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Abstract

The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is
how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that
maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the
community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used
criterion to define communities, Newman and Girvan’s modularity (Q). Applying S maximization to real networks often
provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our
previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure
and open new routes for the understanding of complex networks.
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Introduction

A network of interacting units is often the best abstract

representation of real-life situations or experimental data. This

has led to a growing interest in developing methods for network

analysis in scientific fields as diverse as mathematics, physics,

sociology and, most especially, biology, both to study organismic

(e. g. populational, ecological) and cellular (metabolic, genomic)

networks [1–5]. A significant step to understand the properties of a

network consists in determining its communities, compact clusters

of densely linked, related units. However, the best way to establish

the community structure of a network is still disputed. Many

strategies have been used (reviewed in [6]), the most popular being

the maximization of Newman and Girvan’s modularity (Q) [7].

However, Q has the drawback of being affected by a resolution

limit: its maximization fails to detect communities smaller than a

threshold size that depends on the total size of the network and the

pattern of connections [8]. Since this finding, no other global

parameters have been proposed to substitute Q. Alternative

strategies (searching for local structural determinants, multilevel

optimization of Q) have been suggested, but none of them has

achieved general acceptance [6].

Some years ago, we suggested determining the community

structure of a network by evaluating the distributions of intra- and

inter-community links with a cumulative hypergeometric distribu-

tion [9]. Accordingly, to find the optimal community structure of a

network of symmetrically connected units (undirected graph) is

equivalent to maximize the following parameter:

S~{log
XMin(M,n)
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Where F is the maximum possible number of links in a network

(i. e. [k22k]/2, being k the number of units), n is the observed

number of links, M is the maximum possible number of

intracommunity links for a given partition, and p is the total

number of intracommunity links actually observed in that

partition. The parameter S, which stands for Surprise, indeed

measures the ‘‘surprise’’ (improbability) of finding by chance a

partition with the observed enrichment of intracommunity links in

a random graph.

In this work, we show that S has features that make it the

parameter of choice for global estimation of community structure.

By using standard and novel benchmarks and a set of high-quality

algorithms for community detection, we show that maximizing S

often provides optimal characterizations of the existing commu-

nities. When this method is applied to real networks, we obtained

some expected, logical solutions – some of them much better than

those provided by Q maximization – but also unexpected

partitions that demonstrate the limitations that the usage of

inefficient tools has hitherto cast over the field.

Results

Testing the performance of a global parameter to determine

community structure requires both a set of efficient algorithms for

community detection and a set of standard benchmarks, consisting

in synthetic networks of known structure. In this study, six selected

algorithms (see Methods) were tested in two types of benchmarks,

which will be called LFR and RC throughout the text. LFR

(Lancichinetti-Fortunato-Radicchi) benchmarks are characterized

by providing networks in which both the degrees of the nodes and

the sizes of the communities follow power laws [10]. RC (Relaxed

Caveman) benchmarks start with networks in which all the nodes

in a community are connected. Then, this structure is relaxed by

generating intercommunity links [11]. We further divided LFR

and RC benchmarks into ‘‘open’’ and ‘‘closed’’. Open bench-
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marks have been commonly used in the past (e.g. [10,12,13]). In

them, sets of similar networks with different proportions of

intercommunity links are tested. With many intercommunity links,

the networks approach randomness. In closed benchmarks, a

starting community structure is progressively transformed into a

second, final structure which is exactly known.

For each benchmark, we estimated S and Q with the six

algorithms. The maximum values of S and Q obtained (Smax and

Qmax) provided the partitions used to compare with the known

community structures. As in previous works [10,14,15], Normal-

ized Mutual Information (NMI) was used to measure the

congruence between the known and the estimated community

structures. However, we also used the Variation of Information

(VI) [16] in a particular case.

Open benchmarks
Figures 1a and 1b summarize the results obtained for four

standard open LFR benchmarks that differ in number of units and

community sizes [10] (see Methods). Figure 1a indicates that

selecting the solution with a maximum S value leads to a perfect

characterization of the network structure (NMIS = 1) even when

that structure is blurred by a large number of inter-community

links, generated by increasing the mixing parameter m up to 0.5–

0.7 (see Methods for m definition). If m is further increased, the

original partition is not chosen by any algorithm (NMIS,1). This

suggests that the original community structure is not present

anymore, which is in good agreement with the fact that

Smax&Sorig, where Sorig is the S value obtained assuming that the

original community structure is still present (Table S1). S

maximization qualitatively improves over Q maximization

(Figure 1b and Table S1): NMIS.NMIQ in 2827/3600 = 78.5%

of the cases, NMIQ.NMIS in just 4.1% of them and the rest are

ties. Interestingly, NMIQ%NMIS in quasi-random and random

networks (Figure 1b), suggesting that maximizing Q overimposes

spurious community structures in those cases. It is significant that S

maximization provided better average NMI scores than those

obtained by any single algorithm in these same benchmarks [15].

Different algorithms provided the top S scores, depending on the

benchmark and m value examined (Figure 2a and Figure S1).

The discovery of the resolution limit of Q showed that

heterogeneous community sizes may greatly affect the ability of

global parameters to detect structure [8]. However, by construc-

tion, community sizes in the standard LFR benchmarks are very

similar. Pielou’s evenness indexes (PI) [17] ranged from 0.96 to

Figure 1. Results for open LFR and RC benchmarks. a) Results for the four standard LFR networks. B and S indicate big and small communities
respectively and 1000 or 5000 the number of nodes. m: mixing parameter. NMI measures the congruence between the known and the deduced
community structures. Each point is based on 100 different networks; standard errors of the mean are too small to be visualized. Values for 100
random (R) networks with the same number of units and degree distributions are also shown. b) Comparison of S and Q maximizations in LFR
benchmarks. The NMIQ/NMIS ratios, which are almost always below 1, are shown. c) Results for the RC benchmark. The parameter Degradation (D)
indicates the percentage of both deleted and shuffled links. Each black dot is based on 100 networks, again standard errors are so small that cannot
be visualized at this scale. For each value of D, results for 100 random networks with the same number of links are also shown (open circles). d)
Relative quality of the partitions generated by maximizing S and Q in RC benchmarks. As in panel b, NMIQ/NMIS ratios are shown. White dots: results
for random networks with different D values.
doi:10.1371/journal.pone.0024195.g001
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0.98 in the four benchmarks used above, close to the maximum

value of the index (PI = 1 for communities of identical size).

Considering that it was critical to test S in more extreme situations,

we built the RC benchmarks, which have PIs as low as 0.70 (as

shown in Figure S2). Figures 1c and 1d summarize the results for

open RC benchmarks, with progressive Degradation (D; see

Methods) of the original structure. That structure is efficiently

detected by S maximization, with a slow decrease in performance

when D increases (Figure 1c; see also Table S2, Figure S2). Again,

S maximization clearly improves over Q maximization in these

benchmarks (Figure 1d; NMIS.NMIQ in 848/900 = 94.2% of the

cases, while NMIQ.NMIS in just 3.3% of the cases). As occurred

for the LFR benchmarks, none of the algorithms obtained the best

results in all networks (Figure 2b).

Closed benchmarks
The results just shown indicate that using Smax to detect

community structure has obvious advantages over maximizing Q.

However, they do not allow to evaluate how optimal is that

criterion, given that the potential maximum NMIs are unknown.

To solve this limitation, we generated closed LFR and RC

benchmarks, in which we had an a priori expectation of the

maximum NMI values. Results are shown in Figures 3 (LFR) and

4 (RC). In all cases in which Smax was used, an almost perfectly

symmetrical dynamics was observed. In the process of converting

the original structure into the final one (by increasing the

Conversion parameter; see Methods), NMI losses for the first

structure are compensated by increases for the second. The

average of both NMIs is thus approximately constant, and it has a

value identical or very close to (1+NMIIF)/2, where NMIIF is

obtained comparing the initial and final structures (Figures 3a–d;

Figures 4a–c; Figures S3, S4). This is exactly the result expected

for an optimal parameter (see theoretical details in Methods). On

the contrary, maximizing Q shows a poor performance except

when community sizes are very similar/identical (Figures 3e, 4d;

Figures S3, S4). The same results were obtained using a second

measure of congruence, Variation of Information (VI) (Figures S5,

S6). Finally, in the LFR benchmarks, Smax was always identical or

higher than Sorig (Figure 3f). However, this does not happen for the

RC benchmarks (Figure 4e). Therefore, these algorithms some-

times fail to obtain the highest possible S values. This fact may

explain the slight departures from NMI symmetry observed in

some RC benchmarks (blue diamonds in Figures 4b, 4c).

Real networks
Figure 5 summarizes the Smax results for three real networks.

The first example is based on the CYC2008 database, which

compiles 1604 proteins that belong to 324 protein complexes [18].

The general agreement between communities detected using Smax

and a priori defined protein complexes is almost perfect,

NMIS = 0.91. On Figure 5a, the 11 communities of size .20,

out of the 313 detected, are detailed to show how fine-grained is

the classification obtained. On the contrary, optimizing Q

provides a very coarse classification into just 24 communities with

NMIQ = 0.57. The largest five communities alone almost cover the

whole network (Figure 5b). These results indicate how excellent is

S performance when there are many small, abundant communi-

ties, a typical situation in which Q, affected by its resolution limit,

radically fails. Figure 5c shows, as a positive control, the results for

a classical benchmark of well-known structure, the College football

network [12]. The agreement with the expected communities is

again very high (NMIS = 0.93). Finally, Figure 5d shows the results

for another well-known example, the Zachary’s Karate club network

[12,19]. This social network supposedly contains two communi-

ties. However, S analyses surprisingly unearthed 19 communities,

12 of them singletons (Figure 5d).

Discussion

In this study, we have shown the potential of maximizing the

global parameter Surprise (S) to determine the community

structure present in complex networks. The results indicate that

it has a qualitative better performance than the hitherto most

commonly used global measure, Newman and Girvan’s modular-

ity (Q). The advantage of S over Q is maybe not that surprising,

considering the different theoretical foundations of both measures.

Newman and Girvan’s Q is based on a simple definition of

community, as a region of the network with an unexpectedly high

density of links. However, the number of units within each

community does not influence the value of Q [7]. On the contrary,

S evaluates both the number of links and of units in each

community (see Formula (1)). Therefore, S implicitly assumes a

more complex definition of community: a precise number of units

for which it is found a density of links which is statistically

unexpected given the features of the network. In this context of

comparison of both measures, it is also very significant that, while

Figure 2. Average performance of the algorithms in the open
LFR and RC benchmarks. The algorithms used were described by
Arnau et al. [9], Aldecoa and Marı́n (AM) [13], Rosvall and Bergstrom (RB)
[23], Ronhovde and Nussinov (RN) [24], Blondel et al. [25] and Duch and
Arenas (DA) [26]. a) Typical example of the results obtained in LFR
benchmarks, here with 5000 units and big communities (see Figure S1
for all of them). After ordering the algorithms from best to worst
performance, their ranks were added for the 100 different networks.
Performance was defined as P = 6 - average rank. Therefore, the
maximum value P = 5 means that an algorithm was the best in all
networks tested, while P = 0 means that it was always the worst. As it
can be observed, none of the algorithms achieved optimal results in all
cases. b) Results obtained in the RC benchmark with different
Degradation (D) values. Performance evaluated as in panel a).
doi:10.1371/journal.pone.0024195.g002
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some of the algorithms used in this work were the best among

those specifically designed to maximize Q, none was devised to

maximize S. Therefore, our results actually underestimate the

Figure 4. Results for closed RC benchmarks. Three networks with
different heterogeneity in community sizes (Pielou’s indexes equal to
0.70, 0.85 and 1.00 respectively) were used as examples. a) PI = 1; b)
PI = 0.85; c) PI = 0.70. Results similar to those in Figure 2, except that the
figures are not so perfectly symmetrical in the most heterogeneous
networks (panels b and c; blue diamonds slightly deviate from the
straight line). d) Average NMI values are much worse when Q is used,
provided that community sizes are heterogeneous. See also Figure S4.
e) Smax/Sorig,1 with heterogeneous community sizes. The algorithms
used did not detect in those cases the maximum possible S, which still
may correspond to the initial structure. This may contribute to the
departures from symmetry shown in panel a). The fact that Smax/
Sorig&1 with C,0.50 and PI = 0.70 (blue diamonds) implies that the
algorithms are detecting structures different from the initial one.
doi:10.1371/journal.pone.0024195.g004

Figure 3. Results for closed LFR benchmarks. a) LFR benchmark
with 1000 units and big communities. For each Conversion (C) value,
NMIs comparing the Smax partition with the initial (black dots) or final
(red squares) community structures were obtained. The symmetrical
results led to NMI averages (blue diamonds) that, with great precision,
fell in a straight line of value (1+NMIIF)/2. Dots are based on 100
independent analyses. b–d) LFR benchmarks with, respectively, 1000
units, small communities (b), 5000 units, big communities (c) and 5000
units, small communities (d). Results are very similar to those in panel a).
e) Average NMI values for partitions obtained maximizing Q are worse
than those obtained maximizing S, especially as we move towards
C = 50, in which the real community structure is more difficult to
establish. This effect is exacerbated by large number of units and small
community sizes, due to the resolution limit of Q. Results for C.50 are
symmetrical to the ones shown here. See also Figure S3. f) Smax/Sorig

ratio $1, i. e. either the original structure or a different one with higher
S is found. These results are compatible with the algorithms used being
able to detect the true structure present with great accuracy.
doi:10.1371/journal.pone.0024195.g003
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power of S maximization for community detection. A direct

example of that underestimation is shown in Figure 4e: the

maximum values of S were, in some cases, not found. The few

exceptions found in which NMIQ.NMIS (3–4% of all the cases

examined in the open benchmarks) could be also explained by an

incomplete success in determining Smax with these algorithms.

The commonly used open benchmarks are useful for general

evaluations of the performance of different algorithms, but they do

not allow to establish how optimal are the results obtained. For

that, we have devised novel closed benchmarks in which an initial

known community structure is progressively transformed into a

second, also known, community structure. Provided that both

community structures are identical, it can be demonstrated that, at

any point of the transformation from one to the other, the average

of the NMIs of the solution found respect to the initial and final

structures should approximate a constant value ([1+NMIIF]/2), if

that solution is optimal (see Methods). This feature allows

establishing the intrinsic quality of the partitions obtained, with

S maximization often providing optimal results. We conclude that

S maximization establishes the community structure of complex

networks with a high accuracy. Two promising lines of research

are clear. First, generating novel, specific algorithms for S

maximization, which may improve over the existing ones. Second,

building a standard set of closed benchmarks to test any new

algorithms for community detection. Our LFR and RC closed

benchmarks may be a good starting point for that standard set.

When S maximization was applied to real networks, the results

obtained are of two types. On one hand, for the CYC2008 and

College football networks, the expectation was to find a clear

community structure which should faithfully correspond to either

the complexes to which the proteins examined are part (CYC2008

network) or to the conferences to which the teams belong (College

football network), given that intracomplex or intraconference links

are abundant (e. g. Figure 5c). These are exactly the results found

using Smax. On the other hand, the structure of the Zachary’s

karate network is far from obvious (Figure 5d). Therefore, finding

that, according to Smax, the network contains some small groups

plus many singletons is, at least a posteriori, not so unexpected. A

natural question is then why the scientific community has been so

keen of exploring this particular network, often to establish

whether an algorithm was able or not to detect the putative two

communities [e. g. refs. 7, 12, 19, 20 among many others]. This

may reflect a psychological bias, to which the use of under-

performing methods for community detection may have certainly

contributed. It shows to which extent human prejudices may taint

evaluations in this type of ill-defined problems.

Methods

Algorithms used to maximize S and Q
Six of the best available algorithms, selected either by their

exceptional performance in artificial benchmarks or their success

in previous analyses of real and simulated networks [9,13–

15,21,22], were used. They were the following: 1) UVCluster

algorithm [9,13]: It performs iterative hierarchical clustering,

generating dendrograms. The best values of S and Q were

obtained scanning these dendrograms from root to leaves. 2)

SCluster algorithm [13]: also performs iterative hierarchical

Figure 5. Smax analyses applied to real networks. Community structure of the CYC2008 network (a, b), College football network (c) and
Zachary’s karate club network (d), according to S maximization (panels a, c, d) or Q maximization (panel b). In panel c, the known community
structure is shown (squares). The broken lines in panel d divide the network into the two communities assumed to exist. That division of the network
is not supported at all by Smax analyses. While S(2 communities) = 13.61, the optimal division found has S(19 communities) = 25.69. Twelve of these optimal
communities are singletons (white dots).
doi:10.1371/journal.pone.0024195.g005
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clustering, but using an alternative strategy which is faster and

sometimes more accurate than the one implemented in UVClus-

ter. 3) Dynamic algorithm by Rosvall and Bergstrom [23]: an

algorithm based on expressing the characterization of communi-

ties as an information compression problem. 4) Potts model

multiresolution algorithm [24]: works by minimizing the Hamil-

tonian of a Potts spin model at different resolution scales, i. e.

searching for communities of different sizes. 5) Fast modularity

optimization [25]: devised to maximize Q. It provides multiple

solutions from which values for S and Q can be obtained, and the

maximum ones were used in our analyses. 6) Extremal

optimization algorithm [26]: A divisive algorithm also developed

to maximize Q. Analyses were always performed with the default

program settings.

Features of the benchmarks
First, the recently developed LFR benchmarks, specifically

devised for testing alternative community detection strategies [10],

were used. In particular, we chose four standard LFR benchmarks

already explored by other authors [15]. The networks analyzed

had either 1000 or 5000 units and were built according to two

alternative ranges of community sizes (Big (B): 20–100 units/

community; Small (S): 10–50 units/community). For each of the

four conditions (1000 B, 1000 S, 5000 B, 5000 S), 100 different

networks were generated for each value of a mixing parameter m,

which varied from 0.1 to 0.9 [15]. m is the average percentage of

links that connect a unit to those in other communities. Logically,

increasing m weakens the network community structure. When

m= 0.9, the networks are quasi-random (see below).

Once found that these LFR benchmarks generated networks

with communities of very similar sizes, we decided to implement

RC benchmarks in which these sizes were more variable. All

networks in these benchmarks had 512 units divided into 16

communities. One hundred networks with random community

sizes, determined using a broken-stick model [27], were generated.

This model provides highly heterogeneous community sizes.

Progressive weakening of the community structure of the RC

networks, similar to the effect of increasing m in the LFR networks,

was obtained as follows. Initially, all units of each community in

the network were fully connected. Then, that obvious structure

was progressively blurred, by first randomly removing a certain

percentage of edges and then randomly shuffling the same

percentage of links among the units. That common percentage,

we have called Degradation (D). Thus, D = 10% means that, first,

10% of the links present were eliminated and then 10% of the

remaining edges were randomly shuffled among units. Shuffling

involved first the random removal of an edge of the graph and

then the addition of a new edge between two randomly chosen

nodes.

In the LFR and RC benchmarks just described it was possible to

compare networks having obvious community structures (gener-

ated with low m or D parameters) with others that were

increasingly random. This type of benchmarks, we have called

open. We also generated closed LFR and RC benchmarks. In

them, links were shifted in a directed way, in order to convert the

original community structure of a network into a second, also

predefined, structure. In this way, it is possible to monitor when

the original structure is substituted by the final one according to

the solutions provided by Smax or Qmax. In the LFR and RC closed

benchmarks, the starting networks were the same described in the

previous paragraphs, with m= 0.1 (LFR) or D = 0 (RC) respec-

tively, and the final networks were obtained by randomly

relabeling the nodes. Therefore, the initial and final networks

had identical community structures but the nodes within each

community were different. Conversion (C) is defined as the

percentage of links exclusively present in the initial network that

are substituted by links only present in the final one (i. e. C = 0:

initial structure present; C = 100: final structure present).

NMI symmetry as a measure of performance in closed
benchmarks

In our closed benchmarks, a peculiar symmetrical behavior of

NMI values respect to the initial and final partitions is expected.

Imagine that a putative optimal partition is estimated according to

a given criterion. Let us now consider the following triangle

inequality:

NMIIEzNMIEFð Þ=2ƒ 1zNMIIFð Þ=2 ð2Þ

where NMIIE is the normalized mutual information calculated for

the initial structure (I) and the estimated partition (E), NMIEF is

the normalized mutual information for the final structure (F)

versus the estimated partition and NMIIF is the normalized mutual

information for the comparison between the initial and final

structures. Inequality (2) holds true if the structures of I, F and E

are identical (i. e. both the number and sizes of the communities

are the same, but not necessarily are the same the nodes within

each community). This follows from the fact that

1{NMIXY~VIXY= H Xð ÞzH Yð Þð½ � ð3Þ

Where VIXY is the Variation of Information for both partitions

[16] and H(X) and H(Y) are the entropies of the X and Y

partitions, respectively. Given that VI is a metric [16], it satisfies

the triangle inequality

VIABzVIBC§VIAC ð4Þ

If, as indicated, the structures of all partitions are identical, then

all their entropies are also identical. In that case, the following

inequality can be deduced from formulae (3) and (4):

1{NMIABð Þz 1{NMIBCð Þ§ 1{NMIACð Þ ð5Þ

From this inequality, and substituting A, B and C with I, E and

F, respectively, formula (2) can be deduced. Formula (2) therefore

means that, provided that I, E and F have the same structure, the

average of NMIIE and NMIEF may acquire a maximum value

[(1+NMIIF)/2]. Inequality (2) will also hold approximately true if

the entropies of I, E and F are very similar (i. e. many identical

communities). In our closed benchmarks the I and F structures are

identical, and we progressively convert one into the other. It is thus

expected that the optimal partition along this conversion is similar

in structure to both I and F. Hence, deviations from the expected

average value (1+NMIIF)/2 are a cause of concern, as they

probably mean that the optimal partition has not been found. On

the other hand, finding values equal to (1+NMIIF)/2 is a strong

indication that the optimal partition has indeed been found.

It is worth noting that, although NMI has been commonly used in

this field [10,14,15], using VI instead has clear advantages to analyze

closed benchmarks: Formula [4] can be used instead of Formula (2),

avoiding considering entropies at all. This is why we evaluated the

closed benchmark results both using NMI and VI (see above).

Network Community Detection
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Real networks
Two of the three networks explored, known as College football and

Zachary’s karate networks, have been frequently used in the past in

the context of community detection [e. g. refs. 7, 12, 19, 20, 28].

The third network derived from the CYC2008 protein complexes

database [18]. This database contains information for 408 protein

complexes of the yeast Saccharomyces cerevisiae. The protein complex

data were converted into 324 non-overlapping complexes by

assigning each protein present in multiple complexes to the largest

one. This was made to allow for NMI calculations. Once each

protein (unit) was assigned to a non-overlapping cluster (commu-

nity), we downloaded from the BioGRID database [29] the

protein-protein interactions (edges) characterized so far for all

these proteins. The final graph contained 1604 nodes and 14171

edges.

Supporting Information

Figure S1 Average performances of the algorithms in
the LFR benchmarks. With different network sizes (1000, 5000

units), community sizes (small: 10 to 50 units per community; big:

20–100 units per community) and values of mixing parameter (m)

and for random networks of the same size. After ordering the

algorithms from best to worst performance, their ranges were

added for the 100 different networks. Performance is defined as

P = 6 - average range.

(TIF)

Figure S2 Details of the results for the RC benchmark.
a) Normalized Mutual Information values for the 100 networks

tested, obtained by S maximization. Given that both a low Pielou’s

index and high D may alter the original structure of the network,

these results would tend to underestimate the real quality of the

partition into communities obtained. Lines correspond to the

second degree polynomials that best fit the results, which were

found to be better than the first degree ones. b) Examples of the

relative sizes of communities for different Pielou’s indexes, to show

the very different structures provided by generating the commu-

nity sizes according to a broken stick model. c) Summary of the

results in the RC benchmark with Q maximization. The results

are much worse than those shown in panel a), due to the resolution

limit that affects Q values when some communities are small (low

Pielou’s indexes). Lines again correspond to the best fits according

to second degree polynomials.

(TIF)

Figure S3 Behavior of S and Q maximization in closed
LFR benchmarks. Notice the obvious decrease below

(1+NMIIF)/2 when Q is maximized.

(TIF)

Figure S4 Results for S and Q maximization in the
closed RC benchmarks. The behavior of Smax is again

qualitatively better than the one of Qmax, except when all

communities are identical.

(TIF)

Figure S5 Behavior of S and Q maximization in closed
LFR benchmarks using Variation of Information (VI) as
a measure of congruence. As it can be deduced from Formula

[4] in the main text, a good behavior of a parameter implies

minimal deviations from the expected value VIIF/2 (blue line).

Results are almost identical to those shown in Figure S3 using

NMI. Smax behavior is clearly better than Qmax behavior.

(TIF)

Figure S6 Results for S and Q maximization in the
closed RC benchmarks, measured with VI. The behavior

of Smax is again qualitatively better than the one of Qmax,

confirming the results shown in Figure S5.

(TIF)

Table S1 Detailed results obtained for the LFR bench-
marks. The values of NMI when S and Q are maximized are

indicated, together with the percentage of cases in which NMI = 1

and the values of Smax and Sorig (i. e. the S value obtained assuming

that the original structure is present). Notice that when m= 0-6-0.7,

Smax.Sorig, meaning that the original structure is not the one

present anymore. In those cases, NMIs are expected to rapidly

decrease, as indeed is observed.

(DOC)

Table S2 Details of the RC benchmark results. Same

data as in Table S1, but with variations in the Degradation (D)

parameter. Data for random networks of the same size are also

included.

(DOC)
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