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Abstract

Background: Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor
(ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed
paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on
RNA expression can provide more objective, quantitative and reproducible test results.

Methods: To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a
training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was
determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor.

Results: This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation
accuracy of 93.1762.44%. When applied to an independent validation set and to four other public databases, some on
different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule
separated the patients’ recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of
ER-status.

Conclusions: Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-
based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-
principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions.
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Introduction

Invasive breast adenocarcinoma is a common cancer whose

clinical management is guided by predictive biomarkers. In

particular, clinicians rely on the predictive value of tumor Estrogen

Receptor (ER) status to decide whether to apply endocrine

therapy.

At present, immunohistochemical (IHC) testing is most

frequently used to assign tumor ER-status, where antibodies

directed against the ER protein are applied to formalin-fixed,

paraffin-embedded tumor samples, and the abundance of ER is

determined semi-quantitatively by light microscopy. Those

patients with tumors rich in ERs (ER+) are most likely to benefit

from endocrine therapy, while those with ER-poor tumors (ER-)

typically derive no benefit from endocrine therapy [1]. Conse-

quently, those individuals found to have ER+ disease are offered

hormonal therapy, either for prevention of recurrence after

definitive surgery, or for tumor suppression in the setting of

advanced disease. Those with ER- disease do not receive

endocrine therapy, and instead are frequently offered cytotoxic

chemotherapy.

The use of IHC for determining ER-status has many

limitations, including the lack of a ‘‘gold-standard’’ assay with

which to calibrate test results, the difficulties in standardization of

several parameters, including pre-analytic variables (warm and

cold ischemic times, type of fixative used, duration and quality of

tissue fixation), the selection and titration of antibody, antigen

retrieval and signal detection methods, the appropriate choice of

positive and negative controls, and the standardized interpretation

of the results of the IHC assay. Due to these issues, an

international expert panel concluded that up to 20% of current

IHC determinations of ER-status worldwide may be inaccurate

(falsely negative or falsely positive) [2]. The lack of standardization

and the complexity of determining IHC ER-status has contributed

to widely-reported failures in providing optimal breast cancer care

[3]. Consequently, more accurate and less subjective ways to

determine tumor ER-status would have clinical value.
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Recent advances in bio-profiling technologies have allowed the

large scale assessment of multiple biomarkers, including quanti-

tative assessment of RNA with frozen [4] and paraffin-embedded

formalin-fixed tissues [5]. To help find a RNA-based test for ER-

status, we determined the gene expression levels across the

transcriptome in invasive breast tumors from a large cohort of

women with known ER-status determined by guideline-standard-

ized IHC, and then applied machine learning technologies to

generate a parsimonious effective predictor of ER-status, amena-

ble to high throughput and low cost testing. While our learner had

access to the expression levels of all of the genes, it produced a

predictor that requires only three gene expression values; this

differs from prior classifiers that required determining the

expression levels of large numbers of genes [6,7]. Moreover, we

show that our learned predictor works effectively on other datasets,

from other labs, some using other platforms.

Materials and Methods

Sample Selection
Institutional ethics approval through the Alberta Cancer

Research Ethics Committee and patient informed written consent

were obtained for collection of surgical specimens, relevant clinical

data, and tissue analysis. We used 176 treatment-naive primary

breast cancer cases from the Canadian Breast Cancer Foundation

Tumor Bank (CBCF TB) as a training set for data analysis,

hereafter called the E176 group [8]. A second distinct group of 23

treatment-naive breast tumor samples collected under the same

protocol as E176 was obtained from the CBCF TB, referred to as

the E23 group, and used as a validation set. All tumor samples

were collected at surgery and frozen in liquid nitrogen within 20

min of devitalization. Evaluation of histology slides from tissue

adjacent to the frozen samples indicated that at least 70% of the

cells present were tumor cells.

The ER-status of each of these primary tumors was determined

in a single central laboratory using the clinical standard antibody

(Ventana, Tucson, AZ) applied to formalin-fixed paraffin-embed-

ded tissue. We followed the ASCO-CAP guideline [2] methods,

considering a tumor as positive whenever at least 1% of the tumor

nuclei in the sample were positive, in the presence of expected

reactivity of normal epithelial elements and external controls.

Samples were scored by a single board certified breast cancer

pathologist (JD), blinded to gene expression analysis and clinical

outcomes. The results of this analysis were in complete accordance

with the ER-status determined by a panel of 7 pathologists during

the initial breast cancer diagnosis. We found 63.3% of the E176

group, and 60.9% of the E23 group, were ER+.

Microarray expression analysis
Total RNA was isolated from the frozen samples using Trizol

(Sigma-Aldrich, Oakville, ON, CAN) and purified using Qiagen

RNeasy columns (Mississauga, ON, CAN) according to the

manufacturer’s recommended protocols. The RNA was then

quantified using a NanoDrop 1000 Spectrophotometer (Nano-

Drop Technologies, Wilmington, DE, USA) and its integrity

evaluated using a Bioanalyzer 2100 (Agilent Technologies, Santa

Clara, CA, USA) according to the manufacturer’s protocols. RNA

samples with RNA Integrity Numbers (RIN) greater than 7.0 were

used in this study.

This RNA was subjected to linear amplification and Cy3

labeling and hybridization to Agilent Whole Human Genome

Arrays using Agilent kits (One Color Low RNA Input Linear

Amplification Kit Plus, One Color RNA Spike-In Kit and Gene

Expression Hybridization Kit) according to the manufacturer’s

recommended protocols. After the arrays were scanned using an

Agilent Scanner, the data was extracted and the quality evaluated

using Feature Extraction Software 9.5 (Agilent) [9]. The data was

normalized and analyzed using GeneSpring GX 7.3.1 (Agilent).

The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus [10] and are accessible

through GEO Series accession number GSE29210 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE29210). Our stud-

ies also used four other GEO datasets: GSE26338 [9], GSE5546

[11], GSE19615 [12] and GSE31448 [13].

Analytical Tools
We refer to each oligonucleotide in the array as a feature, and

note that each gene is represented by one or more features. The

value of each feature in each array was [N1] baselined to 0.1 (each

value less than 0.1 was replaced with 0.1), [N2] normalized per

array (each measurements on each array was divided by the 50th

percentile value for that array) and then [N3] normalized per

feature (each feature was divided by the median of its measure-

ments in all samples). The N1–N3 normalization steps are

performed by the GeneSpring software. We then [N4] trans-

formed the data into z-scores, xi
j : ~ xi

j {mj

� �
=sj by subtracting

from each feature value xi
j the mean for this j-th feature mj, then

dividing by the standard deviation sj for that feature; hence each

transformed feature has zero mean and unit variance over the

dataset [14]. Features were then filtered to include only those that

were annotated with a GenBank accession number and were

present in at least 44 of the E176 training samples; this produced a

set of 27,688 features. The resulting dataset

D~ ~xx1,c1
� �

, ~xx2,c2
� �

,:::, ~xx176,c176
� �� �

is over the 176 patients and

contains 27,688 gene expression values ~xxi~ xi
1,xi

2,:::,xi
27688

� �
for

each patient (i = 1,2,…, 176) as well as each patient’s ER-status

ci[ ERz,ER{gf , as described above. The E23 validation set was

normalized ([N1]–[N4]) independently of the E176 data; that

dataset was then filtered to include only the set of 27,688 features

used in the E176 analysis.

Mutual Information (for Biostatistical Analysis)
The standard biostatistics approach to analyzing this microarray

gene expression data D seeks univariate correlations, with the goal

of finding the individual features most relevant to the ER-status

outcome. To do this, we estimated the relevance of each feature

using ‘‘mutual information’’ [15]:

MI(G,C)~
X

c[fz1,{1g

ð
p(g,c) log

p(g,c)

p(g)P(c)
dg ðEq1Þ

where p(g,c) is the empirical distribution of the gene expression g for

the feature G over the patients whose ER-status is

c[ ERz,ER{gf , p(g) is the empirical distribution over all patients

(of both classes), and P(c) is the empirical distribution of patients of

the different classes – here, P(C = ER+) = 112/176 as 112 patients

were ER-positive, and P(C = ER2) is 64/176. The distributions

over continuous variables, p(g) and p(g,c), were estimated non-

parametrically using Parzen Gaussian window, produced by the

‘‘maximum relevancy’’ component of the mRMR system [16].

Feature-Selecting Support Vector Machine (for Machine
Learning Analysis)

While the correlation of a single feature with a phenotype may

be useful, it is not designed to predict whether a specific patient is

Machine Learned Predictor of ER-Status
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ER+ versus ER2; for this, we need to use an alternative approach

that can learn predictive combinations of multiple features. In

particular, the machine learning approach uses this labeled dataset

D (here E176, of gene expression values for 176 samples, each with

known ER-status) to produce a classifier that can effectively

predict the ER-status of a novel breast tumor (Figure 1). While this

is similar to the biostatistics task, the goals are sufficiently different

such that it requires this different technology.

We considered several machine learning systems, before

converging on the FS_SVM algorithm shown in Figure 2, which

is a ‘‘feature selecting’’ variant of Support Vector Machines (SVM)

[17,18]. In general, the SVM learner uses a labeled data set to

produce a linear separator between the classes – labeling a new

patient, with microarray values ~xxi~ xi
1,xi

2,:::,xi
27688

� �
, as

C~ww ~xxi
� �

~
ERz if

P27688
j~1 wjx

i
j§w0

ER{ otherwise

(
ðEq2Þ

for some real-valued weight vector~ww~ w0,w1,w2,:::,w27688

� �
;

notice this vector includes the threshold w0. SVM learns the

appropriate weights SVM Dð Þ~~ww from the training sample D by

attempting to optimize the margin [17]. The code was written in-

house and used WEKA’s SMO (with default parameters) for SVM

[18]. To reduce the chance of overfitting, FS_SVM focuses SVM

on only a small subset of the features: It first sorts the features

based on their ‘‘Maximum Relevancy, Minimum Redundancy’’

(mRMR) [16] score on the E176 patients – this differs from the

mutual information score (Eq 1) by finding the relevant features

sequentially, and penalizing a feature by its correlation with

features already included at any earlier stage. FS_SVM will use the

top few of these features; it uses a variant of cross-validation to

determine the smallest number that is statistically indistinguishable

from the ‘‘high water mark’’ (see Material S1 for details of this

algorithm).

Graphing and Statistical Analysis
The graphical representations of the ER-status classifier and

percent of patients with IHC-determined ER expression were

generated with Microsoft Excel. Kaplan-Meier survival and

recurrence-free survival curves and the Cox proportional hazards

were generated in GraphPad Prism 5 using the Mantel-Haenszel

approach [19].

Results

This data (27,688 gene expression values over 176 breast cancer

patients) can be analyzed using a biostatistical or a machine

learning approach. The typical biostatistics approach is univariate,

with the goal of finding the individual genes most correlated with

the ER-status outcome. By contrast, the machine learning

approach uses this data to produce a classifier, which can then

be used to predict the ER-status of a novel breast tumor (Figure 1).

While the learner has access to all 27,688 gene expression values,

the classifier it produces will use only the genes that are necessary

to achieve an accurate prediction. Notice these genes are not

necessarily the ones that are individually most correlated with ER-

status.

Biostatistical Analysis
Using the gene expression values derived from 176 breast

cancer samples (the E176 dataset), we found the 10 gene features

that are most closely related to the ER-status of a tumor; ie, which

individually had the highest mutual information (Eq 1) with ER-

status. This list, shown in Table 1, includes many genes known to

relate to estrogen receptor status in the context of breast cancer.

Note that the estrogen receptor gene, ESR1, appears as the fourth

entry. Genes whose expression is tightly regulated by ESR1 can

also be correlated with the ER-status of a tumor. Some of these are

known to be closely related to ER function, such as GATA3, while

the relationship is not clear for others, like BCL11A. However,

BCL11A is a zinc-finger protein, and other members of this class

Figure 1. Basic machine learning framework. The bottom portion of this figures shows that a ‘‘Classifier’’ takes as input a description of a novel
instance (here, the 27688 gene expression values from a microarray taken from a patient’s biopsy), and returns a prediction for this instance (here, its
prediction of whether this tumor is ER+ or ER2). The figure suggests this response is ‘‘No’’. The Machine Learning challenge is to produce this
classifier from a dataset of historical data (called labeled ‘‘Training Data’’); this is the vertical portion, showing that a Learner uses that Training Data to
produce the classifier. When evaluating the quality of a learned classifier, we require that the ‘‘Novel Instance’’ is not in the Training Data.
doi:10.1371/journal.pone.0082144.g001
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have been shown to regulate estrogen receptor expression in breast

cancer cells [20].

Machine Learning Analysis
We also used the E176 dataset to learn a classifier, which can

then be applied to predict the ER-status of any other tumor

(Figure 1). Here, we used the FS_SVM learner shown in Figure 2.

While FS_SVM had access to all 27,688 gene expression values, it

produced a classifier that used only a small subset of the genes; just

the three genes listed with entries in ‘‘SVM Coefficient’’ in Table 1:

AW972815, GATA3 and CA12. FS_SVM determined that 3

genes were sufficient, based on the means and standard deviations

associated with using only 1 feature, then 2 features, etc., across

the folds (Figure 3 and Material S1). FS_SVM produced the

following formula for predicting the ER-status of a novel tumor:

Predict

ERzif 0:2466|Ex(AW97281){1:2934|Ex(CA12)

{2:2165|Ex(GATA3)v1:8993

ER{ otherwise

8><
>:

ðEq3Þ

where Ex(g) refers to the gene expression value for the specified

gene (g), for the current tumor. As noted above, the three gene

features used by this classifier are not simply the top 3 features

based on individual information (these features were ranked 1, 5,

2), but are instead the features whose mRMR scores are ranked

highest (Table 1).

The quality of this classifier is how accurately it can predict the

ER-status of a novel tumor. We initially estimated this using the 10-

fold cross-validation accuracy of the FS_SVM learner applied to

E176 [18], which was 93.1762.44% – that is, around 6.8% error.

This low error is within the range expected from gold-standard

central laboratories, and is significantly lower than the 30%

misclassification reported in one jurisdiction [3].

We then tested the validity of the classifier shown in Eq3 on the

independent, novel cohort E23. These samples were normalized

([N1]–[N4]) independently of the E176 group, so the performance

achieved with the E23 group is not dependent upon the E176 data

itself, but only on the resulting Eq3 classifier. This classifier

correctly labeled 22/23 = 95.65% on these patients, which is

consistent with our cross-validation accuracy. This is more

accurate than two other obvious classifiers: based on only a single

gene, or on all of the genes (Material S2).

Overall the Eq3 classifier correctly predicted 188/199 = 94.47%

of the patients in this dataset. Of those misclassified, 4 were IHC

ER- but predicted to be ER+ and 7 were IHC ER+ but predicted

to be ER-. Closer examination of these misclassified patients

revealed that, while some were close to the Eq3 cutoff value (7/11

are within 5%), others were much further away (Figure 4). For the

7 IHC ER+ patients that Eq3 predicted to be ER-, all 7 patients

had early recurrence and 6/7 were deceased; for those 4 IHC ER-

that Eq3 predicted to be ER+, only 1/4 patients had recurrence

and was deceased from her cancer. Based upon this observation,

we compared the survival and recurrence-free survival curves, and

found that the curves based on Eq3-prediction had greater

separation and lower hazard ratios than the ones based on IHC

(0.4096 vs. 0.5090 for survival and 0.5731 vs. 0.7160 for

recurrence-free survival) (Figure 5).

To further test the generality of our classifier, we next

considered every other publicly-available dataset that specified

the patient’s ER-status, using the same Agilent platform (Table 2).

For each of these data sets, we applied [N4] (transformed the data

into z-scores), then used Eq3 to classify each instance. Our

classifier correctly labeled 7/7 of the patients in the GEO dataset

GSE26338 (5ER+ and 2 ER2); and correctly labeled 39/40

patients in dataset GSE5546 (30 ER+, 10 ER2).

We then sought publicly-available datasets specifying ER-status,

on other platforms; this identified two Affymetrix datasets

(Table 2). We used BLAST [21] to correlate the sequence of

each relevant Agilent probe to the closest matches in the

Affymetrix probes: A_32_P104334 (AW97281) matches perfectly

to 230356_at; the closest match to A_23_P372234 (CA12) is

203963_at; and the closest match to A_23_P75056 (GATA3) is

209602_s_at.

Dataset GSE19615 has 115 samples (72 ER+, 43 ER2). We

first transform the data using z-score [N4] and then apply Eq3 to

the data. The classifier correctly labeled 108/115 samples (93.9%

accuracy). Dataset GSE31448 has 350 samples with known ER-

status values (188 ER+, 162 ER2). Since the normalization of this

data was different than ours and the other datasets that we used,

we had to first exponentiate its values (to be in the same range as

other datasets), before applying the z-score transform [N4].

Applying Eq3 to this data correctly labeled 317/350 samples

(90.6% accuracy). We also considered using the more standard

approach, of simply computing the best classifier based on top 10

Figure 2. FS_SVM; a feature selection version of the Support
Vector Machine (SVM) learner. Line 6 runs SVM on the dataset S,
but uses only the r* ‘‘best’’ features, where features are ranked by their
mRMR score15, which is computed in Line 5. Note this mRMR score
combines mutual information (Eq 1) with minimum redundancy. The
goal of the first 4 lines is to compute this r* value: Here, we first partition
the dataset into 10 disjoint same-sized subsets {Si, i = 1…10}, which are
balanced (ie, each is of the same size, and has about the same number
of ER+ instances). FS_SVM then considers each of these Si subsets, one
by one. It first considers the remaining instances, S2i = S 2 Si, and
computes the mRMR score for each feature with respect to this subset
of instances. It then evaluates how well SVM does when using only the
first r = 1, 2,… of these features, in order. Here, it runs SVM, using that
size-r subset of features, on the training set S2i, then evaluates the
resulting classifier on the remaining ‘‘testing subset’’ Si. Line 4 sets r* to
be the smallest value that is within 1 standard deviation of the high-
water mark. See Material S1 for more details.
doi:10.1371/journal.pone.0082144.g002
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features. As such we learned a logistic regression classifier using the

top 10 genes identified in the E176 dataset. However, in the

external datasets, the accuracy of this resulting classifier ranged

from only 53.71% to 85.71% (Table 2).

Three of these four publicly available datasets also had

recurrence data. For the 2 Agilent datasets, only one patient was

classified differently by our classifier; IHC claimed she was ER+
while our classifier predicted ER2 and this patient experienced

recurrence. Of the 7 misclassified patients in the GSE19615

dataset, only one had recurrence. This resulted in only small

differences in the hazard ratios between IHC and Eq3-classified

ER-status and recurrence-free survival.

The above results were based on applying Eq3 to the

normalized expression values of only three genes. Note, however,

that step N2 of the normalization procedure relied on information

based on the expression values of other genes in the microarray,

and steps N3 and N4 relied on having access to a large number of

patients. To explore whether we could make predictions for an

individual patient, using only a small number of expression values

(rather than the full microarray), we considered the simpler

normalization approach of simply log-transforming the expression

values of these three genes, and subtracting the log of the

expression of the ‘‘housekeeping’’ gene ACTB (beta-actin) (oligo

A_23_P135769). This produced slightly modified E1769 and E239

datasets, that used only these 4 values per patient. We then ran the

SVM learning algorithm to this E1769 data, and found this

produced a 10-fold cross-validation accuracy of 162/176

(92.045% accuracy); this classifier then correctly classified 22/23

correctly (95.65% accuracy) on the E239 dataset.

Discussion

Breast cancer transcriptome analyses have been performed for a

variety of purposes. Several studies of frozen primary breast

cancers were designed to find a set of genes whose expressions are

most correlated with new molecular sub-classifications of the

disease [4,6,22–37], or to provide prognostic algorithms related to

risk of relapse and death [28,31,32].

Some of the published studies are ‘‘focused’’, in that they

examine just a few specified genes with established relationships to

the disease phenotype [24,32,38]. One limitation of those focused

studies is that they require prior knowledge about the disease that,

if incomplete or incorrect, means they will not use relevant high-

performing biomarkers. Our work is at the other extreme: we

began with a transcriptome-wide set of all genes [4,34,39,40], from

which we sought transcription patterns that relate to the patient

phenotype, without prior specific biological understanding nor

pre-specified hypotheses.

Our goal was to address a specific unmet medical need: to

generate a simple, RNA-based classifier of breast cancer ER-status

that would be amenable to high-throughput, objective analysis of

formalin-fixed, paraffin-embedded tissue. While we used fresh

frozen tissues to perform our analysis here, such tissues are neither

generally available nor suitable for routine clinical analysis, which

is why most clinical decisions are based on formalin-fixed,

paraffin-embedded tissues. Due to the technical limitations of

analysis of RNA in fixed tissues, it is desirable to use a small

number of transcripts, to facilitate quantitative RT-PCR based

assessments of fixed materials, as is done in the commercially

Table 1. Top 10 genes, sorted by mutual information related to ER-status, based on the E176-cohort.

Index E176-
cohort Gene Name/Oligo ID

Mutual
Information

FS_SVM
Coefficients Index E23 cohort Gene Description

1 AW972815/A_32_P104334 0.8070 20.2466 1284 human cDNA

2 GATA3/A_23_P75056 0.6497 2.2165 162 GATA binding protein 3

3 FABP7/A_23_P134139 0.6273 2182 fatty acid binding protein 7

4 ESR1/A_23_P309739 0.6262 22 estrogen receptor 1

5 CA12/A_23_P372234 0.6223 1.2934 76 carbonic anhydrase XII

6 BCL11A/A_24_P402588 0.6102 208 zinc-finger protein

7 BCL11A/A_24_P411186 0.5960 113 zinc-finger protein

8 CA12/A_24_P330518 0.5795 7 carbonic anhydrase XII

9 CYP2B6/A_24_P339514 0.5612 3 cytochrome P450

10 VGLL1/A_23_P253123 0.5532 662 transcription cofactor

This table also provides the SVM coefficient, the index over the E23-cohort (see text), and a short description of the gene.
doi:10.1371/journal.pone.0082144.t001

Figure 3. Average accuracy of SVM, as a function of number of
features. For each r = 1,2,…,18, line 3 of FS_SVM (Figure 2) computes
the mean ar and standard deviation sr of the empirical accuracies
obtained, over all 10 folds; this figure plots these ar+sr bars, for each r.
Notice the average accuracy on the hold-out sets increases as the
number of features is increased, then levels out, with only minor
fluctuations. Here, the largest accuracy occurs at r = 4; notice however
that this accuracy is ‘‘essentially’’ the same as at r = 3. We therefore set
r* = 3 as it is the smallest number of features whose accuracy’s ‘‘mean +
standard deviation’’ is at least the high-water-mark mean accuracy.
doi:10.1371/journal.pone.0082144.g003
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available Oncotype DX platform [41]. Table 3 provides a short

comparison, highlighting the major advantages and disadvantages

of these different technologies.

We have shown that machine learning analysis of 27,688

transcription values can be used to generate a simple classifier that

uses transcription values of only three genes to reliably and

efficiently classify novel, independent primary breast cancer ER-

status, with approximately 93% accuracy. Moreover, this classifier

is extremely robust as it is able to correctly classify patients from

different studies, produced on different platforms in different labs,

with the same high accuracy. To our knowledge, this is the only

study that has shown that a model learned from one platform, can

work effectively on another. It also appears to work effectively

using only the expression value of a very small set of genes – i.e., it

does not require a full microarray.

As noted above, the goal of the machine learning system, to

produce a classifier, is different from the goal of the standard

biostatistics approach, to find the features most relevant to a

phenotype, here ER-status. This leads to another distinction: while

the results of the biostatistics approach (a specific set of

biomarkers) often varies significantly across datasets [42], the

results of the machine learning approach (here, a classifier)

typically does not vary (Table 2). The literature includes many

examples where one dataset suggests that one set of genes is

relevant with respect to a phenotype, but another dataset suggests

a very different set of genes for the same phenotype. As one

example, both Sorlie et al. [34] and van’t Veer et al. [7] sought

genes related to survival of breast cancer patients, identifying sets

of 456 genes and 231 genes respectively. Unfortunately, these two

sets have a relatively small intersection, with Jaccard score

(intersection/union) of only 0.025 [43].

We found that the association sets on our two datasets were

similarly inconsistent. Table 1 shows the 10 genes that the E176-

cohort considers most relevant to ER-status. The ‘‘Index (23-

cohort)’’ column shows that the E23-cohort places only 2 of these

in its top-10, corresponding to a Jaccard score of only 2/18<0.11.

Note also that only 4 of these E176 top-10 are in the E23 top-100,

and only 24 of the E176 top-100 are in the E23 top-100 (Jaccard of

Figure 4. The Eq3 Classifier Predicts ER-Status with High Accuracy. The individual patient Eq3 values from the combined E176 and E23
datasets are sorted in descending order. The black triangular peaks mark patients classified as ER+ or ER- from IHC but the opposite from the Eq3
classifier, and the number of patients within each peak is labeled above. a) Histogram of the above sorted Eq3 values, showing the percentage of IHC-
determined ER+ patients, in each 10-patient bin.
doi:10.1371/journal.pone.0082144.g004

Figure 5. Kaplan-Meier Survival and Recurrence-Free Survival Curves For Patients Sorted by IHC-Determined ER-Status and Eq3
Predicted ER-Status. Both the survival and recurrence-free survival curves had greater separation and lower hazard ratios (HR) when the patients
were sorted by Eq3 ER-status compared with traditional IHC. a) Survival curves for patients split based on IHC ER-status (ER+ n = 126, median
survival = 3807days; ER- n = 72, median survival = 2704days; HR = 0.5090; 95% CI = 0.2968–0.8731). b) Survival curves for patients split based on Eq3
ER-status (ER+ n = 123, median survival = 3807days; ER- n = 75, median survival = 1623days; HR = 0.3901; 95% CI = 0.2420–0.6935). c) Recurrence-free
survival curves for patients split based on IHC ER-status (ER+ n = 126, median recurrence-free survival = 1694days; ER- n = 72, median recurrence-free
survival = 1246days; HR = 0.7160; 95% CI = 0.4623–1.109).d) Recurrence-free survival curves for patients split based on Eq3 ER-status (ER+ n = 123,
median recurrence-free survival = 1820days; ER- n = 75, median recurrence-free survival = 875days; HR = 0.5731; 95% CI = 0.3718–0.8833).
doi:10.1371/journal.pone.0082144.g005
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24/176<0.136). While this problem is standard for association

studies that deal with different datasets, it is not a problem for our

(machine learning) prediction study, as we found that the classifier,

based on the E176-cohort, was extremely accurate on the

independent E23-cohort validation set, as well as 4 other

publically-available datasets, including two using a different

platform. This is because the goal of a learning system is different,

in explicitly seeking a classifier, which applies in general and in

particular, designed to correctly classify novel subjects (i.e.,

patients who were not in its training set).

One potential problem of this study is that we are comparing

the results of the 3 gene classifier against IHC results, which might

have misclassified the patient ER status. The misclassified patients

in our dataset had clinical outcomes more closely correlated with

their predicted ER-status than their IHC-determined ER-status.

This may indicate that this classifier is a better predictor of survival

and recurrence than IHC ER-status and may reflect the activity of

the estrogen receptor rather than just its expression, but further

work is needed to confirm this.

Another advantage of our classifier is that it only uses three

features, which is significantly fewer than the 550 genes used by

the classifier produced by Van’t Veer et al. [7]. Many other

researchers have used various machine learning methods (Artificial

Neural Networks, Weighted-Voting, SVM, Logistic Regression

[6,29,44] to produce classifiers for predicting ER-status; each of

these classifiers similarly required a large number of genes (5000 to

25000) for this prediction task. Additional discussion of related

studies is available in Material S3.

The strength of our classifier is further demonstrated by the fact

that the 3 features, normalized against a single housekeeping gene,

were able to classify the E176 and E23 datasets with 92.045% and

95.65% accuracy respectively, indicating that it may be possible to

develop a test for ER-status with as few as four genes; of course,

future validation is required.

Conclusion

Effective management of breast cancers relies heavily on

accurately determining the tumor’s ER-status. While standard

IHC assessments are reasonably accurate, they are subject to

human error, are dependent on pre-analytic variables, and lack

robust internal positive and negative controls. We therefore

propose a transcription-based assessment for ER-status, and find

that a learned combination of the assessment of 3 specific genes is

sufficient to classify ER-status with approximately 93% accuracy

in both a 176-patient training cohort, and also in several

independent datasets, including some from different RNA-based

platforms.

Given the many methodological advantages of the FS_SVM

learning algorithm, we believe that this learning tool has general

applicability, in that it produces a classifier that uses a small subset

of features to reliably predict a phenotype. Future prospective

studies with qRT-PCR of these 3 genes and beta-actin for

normalization will determine if this classifier is a better predictor of

endocrine therapy response than the current assessment method-

ology. Given the inherent variability of many IHC diagnostic tests,

this approach warrants further evaluation in the setting of cancer

biomarker discovery and validation.

Table 2. Accuracy for our 3-feature classifier, over various datasets.

DataSet Platform # ER+/ER2*
Accuracy of 3-Feature
Classifier

Accuracy of Logistic Regression (Top 10
Oligos)

E176 Agilent 112/64 93.1762.44% (10 fold CV)

E23 Agilent 14/9 22/23 = 95.65% 22/23 = 95.65%

GSE26338 Agilent 5/2 7/7 = 100% 6/7 = 85.74%

GSE5546 Agilent 30/10 39/40 = 97.5% 23/40 = 57.5%

GSE19615 Affymetrix 72/43 108/115 = 93.91% 79/115 = 68.7%

GSE31448 (log) Affymetrix 188/162 317/350 = 90.57% 188/350 = 53.71%

*#ER+/ER2: Number of patients that were estrogen receptor positive/negative from gold standard IHC analysis.
doi:10.1371/journal.pone.0082144.t002

Table 3. Comparison of the advantages and disadvantages of IHC versus gene expression for tumor assessment (e.g. ER-status).

Immunohistochemistry Gene Expression

Issue Advantage Disadvantage Advantage Disadvantage

Specificity Specific to malignant cells Restricted to known proteins Not restricted to known/prespecified
features; allows large ‘‘discovery set’’
evaluation

Stromal contamination unless
microdissection

Target Protein based Subjective interpretation (not yet
amenable to automated
interpretation; only malignant cells
scored)

Objective and quantitative
interpretation

Technically challenging to apply to
fixed tissues

Preanalytic
Variables

Does not require frozen tissue;
routinely applied to fixed tissues

Preanalytic variability (fixation time
and method) cannot be readily
assessed)

Effects of preanalytic variability can
be assessed with RNA quality;
potential for automated interpretation

Preanalytic variability (RNA quality)

doi:10.1371/journal.pone.0082144.t003
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