.1371/journal.pone.0014511.s001 (0.42 MB

DOC)
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