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Abstract

TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear
factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation.
Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of
phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL
expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished
NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io
increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and
protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-
increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of
NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical
inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation
by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL
promoter.
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Introduction

The mammalian intestinal mucosa undergoes a process of

continual renewal, characterized by active proliferation of stem

cells localized near the base of the crypts, progression of these cells

up the crypt-villus axis with cessation of proliferation and

subsequent differentiation into one of the four primary cell types

[1]. In the process of differentiation, enterocytes acquire structural

features of mature cells, such as microvilli, and express specific

gene products such as brush border enzymes [2]. The differen-

tiated enterocytes, which make up the majority of the cells of the

gut mucosa, then undergo a process of programmed cell death

(i.e., apoptosis) and are extruded into the gut lumen [3]. The

cellular mechanisms regulating this tightly regimented process

have not been clearly defined.

Tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL; also called Apo-2 ligand), a novel member of the TNF

family, was identified based on homology to the extracellular

domains of TNF and FasL (CD95L) [4,5]. Unlike TNF and FasL,

TRAIL is expressed in a variety of cell types and is capable of

inducing apoptosis in neoplastic cells [6]. In addition, TRAIL

blockade results in hyperproliferation of synovial cells and

lymphocytes, whereas TRAIL inhibits DNA synthesis in lympho-

cytes by blocking cell cycle progression [7]. Recently, TRAIL has

been shown to promote dendritic cell differentiation [8]. We have

found that inhibition of phosphatidylinositol 3-kinase (PI3-kinase)

or overexpression of PTEN enhances intestinal cell differentiation

[9] and increases TRAIL expression in intestinal cells [10].

Moreover, TRAIL is expressed in the differentiated region of the

small bowel and colonic mucosa. Exposure of the fetal human

intestine cell line, tsFHI, to recombinant TRAIL increased the

expression levels of the canonical differentiation marker dipepti-

dylpeptidase IV (DPPIV) and the cyclin-dependent kinase

inhibitors p21Waf1 and p27Kip1 [11], which mediate the induction

of growth arrest and the stabilization of differentiated traits,

respectively. Together, these studies demonstrate an important

role for TRAIL in the regulation of intestinal cell differentiation.

The nuclear factor of activated T cells (NFATc) proteins are a

family of transcription factors whose activation is controlled by

calcineurin, a calcium-dependent phosphatase. Four distinct genes

encoding closely related NFATc proteins (NFATc1–4) [12] have

been identified and are involved in multiple biological processes

ranging from lymphocyte activation and development to cardiac

hypertrophy [13]. NFAT, which exists in a highly phosphorylated

form in the cytoplasm, translocates into the nucleus upon

dephosphorylation by the phosphatase calcineurin in response to

increases in intracellular calcium, where it binds to enhancer

elements of specific genes leading to transcriptional activation

[14]. Calcineurin activity can be blocked by cyclosporin A (CsA),

thereby preventing the nuclear translocation of NFAT. NFAT

plays a critical role in the regulation of T cell receptor-mediated

CD95 ligand expression [15] and has been shown to regulate cell

differentiation and development in a number of cell types. For

example, NFAT regulates the development of the cardiovascular

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19882



system [16]. Primary keratinocyte cell differentiation is associated

with nuclear localization of NFAT; this effect is blocked by CsA

[17]. NFAT also plays a role in adipocyte differentiation [18] and

stimulation of myogenic differentiation via activation of calci-

neurin [19]. Recently, we have shown that activation of NFAT

increases PTEN and p27kip1 expression and decreases Akt

phosphorylation and that NFAT activation is required for sodium

butyrate mediated-intestinal cell differentiation [20]. However, the

NFAT target genes, which may contribute to intestinal differen-

tiation, are not known.

Previously, we cloned the human TRAIL promoter and

identified a number of putative transcription factor binding sites

including NFAT and Sp1 sequences [21]. Given the important

role of NFAT in tissue differentiation and the fact that NFAT

binding sites are located in the TRAIL promoter, we determined

whether NFAT plays a role in TRAIL regulation. Here, we show

induction of TRAIL expression in intestinal-derived cells by

activation of the NFAT pathway. Inhibition of NFAT decreased

TRAIL protein expression while overexpression of NFATc1

increased TRAIL promoter activity and increased TRAIL protein

and mRNA expression. Deletion of putative NFAT binding sites in

the TRAIL promoter did not affect NFATc1 induction of TRAIL

promoter activity. Knockdown of NFATc1 increased Sp1

transcription factor binding and, importantly, inhibition or

knockdown of Sp1 increased TRAIL expression. These findings

demonstrate that activation of NFAT increases TRAIL expression

through negative regulation of Sp1 binding to the TRAIL

promoter in human intestinal cells.

Results

NFAT activation increases TRAIL expression in HT29 cells
Previously, we have shown that inhibition of PI3-kinase, which

augments enterocyte-like differentiation of HT29 and Caco-2

human colon cancer cells [9], increased TRAIL expression [10].

The importance of TRAIL in intestinal cell differentiation has

subsequently been demonstrated [11]. In our current study, we

have investigated the cellular mechanisms regulating TRAIL

expression in these intestinal-derived cell lines. HT29 cells were

pretreated with CsA, an inhibitor of calcineurin [22], followed by

treatment with PMA (100 nM) plus Io (2.5 mM), pharmacological

agents that activate NFAT in intestinal cell types [23], in the

presence or absence of CsA for 2 h. Whole cell lysates were

analyzed by Western blot using anti-TRAIL antibody (Figure 1A).

PMA/Io treatment resulted in the induction of TRAIL expression

compared with control cells treated with vehicle (i.e., Me2SO); this

induction was attenuated by pretreatment with CsA. To test

whether PMA/Io activates NFAT, we performed EMSAs with

nuclear extracts obtained from HT29 cells treated for 60 min with

PMA/Io using a commercial oligonucleotide with consensus

binding sites for NFAT as the probe. As shown in Figure 1B,

treatment with PMA/Io increased NFAT binding activity. As

expected, the formation of the increased binding complex was

abolished in extracts from cells pretreated with CsA. The

specificity of the complex was determined using unlabeled cold

probe as a competitor. Our results suggest a role for NFAT

activation in TRAIL induction in intestinal cells.

Knockdown of NFAT blocks PMA/Io induced TRAIL
expression

Four classical isoforms of NFAT have been identified [12]. To

determine which of the NFAT isoforms are involved in TRAIL

regulation, EMSAs were performed. As shown in Figure 2A,

treatment with PMA/Io increased NFAT binding activity as noted

by increased density of band b. The specificity of this binding was

confirmed by competition studies using cold wild type and mutant

competitor probes. Addition of anti-NFATc1 antibody to the

mixture abolished bands b and c. Band b was also abolished when

anti-NFATc2 antibody was added to the mixture and a super-

shifted band (band d) was observed. When anti-NFATc4 antibody

was added to the mixture, band a was abolished; there was no

effect on the binding complex with addition of anti-NFATc3

antibody. These results demonstrate that NFATc1, NFATc2, and

NFATc4 isoforms are present in HT29 cells. Treatment with

PMA/Io increased band b, suggesting a role of NFATc1 or

NFATc2 in PMA/Io induction of TRAIL expression in HT29

cells.

To confirm the contribution of each isoform to TRAIL

expression, individual NFAT isoforms were silenced by transfec-

tion of HT29 cells with the relevant siRNA. As shown in Figure 2B,

transfection of NFATc2 or NFATc3 siRNA blocked PMA/Io

increased TRAIL protein expression, while transfection of

NFATc1 or NFATc4 siRNA not only blocked PMA/Io induced

TRAIL expression but also decreased basal TRAIL protein

expression compared with cells transfected with non-targeting

control siRNA. The knockdown of individual NFAT isoforms was

confirmed by RT-PCR as shown in Figure 2C. The results

indicate that, although NFATc1 and NFATc2 are important for

PMA/Io increased TRAIL expression, NFATc3 and NFATc4

may also play a role in TRAIL regulation in human intestinal cells.

Overexpression of NFATc1 increases TRAIL expression in
HT29 and Caco-2 cells

To further determine the role of NFAT in TRAIL regulation,

HT29 cells were transfected with a plasmid encoding NFATc1, or

the control pDF30 vector; TRAIL protein expression was assayed

Figure 1. PMA/Io-mediated induction of TRAIL expression was
attenuated by cyclosporin A, a potent calcineurin inhibitor in
HT29 cells. (A) HT29 cells were pre-treated with cyclosporin A (CsA)
for 30 min followed by the combination of PMA (100 nM) plus Io
(2.5 mM) with CsA for 2 h. Total protein was extracted from cells and
resolved by SDS-PAGE, transferred to a PVDF membrane and probed
with anti-TRAIL and anti-b-actin antibodies. TRAIL signals from three
separate experiments were quantitated densitometrically and ex-
pressed as fold-change with respect to b-actin. (Data shown as mean
6 standard error of the mean; *, P,0.05, PMA/Io or PMA/Io plus CSA vs.
control; +, P,0.05, PMA/Io plus CSA vs. PMA/Io). (B) Cells were treated
with PMA/Io for 60 min in the presence or absence of CsA. Nuclear
protein was extracted and NFAT DNA binding was analyzed by EMSA.
Unlabeled NFAT oligonucleotide was added in molar excess to confirm
binding specificity (competitor).
doi:10.1371/journal.pone.0019882.g001
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by Western blotting. Overexpression of NFATc1 by transfection

with the pSH-NFATc1 vector increased TRAIL protein expres-

sion compared with the control pDF30 vector (Figure 3A).

NFATc1 overexpression was confirmed using anti-NFATc1

antibody. To address whether TRAIL mRNA induction paralleled

the increase in TRAIL protein, RT-PCR (Figure 3B) and real time

PCR (Figure 3C) were performed with total RNA extracted from

transfected HT29 cells; TRAIL mRNA induction was noted with

NFATc1 overexpression.

To determine whether NFAT induction of TRAIL expression

was regulated at the level of promoter activity, Caco-2 human

colon cancer cells were transfected with plasmids encoding

NFATc1, NFATc2, NFATc3, NFATc4 or control vectors

pDF30 or pcDNA3.1 together with a 1371 bp TRAIL proximal

promoter construct [21]. Overexpression of NFATc1 resulted in

an induction of TRAIL promoter activity, whereas NFATc3 and

NFATc4 overexpression only slightly increased TRAIL promoter

activity (Figure 3D). The overexpression of Flag-tagged NFAT

protein expression was confirmed by Western blotting using anti-

Flag antibody (Figure 3E). RT-PCR was performed with total

RNA extracted from NFATc1 transfected Caco-2 cells; similar to

HT29 cells, overexpression of NFATc1 increased TRAIL mRNA

levels in Caco-2 cells (Figure 3F). Taken together, these results

demonstrate both TRAIL mRNA and protein induction by the

NFAT signaling pathway in HT29 and Caco-2 human colon

cancer cells.

Identification and functional assessment of putative
NFAT binding sites

Previously, we have reported two NFAT binding sites

identified in the 1371 bp TRAIL promoter by computer

sequence analysis using MatInspector V2.2 software [21] as

shown in Figure 4A (N1 and N2). In addition, we also found three

other potential NFAT binding sites, N3, N4, and N5, by

computer sequence analysis using Genomatrix software. All of

these five sites were located in the 2923 to 2383 region of the

TRAIL promoter.

To determine whether PMA/Io treatment affects the binding

activity of these potential NFAT binding sites, EMSA was

performed. Treatment with PMA/Io increased N4 and N5, but

Figure 2. Knockdown of NFAT blocked PMA/Io-induced TRAIL expression in HT29 cells. (A) HT29 cells were treated with PMA/Io for
60 min and NFAT DNA binding activity was assessed by EMSA using nuclear extracts. In addition, nuclear extracts were incubated with 32P-labeled
NFAT specific DNA probe alone or in the presence of unlabeled wild type (cold) NFAT oligonucleotide or mutant NFAT oligonucleotide or specific
antibodies to either NFATc1, NFATc2, NFATc3, or NFATc4. (B) HT29 cells were transfected with NFATc1, c2, c3, c4 or control siRNA. After a 48 h
incubation, transfected cells were treated with PMA/Io for 2 h. Total protein was extracted and TRAIL expression levels were determined by Western
blotting using anti-TRAIL antibody. The membrane was stripped and reprobed using anti-b-actin antibody to confirm equal loading. TRAIL signals
from three separate experiments were quantitated densitometrically and expressed as fold-change with respect to b-actin. (Data shown as mean 6
standard error of the mean; *, P,0.05, PMA/Io plus control siRNA vs. control siRNA; +, P,0.05, PMA/Io plus NFATC1 siRNA or NFATC4 siRNA vs. PMA/Io
plus control siRNA). (C) To confirm NFAT suppression, total RNA was extracted from cells and NFAT expression was assessed by RT-PCR.
doi:10.1371/journal.pone.0019882.g002
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not N1, N2, and N3 binding activity (Figure 4B), suggesting N4

and N5 may be important for TRAIL regulation. To demonstrate

whether NFAT directly binds to the putative N4 or N5 NFAT

binding sites, supershift assays were performed. As shown in

Figure 4C, the addition of antibodies against NFATc1, NFATc2,

or NFATc3 resulted in shifted bands (a, b, c, respectively) or

diminished binding of the protein-DNA binding complex. We did

not identify NFATc4 binding to these two sites.

To determine the contribution of these NFAT binding sites to

TRAIL promoter activation, deletional analyses were performed.

Caco-2 cells were transfected with two 59- deletion promoter

constructs together with control vector pDF30 or a plasmid

encoding NFATc1. As shown in Figure 4D, deletion of NFAT

binding sites from 21371 to 2165 did not abrogate NFATc1

induction of the TRAIL promoter activity. Deletion from 21371

to 235 resulted in a marked decrease in basal promoter activity

and eliminated NFATc1 induction. Although NFAT transcription

factors bind to the TRAIL promoter, our results showed that

NFATc1 increased TRAIL promoter activity independent of

direct binding to the promoter. Instead, the region between 2165

and 235 contains elements important for NFATc1 induction of

TRAIL expression.

Figure 3. Overexpression of NFATc1 increased TRAIL expression in HT29 and Caco-2 cells. HT29 cells were transfected with either the
control plasmid (pDF30) or Flag-tagged NFATc1. At 48 h posttransfection, cells were harvested. (A) Expression of TRAIL and NFATc1 protein was
detected by Western blot using anti-TRAIL or anti-Flag antibodies. Membranes were reprobed with anti-b-actin antibody to assess loading. (B and C)
Total RNA was extracted, and RT-PCR (B) or real time PCR (C) performed. (Data shown as mean 6 standard error of the mean. *, P,0.05, vs. control
plasmids). (D) Caco-2 cells were transfected with a proximal 1371 bp TRAIL promoter construct together with either control plasmid pDF30,
pCDNA3.1 or Flag-tagged NFATc1, NFATc2, NFATc3 or NFATc4. At 48 h posttransfection, cells were harvested; luciferase activity was then assayed. All
results were normalized for transfection efficiency using the pRL-Tk-luc plasmid (Promega). (Data shown as mean 6 standard error of the mean. *,
P,0.05, vs. control plasmids). (E) Expression of NFATc1, NFATc2, NFATc3 and NFATc4 in Caco-2 cells was confirmed by Western blot using anti-Flag
antibody. (F) Caco-2 cells were transfected with control plasmid, pDF30, or Flag-tagged NFATc1. At 48 h posttransfection, total RNA was extracted,
and RT-PCR performed using primers to human TRAIL and b-actin. TRAIL signals from three separate experiments were quantitated densitometrically
and expressed as fold-change with respect to b-actin (Data shown as mean 6 standard error of the mean).
doi:10.1371/journal.pone.0019882.g003
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To further identify the NFATc1 responsive elements in the

2165 TRAIL promoter, five oligonucleotide probes were

synthesized. These probes contained all of the putative transcrip-

tional binding sites identified between 2169 and 233 by

computer sequence analysis (Figure 5A). HT29 cells were

transfected with non-targeting control siRNA or siRNA targeting

NFATc1. Forty-eight h after transfection, cells were harvested and

nuclear protein extracted and EMSAs performed. There was no

obvious binding complex found using probes 1, 2 or 4.

Interestingly, knockdown of NFATc1 increased the binding

activities of probes 4 and 5 (Figure 5B).

To further confirm NFATc1 regulation of TRAIL expression,

HT29 cells stably transfected with the shRNA targeting NFATc1

and the control shRNA (CON) were established. Complete

knockdown of NFATc1 in clones 33, 36 and 35 and partial

knockdown of NFATc1 in clone 34 were confirmed in HT29 cells

transfected with NFATc1 shRNA by RT-PCR (Figure 5C). The

increase of probe 4 and probe 5 binding activities by blockade of

NFATc1 was demonstrated by EMSA (Figure 5D). Consistently,

decreased TRAIL protein expression levels were noted in these

stable cell lines transfected with NFATc1 shRNA, compared with

cells transfected with control shRNA detected by Western blotting

(Figure 5E). These results suggested that probes 4 and 5 contain

elements important for NFATc1 induction of TRAIL expression.

NFATc1 regulates TRAIL expression through negative
regulation of Sp1 binding to the TRAIL promoter

Since both probe 4 and probe 5 contain putative Sp1 binding

sites (Figure 5A), we next determined whether Sp1 protein

comprised part of the increased binding complex to probes 4

and 5 associated with NFATc1 knockdown. Nuclear extracts from

HT29 cells transfected with non-targeting control siRNA or

siRNA targeting NFATc1 were isolated and EMSAs performed.

As shown in Figure 6, A and B, the specificity of the complex was

determined using unlabeled oligonucleotide as a competitor. In

addition, when an unlabeled, commercially available Sp1 probe

was added to the mixture, the increased binding complex was

significantly diminished. In contrast, addition of unlabeled NFAT

Figure 4. Deletion of NFAT binding sites did not eliminate NFATc1 increased TRAIL promoter activity. (A) Nucleotide sequences of the
putative NFAT binding sites in the human TRAIL promotor. The 1371 bp TRAIL promoter contains five putative NFAT binding sites (N1, N2, N3, N4,
and N5). The numbers on the left are the nucleotide positions relative to the transcriptional start site. (B) HT29 cells were treated with or without
PMA/Io for 60 min and nuclear protein extracted; EMSA was performed with 32P-labeled probes spanning each of the five NFAT binding sites (N1, N2,
N3, N4, and N5) in the human TRAIL promoter. (C) Specific binding of various NFAT isoforms with probe N4 or N5 was determined by addition of
antibodies to either NFATc1, NFATc2, NFATc3, or NFATc4. Specific binding of NFAT was also confirmed by cold competition using unlabeled wild
type (WT) and mutant probes at 100-fold molar excess. (D) Caco-2 cells were transfected with constructs containing 235 or 2165 TRAIL promoter
sequences together with either control plasmid pDF30, or Flag-tagged NFATc1, respectively. At 48 h posttransfection, cells were harvested; and
luciferase activity was assayed. All results were normalized for transfection efficiency using the pRL-Tk-luc plasmid (Promega). (Data shown as mean 6
standard error of the mean; *, P,0.05, DF30 or NFATc1 plus 2165 bp promoter vs. DF30 or NFATc1 plus 235 promoter, respectively; +, P,0.05, DF30
plus 2165 bp promoter vs. NFATc1 plus 2165 bp promoter).
doi:10.1371/journal.pone.0019882.g004
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Figure 5. Identification of NFATc1 responsive sequences in the TRAIL promoter. (A) Double-stranded oligonucleotides corresponding to
all of the potential transcriptional binding sites in human TRAIL promoter 2169 to 233 were synthesized and used for DNA binding analysis. The
putative Sp1 binding sequences are boxed, which are also overlapped with other transcription factor binding sequences. (B) HT29 cells were treated
with or without PMA/Io for 60 min and nuclear protein extracted. Double-stranded oligonucleotides (as shown in A) were radiolabeled and tested for
DNA binding by EMSA. The arrows indicated the increased binding complexes. (C) Total RNA from HT29 cells stably transfected with control (CON) or
four individual shRNAs targeting human NFATc1 (clones 33, 34, 35, 36) was extracted and RT-PCR performed for NFATc1 mRNA expression. (D and E)
Nuclear protein (D) or total protein (E) from HT29 cells stably transfected with control (CON) or NFATc1 shRNA (clones 33, 34, 36) was extracted. EMSA
was performed (D) using probe 4 and probe 5 (sequences shown in Figure 6). Western blotting was performed for the analysis of TRAIL expression (E);
membranes were stripped and re-probed with anti-b-actin to confirm equal loading. TRAIL signals from two separate experiments were quantitated
densitometrically and expressed as fold-change with respect to b-actin (Data shown as mean 6 standard error of the mean).
doi:10.1371/journal.pone.0019882.g005
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or ETS probes did not alter the binding complex. NFATc1

knockdown did not affect the Sp1 protein expression level (Wang

et al., data not shown); therefore, increased Sp1 binding to the

TRAIL promoter may not be through increased Sp1 protein

expression.

To further confirm these findings, occupancy of the TRAIL

promoter by Sp1 in cells was further analyzed using a ChIP assay.

Cross-linked chromatin was prepared from HT29 cells transfected

with control siRNA or siRNA targeting NFATc1. The human

TRAIL promoter region containing the Sp1 binding sites was

precipitated using either the anti-Sp1 antibody or IgG, and using

the probe 1 (forward) and the probe 5 (reverse) shown in Figure 5A

as gene-specific primers and the sequence (136 bp) encompassing

the Sp1 binding sites was amplified. As shown in Figure 6C, the

binding of the TRAIL promoter and Sp1 was confirmed and

consistent with our EMSA results, knockdown of NFATc1

increased Sp1 binding to TRAIL promoter. These results

demonstrate that knockdown of NFATc1 increased Sp1 protein

binding to the 2165/235 region of the TRAIL promoter.

Since Sp1 protein directly binds to the TRAIL promoter and

knockdown of NFATc1 decreased TRAIL expression and

increased Sp1 binding, we next investigated whether Sp1

transcription factor regulates TRAIL expression. Mithramycin

has affinity for the GGGCGG binding sequence, and effectively

blocks the binding of Sp1 [24]. HT29 cells were treated with

mithramycin for 24 h and total protein extracted; TRAIL

expression was determined by Western blotting. As shown in

Figure 6D, treatment with mithramycin significantly increased

TRAIL expression in HT29 cells. Sp1 binding to the TRAIL

promoter has been demonstrated [25]. To further delineate Sp1

Figure 6. Sp1 mediated NFATc1 regulation of TRAIL expression. HT29 cells were transiently transfected with control siRNA or siRNA
targeting NFATc1. Nuclear protein was extracted and EMSAs performed. Nuclear extracts were incubated with 32P-labeled probe 4 (A) or probe 5 (B)
alone or in the presence of unlabeled wild type (cold) probe 4 or probe 5, the Sp1 oligonucleotide, the NFAT oligonucleotide, or the ETS
oligonucleotide, respectively. (C) HT29 cells were subjected to ChIP assay; soluble chromatin was prepared from HT29 cells transfected with control
siRNA or siRNA targeting NFATc1 and immunoprecipitated with Sp1 antibody or IgG. Total (Input) and immunoprecipitated DNAs were then PCR-
amplified using primer pairs covering the Sp1 binding sites within the human TRAIL promoter. (D) HT29 cells were treated with the Sp1 inhibitor
mithramycin for 24 h and total protein extracted and Western blotting performed using anti-TRAIL antibody. (E) HT29 cells were transiently
transfected with control siRNA or siRNA targeting Sp1. Forty-eight h after transfection, total protein was extracted and Western blotting performed to
assess TRAIL expression (left panel) or to confirm knockdown of Sp1 (right panel). Membranes were stripped and re-probed with anti-b-actin
antibody to confirm equal loading.
doi:10.1371/journal.pone.0019882.g006
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transcription factor regulation of TRAIL expression, HT29 cells

were transfected with non-targeting control siRNA or siRNA

targeting Sp1. Forty-eight h after transfection, cells were harvested

and total protein extracted and Western blotting performed. In

agreement with the Sp1 inhibition, transfection of Sp1 siRNA

(Figure 6E) significantly increased TRAIL protein expression.

Knockdown of Sp1 was confirmed by Western blotting using anti-

Sp1 antibody. Collectively, these results demonstrate that NFATc1

regulated Sp1 protein binding to the TRAIL promoter and thus,

regulated TRAIL expression.

Discussion

Previously, we demonstrated that intestinal cell differentiation is

associated with the induction of TRAIL expression [10].

Subsequently, Rimondi et al. [11] showed that TRAIL promotes

intestinal cell differentiation. Analysis of the TRAIL promoter

identified several putative transcription factor binding sites,

including NFAT, which might be involved in the regulation of

TRAIL expression [21]. Here, we show that activation of the

NFATc1 isoform increased TRAIL expression, not through the

direct binding to the TRAIL promoter, but indirectly through the

regulation of Sp1 binding.

Although five NFAT transcription factor binding sites were

identified in the TRAIL promoter, our results showed that

NFATc1 increased TRAIL promoter activity not by direct binding

but, alternatively, through negative regulation of Sp1 binding to

the promoter. Recently, we have found that knockdown of

NFATc1 decreased PTEN expression and increased the phos-

phorylation levels of Akt while overexpression of NFATc1

increased PTEN expression and decreased Akt phosphorylation

in HT29 and Caco-2 cells [20]. In addition, our previous findings

demonstrated that inhibition of PI3-kinase or overexpression of

PTEN enhanced intestinal cell differentiation [9] and increased

TRAIL expression in intestinal cells [10]. These results suggest

that NFATc1 regulates TRAIL expression through the induction

of PTEN induction. Activation of PI3-kinase increases Sp1

activation in various cell types [26,27,28,29]. We also have found

that overexpression of PTEN inhibits Sp1 reporter activity in

HT29 and Caco-2 cells (unpublished data). Moreover, PTEN

downregulates p75NTR expression by decreasing DNA-binding

activity of Sp1 [30]. PTEN dephosphorylates the Sp1 transcription

factor [31], the phosphorylation status of which directly impacts its

ability to bind to some DNA promoter regions [32,33]. Therefore,

it is reasonable to postulate that activation of NFATc1 increases

PTEN expression and, as a result, decreases Sp1 binding to

TRAIL promoter and increases TRAIL expression. Although

knockdown of NFATc1 increased Sp1 binding to the TRAIL

promoter, knockdown of NFATc1 did not affect Sp1 protein

expression levels, suggesting that the increased Sp1 protein

binding to the TRAIL promoter, associated with NFATc1

knockdown, may not be through increased Sp1 protein expression.

Similar to our findings showing induction of TRAIL by NFAT,

activation of NFAT isoforms, including NFATc1, up-regulated

FasL expression [34,35] and TNFa expression [36] in several cell

types. NFAT has been shown to play a pro-apoptotic role through

the up-regulation of FasL [35,37]. Taken together with our

current findings, these studies demonstrate that the activation of

NFAT results in the induction of apoptotic-related proteins in

various cell types. Recently, activation of NFATc1 was noted

specifically in the mononuclear cells of the inflamed colonic

mucosa from patients with ulcerative colitis [38]. Moreover,

increased expression of TRAIL and FasL has been identified in the

intestinal epithelial cells and colonic lamina propria, respectively,

associated with inflammatory bowel disease (IBD) [39,40]. It is

well known that TNF is one of the most potent effector cytokines

in the pathogenesis of IBD [41]. It is possible that induction of

these TNF family members is due, in part, to the activation of

NFATc1 in the abnormal intestinal cells in patients with IBD.

Given the fact that CsA is currently an effective therapy for

patients with IBD [42], NFAT-dependent induction of TNF

family members may play an important role in the progression of

this disease.

Sp1 recognizes and binds to GC/GT boxes and regulates a

large number of mammalian genes in normal and transformed

cells [43]. Activation of Sp1 not only increases but also represses

expression of certain genes. For example, Sp1 has been shown to

bind to the promoter and repress transcription of the human

telomerase reverse transcriptase [44] and the human b-like globin

gene expression [45]. In addition, Sp1 can repress the expression

of certain genes by recruiting histone deacetylase 1 (HDAC1) to

deacetylate histones [44,46]. Consistent with these findings, our

results show that Sp1 binds to the TRAIL promoter and that

inhibition of Sp1 by mithramycin or siRNA targeting Sp1

significantly increased TRAIL expression, suggesting a negative

regulation of TRAIL expression by Sp1 in human intestinal cells.

It is likely that inhibition or knockdown of Sp1 may diminish the

promoter repression and result in TRAIL induction.

Sp1 binds the Myc-associated zinc finger protein (MAZ)

promoter region and represses promoter activity [47]. It has been

reported that methylation plays an important role in this

suppression of transcription and that the interaction of Sp1 with

DNA methyltransferase (DNMT) contributes to Sp1-mediated

repression. DNMT inhibitors induce TRAIL expression in various

cell types [25,48]. Moreover, inhibition of DNMT restores PTEN

expression by epigenetic mechanisms and results in the inhibition

of the PI3-kinase/Akt pathway [49], an important signaling

pathway that we and others have shown regulates TRAIL

expression [10,48]. Whether DNMT is involved in Sp1 regulation

of TRAIL expression and the cross-talk between Sp1 and PTEN/

PI3-kinase/Akt signaling deserve to be further investigated. In

contrast to our findings, Sp1 has been shown to mediate HDAC

inhibitor (HDACi) induction of TRAIL expression. Mutation of

Sp1 binding sites blocked HDACi-induced TRAIL promoter

activity [25,50] and protein expression [50] in acute myeloid

leukemia and human breast cancer cells. However, knockdown of

Sp1 did not decrease basal TRAIL protein expression [50],

suggesting a differential regulation of basal and HDACi-induced

TRAIL expression in these cell lines.

In summary, our current study identifies the NFAT molecular

pathway as an important regulator of TRAIL. Furthermore, we

demonstrate that Sp1 inhibition increases TRAIL expression.

Importantly, the induction of TRAIL expression by NFATc1 is

not through the direct binding of NFATc1 to the TRAIL

promoter but through negative regulation of Sp1 binding. TRAIL

has been shown to play an important role in intestinal cell

differentiation [11]. Together with our previous findings showing

the importance of NFATc1 in the regulation of PTEN expres-

sion and intestinal cell differentiation [10], our current study

suggests that TRAIL, as a downstream target of NFAT signaling,

may be involved in NFAT-mediated regulation of intestinal cell

differentiation.

Materials and Methods

Materials
Phorbol 12-myristate 13-acetate (PMA) was purchased from

Sigma Chemical Company (St. Louis, MO). A23187 calcium
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ionophore (Io) was from Alexis Corporation (San Diego, CA).

The calcineurin inhibitor cyclosporine A (CsA) was from

Calbiochem (San Diego, CA). The plasmids encoding Flag-

tagged NFATc1, NFATc2, NFATc3 and empty vector (pDF30)

were kindly provided by Dr. Gerald R. Crabtree (Stanford

University, Stanford, CA). Mouse anti-TRAIL antibody used for

Western blot was purchased from IMGENEX Corporation (San

Diego, CA). Mouse antibodies against NFATc1, NFATc2 and

NFATc4 were from Affinity BioReagents, Inc. (Golden, CO).

Rabbit anti-b-actin antibody was from Sigma. Rabbit polyclonal

anti-Sp1 antibody (07-645) was from Upstate (Lake Placid, NY).

Mouse anti-NFATc3 antibody, the NFATc, NFATc mutant, Sp1,

and ETS oligonucleotides were from Santa Cruz Biotechnology

(Santa Cruz, CA). Human NFATc1, NFATc2, NFATc3,

NFATc4, Sp1, and control siRNA were purchased from

Dharmacon, Inc. (Lafayette, CO). [c-32P] ATP (3,000 Ci/mmol)

was from Amersham Pharmacia Biotech (Piscataway, NY).

Immobilon-P nylon membranes for Western blots were pur-

chased from Millipore (Bedford, MA), and x-ray film was

purchased from Eastman Kodak (Rochester, NY). Total RNA

was isolated using Ultraspec RNA from Biotecx Laboratories

(Houston, TX). The enhanced chemiluminescence (ECL) system

for Western immunoblot analysis was from Amersham (Arlington

Heights, IL). Tissue culture media was obtained from GIBCO-

BRL (Grand Island, NY). All other reagents were of molecular

biology grade and purchased from either Sigma or Amresco

(Solon, OH).

Cell culture and treatment
Human colon cancer cell lines HT29 and Caco-2 (obtained

from ATCC, Rockville, MD) were maintained in McCoy’s 5A

supplemented with 10% fetal calf serum (FCS) and MEM

supplemented with 15% of FCS, respectively. The cells were

pretreated with CsA for 30 min and then treated with PMA/Io in

the presence or absence of CsA.

Western blot analysis
Total protein was extracted and resolved on a 10% polyacryl-

amide gel and transferred to Immobilon-P nylon membranes as

we have described previously [51]. Filters were incubated for 1 h

at room temperature in blotting solution. TRAIL, Flag, Sp1, and

b-actin were detected with specific antibodies following blotting

with a horseradish peroxidase-conjugated secondary antibody and

visualized using an ECL detection system.

shRNAs and generation of stable cell lines
MISSION shRNA Lentiviral Particles with short-hairpin RNAs

(shRNAs) were purchased from Sigma. The control shRNA (Non-

Target shRNA Control Transduction Particles, catalog # SHC002V)

contains 4 base pair mismatches within the short hairpin sequence to

any known human or mouse genes. A set of four shRNAs to human

NFATc1 (NM_006162; Sigma) were used; the sequences were as

follows: CCGGCATCGAGATAACCTCGTGCTTCTCGAGAA-

GCACGAGGTTATCTCGATGTTTTT (TRCN0000017336), C-

CGGCGTCAGTTTCTACGTCTGCAACTCGAGTTGCAGA-

CGTAGAAACTGACGTTTTT (TRCN0000017335), CCGGCC-

CGCCAACGTTCCAATTATACTCGAGTATAATTGGAACG-

TTGGCGGGTTTTT (TRCN0000017334), CCGGCGGCAACA-

TTAGAAAGTGATTCTCGAGAATCACTTTCTAATGTTGC-

CGTTTTT (TRCN0000017333). HT29 cells were infected with the

control shRNA or shRNA to human NFATc1 lentivirus particles and

stably expressing cells were selected with puromycin at a concentration

of 2 mg/ml.

Preparation of nuclear extracts and electrophoretic
mobility shift assays (EMSAs)

The nuclear extracts were prepared using a kit according to the

manufacturer’s protocol. EMSAs were performed as described

previously [52] with minor modifications. Nuclear extracts (15 mg)

were incubated with 40,000 cpm of 32P-labeled consensus

oligonucleotide in a buffer containing 4% glycerol, 50 mM NaCl,

1 mM MgCl2, 0.5 mM dithiothreitol, 0.5 mM EDTA, 10 mM

Tris-HCl; pH 7.5) and 0.5 mg/ml poly(dI?dC) in a final volume of

20 ml, for 15 min at room temperature. For supershift studies, 2 ml

of antiserum was added to the nuclear protein for 20 min at room

temperature prior to the addition of labeled probe. The complexes

were fractionated on 6% native polyacrylamide gels run in 16
TBE buffer (89 mM Tris, 89 mM boric acid, and 2.0 mM

EDTA), dried, and exposed to Kodak X-AR film at 270uC.

Competition binding experiments were performed by the addition

of the nonradioactive oligonucleotide, in 100-fold molar excess, at

the time of addition of radioactive probe.

Chromatin immunoprecipitation (ChIP) assay
The ChIP assay was performed using the ChIP-IT Express

Enzymatic Kit (Active Motif) according to the manufacturer’s

protocol. PCR of the human TRAIL promoter containing the Sp1

binding sites was performed using total (input) or immunoprecip-

itated chromatin with the following pair of oligonucleotide

primers: 59- CATGGATCCTGAGGGCAAGG-39 and 59-TTG-

GCCCCACCCACATCTATTGAACC-39.

RNA isolation, real time PCR and reverse transcription-
PCR (RT-PCR)

Total RNA was isolated using the UltraspecTM RNA reagent.

Real-time RT-PCR was performed using Applied Biosystems

assays-on-demand 206assay mix of primers and Taq-Man MGB

probes (FAMTM dye-labeled) for target gene TRAIL (ID

Hs00234355_m1) and predeveloped 18S rRNA(VICTM dye-

labeled probe) TaqManH assay reagent (P/N 4319413E) for

endogenous control. Separate tubes (singleplex) one-step RT-

PCR was performed with 80 ng of RNA for both target gene and

endogenous control. The reagent was TaqMan one-step RT-

PCR master mix reagent kit (P/N 4309169). The cycling

parameters for one-step RT-PCR were: reverse transcription

48uC for 30 min, AmpliTaq activation 95uC for 10 min,

denaturation 95uC for 15 s, and annealing/extension 60uC for

1 min (repeat 40 times). Duplicate CT values were analyzed in

Microsoft Excel using the comparative CT(DDCT) method as

described by the manufacturer (Applied Biosystems). The amount

of target (22DDCT) was obtained by normalizing to the endo-

genous reference (18S) and relative to a calibrator (one of the

experimental samples).

RT-PCR was performed using a Titan One-Tube RT-PCR kit

(Roche Applied Science, Indianapolis, IN) according to the

manufacturer’s protocol. Cycling conditions were as follows:

95uC for 30 s, 54uC for 30 s, and 68uC for 50 s for 31 cycles.

Approximately 8 ml of product was run on a 0.56 Tris-borate-

EDTA-1% agarose gel. Primer sets were synthesized by Sigma as

follows: TRAIL (59-CTTCACAGTGCTCCTGCAGT-39 and 59-

TTAGCCAACTAAAAAGGCCCC-39), NFATc1 (59- GGAAG-

GGCGGCTTCTGCGAC-39 and 59- AGGCGTGCGGGCG-

CAGCAG-39), NFATc2 (59- CTGCCTCGCCACATCTACC-39

and 59-TGGTAGAAGGCGTGCGGCTT-39), NFATc3 (59-TG-

GATCTCAGTATCCTTTAA-39 and 59- TACACGAAACACA-

AGTCGTA-39), NFATc4 (59- TACAGATGTTCATCGGCAC-

39 and 59 CGAAGCTCAATGTCTGAAT-39).
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Human b-actin was amplified to assess loading using the PCR

primers supplied in the kit as follows: forward primer, 59-

CCAAGGCCAACCGCGAGAAGATGAC-39; reverse primer,

59-AGGGTACATGGTGGTGCCGCCAGAC.

Plasmids, siRNAs, transfections, and dual-luciferase assay
The NFATc1, NFATc2, NFATc3, NFATc4 and control siRNA

duplexes were introduced into HT29 cells by electroporation

(Gene Pulser, Bio-Rad) as we have described previously [53].

TRAIL promoter reporter constructs and plasmids overexpressing

NFATc1, NFATc2, NFATc3 and NFATc4 were transfected into

cells using Lipofectamine 2000. The pRL-Tk-luc plasmid was co-

transfected to normalize for variation in transfection efficiency.

Luciferase assays were performed as described previously [54].

Briefly, 48 h after transfection, the cells were rinsed with PBS,

harvested and lysed with 16 cell culture lysis reagent. Luciferase

activity in 20 ml of extract was assayed with the dual luciferase

assay system. Light emissions were integrated for the initial 10 s of

emission using a Monolight 2010 luminometer (Analytical

Luminescence Laboratory).

Statistical analysis
Due to the heterogeneous variability among groups, data in

Figure 3D and Figure 4D was analyzed using the Kruskal-Wallis

test using SASH, Release 9.1. Data presented in Figure 1A, 2B, 3F,

5E was analyzed using t test. Group differences were assessed at

the 0.05 level of significance.
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