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Abstract

Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past
decades for prediction of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) are the most commonly used measurements, resulting in many successful
applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in
several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to
extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves
constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI) and each
edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric
measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy
of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale
in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality
problem resulting from the large number of network features, a supervised dimensionality reduction method is further
employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving
discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison
with some other commonly used approaches. In addition, although the proposed method can be easily generalized to
incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by
the experimental results. Without requiring new sources of information, our proposed approach improves the accuracy of MCI
prediction from 80:83% (of conventional volumetric features) to 84:35% (of hierarchical network features), evaluated using
data sets randomly drawn from the ADNI (Alzheimer’s Disease Neuroimaging Initiative) dataset.
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Introduction

Alzheimer’s disease (AD) is a progressive and eventually fatal

disease of the brain, characterized by memory failure and

degeneration of other cognitive functions. Pathology may begin

long before the patient experiences any symptom and often lead to

structural changes of brain anatomies. With the aid of medical

imaging techniques, it is now possible to study in vivo the

relationship between brain structural changes and the mental

disorder, providing a diagnosis tool for early detection of AD.

Current studies focus on MCI (mild cognitive impairment), a

transitional state between normal aging and AD. These subjects

suffer from memory impairment that is greater than expected for

their age, but retain general cognitive functions to maintain daily

living. Identifying MCI subjects is important, especially for those

that will eventually convert to AD (referred to as Progressive-MCI,

or in short P-MCI), because they may benefit from therapies that

could slow down the disease progression.

Although T1-weighted MRI, as a diagnostic tool, is relatively

well studied, it continues to receive the attention of researchers due

to its easy access in clinical settings, compared with task-based

functional imaging [1]. Commonly used measurements can be

categorized into three groups: regional brain volumes [1–7],

cortical thickness [8–12] and hippocampal volume and shape [13–

15]. Volumetric measurements can be further divided into two

groups according to feature types: voxel-based features [16] or

region-based features [17,18]. In this paper, we focus on region-

based volumetric measurements of the whole brain for the

following reasons. Firstly, the abnormalities caused by the disease

involved in our study are not restricted to the cortex, because, as

shown by pathological studies [19], AD related atrophy begins in

the medial temporal lobe (MTL), which includes some subcortical

structures such as the hippocampus and the amygdala. Secondly, a

whole brain analysis not restricted to the hippocampus is

preferred, because early-stage AD pathology is not confined to

the hippocampus. Also affected are the entorhinal cortex, the

amygdala, the limbic system, and the neocortical areas. As has

been pointed out in several studies [1,20], although the analysis of

the earliest-affected structures, such as the hippocampus and the

entorhinal cortex, can increase the sensitivity of MCI prediction,
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the inclusion of the later-affected temporal neocortex may increase

the prediction specificity, and hence improve the overall

classification accuracy [20]. Thirdly, we focus on region-based

volumetric features because voxel-based features are highly

redundant [21], which may affect their discrimination power.

The determination of the Region of Interest (ROI) is the key for

region-based analysis methods. Once ROIs have been determined

either by pre-definition [17,18] or by adaptive parcellation

[4,5,21], the mean tissue densities of gray matter (GM), white

matter (WM) and cerebrospinal fluid (CSF) in each ROI are

usually used as features for classification. Disease-induced brain

structural changes may occur not at isolated spots, but in several

inter-related regions. Therefore, for a more accurate character-

ization of the pathology, feature correlation between ROIs has to

be taken into account. Measurement of such correlations may

provide potential biomarkers associated with the pathology, and

hence is of great research interest. However, for most existing

approaches, the dependencies among features are not explicitly

modelled in the feature extraction procedure, but only implicitly

considered by some classifiers, such as the support vector machines

(SVMs), during the classification process. For example, a linear

SVM classifier models the dependency (inner product) of feature

vectors between two subjects, instead of the interaction of two

ROIs (via volumetric features) of a specific subject. These

implicitly encoded feature dependencies become more difficult

to interpret when a nonlinear SVM classifier is used. Based on this

observation, we propose in this paper a new type of features

derived from regional volumetric measurements, by taking into

account the pairwise ROI interactions within a subject directly. To

achieve this, each ROI is first characterized by a vector that

consists of the volumetric ratios of GM, WM and CSF in this ROI.

Then, the interaction between two ROIs within the same subject is

computed as Pearson correlation of the corresponding volumetric

elements. This gives us an anatomical brain network, with each

node denoting an ROI and each edge characterizing the pairwise

connection.

The correlation value measures the similarity of the tissue

compositions between a pair of brain regions. When a patient is

affected by MCI, the correlation values of a particular brain region

with another region will be potentially affected, due possibly to the

factors such as tissue atrophy. These correlation changes will be

finally captured by classifiers and used for MCI prediction. An

early work was presented in a conference [22]. It is worth noting

that by computing the pairwise correlation between ROIs, our

approach provides a second order measurement of the ROI

volumes, in contrast to the conventional approaches that only

employ first order volumetric measurement. As higher order

measurements, our new features may be more descriptive, but also

more sensitive to noise. For instance, the influence of a small ROI

registration error may be exaggerated by the proposed network

features, which may reduce the discrimination power of the

features. To overcome this problem, a hierarchy of multi-

resolution ROIs is used to increase the robustness of classification.

Effectively, the correlations are considered at different scales of

regions, thus providing different levels of noise suppression and

discriminative information, which can be sieved by a feature

selection mechanism as discussed below for guiding the classifica-

tion. Additionally, we consider the correlations both within and

between different resolution scales. This is because the optimal scale

is often not known a priori. We will demonstrate the effectiveness of

the proposed approach with empirical evidence. In this study, we

consider a fully-connected anatomical network, features extracted

from which will form a space with intractably high dimensionality.

As a remedy, a supervised dimensionality reduction method is

employed to embed the original network features into a new feature

space with a much lower dimensionality.

Without requiring any new information in addition to the

baseline T1-weighted images, the proposed approach improves

the prediction accuracy of MCI from 80:83% (of conventional

volumetric features) to 84:35% (of hierarchical network features),

evaluated by data sets randomly drawn from the ADNI dataset

[23]. Our study shows that this improvement comes from the use

of the network features obtained from hierarchical brain networks.

To investigate the generalizability of the proposed approach,

experiments are conducted repetitively based on different random

partitions of training and test data sets with different partition

ratios. The average classification accuracy estimated in this way

tends to be more conservative than the conventional Leave-One-

Out approach. Additionally, although the proposed approach can

be easily generalized to incorporate regional similarity measure-

ments other than Pearson correlation, the experimental results

reinforce the choice of Pearson correlation for our application,

compared with some commonly used similarity metrics.

Before introducing our proposed approach, it is worth

highlighting the advantages of the hierarchical brain network-

based approach over the conventional volume-based approaches.

Firstly, as mentioned above, our proposed method utilizes a

second-order volumetric measurement that is more descriptive

than the conventional first-order volumetric measurement.

Secondly, compared with the conventional volumetric measure-

ments that only consider local volume changes, our proposed

hierarchical brain network considers global information by pairing

ROIs that may be spatially far away. Thirdly, our proposed

method seamlessly incorporates both local volume features and

global network features for the classification by introducing a

whole-brain ROI at the top of the hierarchy. By correlating with

the whole-brain ROI, each ROI can provide a first order

measurement of local volume. Fourthly, although our current

approach uses Pearson correlation, it can be easily generalized to

any other metrics that are capable of measuring the similarity

between features of ROI pairs. Fifthly, the proposed method

involves only linear methods, leading to easy interpretations of the

classification results. Finally, for the first time, we investigate the

relative speeds of disease progression in different regions, providing

a different pathological perspective complementary to spatial

atrophy patterns.

Materials and Methods

Participants
Both the normal control and MCI subjects used in the

preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.

edu/ADNI) [23]. The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations as a 60 million, 5-year public private

partnership. The primary goal of ADNI has been to test whether

serial MRI, PET (Positron Emission Tomography), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of MCI and early

AD. Determination of sensitive and specific markers of very early

AD progression is intended to aid researchers and clinicians in the

development of new treatments and monitor their effectiveness, as

well as lessen the time and cost of clinical trials. The image

acquisition parameters have been described in www.adniinfo.org.

The ADNI protocol included a sagittal volumetric 3D MPRAGE

Hierarchical Brain Networks for MCI Prediction
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with 1:25|1:25 mm in-plane spatial resolution and 1:2-mm thick

sagittal slices (8 flip angle). TR and TE values of the ADNI

protocol were somewhat variable, but the target values were TE

3.9 ms and TR 8.9 ms.

The ADNI data were previously collected across 50 research

sites. Study subjects gave written informed consent at the time of

enrollment for imaging and genetic sample collection and

completed questionnaires approved by each participating sites

Institutional Review Board (IRB). More information about the

ADNI investigators is given in Acknowledgement.

In this study, 125 normal control subjects and 100 P-MCI

subjects are taken from the ADNI dataset. Each subject is

rescanned and re-evaluated every six months for up to 36 months.

The P-MCI subjects are those who developed probable AD after

the baseline scanning. The diagnosis of AD is made according to

the NINCDS/ADRDA criteria [24] for probable AD. The

demographic and clinical information of all the selected subjects

are summarized in Table 1.

Image Preprocessing
The T1-weighted MR brain images are skull-stripped and

cerebellum-removed after a correction of intensity inhomogeneity

using N3 algorithm [25]. Then each MR brain image is further

segmented into three tissue types, namely GM, WM, and CSF. To

compare structural patterns across subjects, the tissue-segmented

brain images are spatially normalized into a template space (called

the stereotaxic space) by a mass-preserving registration framework

proposed in [26]. During image warping, the tissue density within

a region is increased if the region is compressed, and vice versa.

These tissue density maps reflect the spatial distribution of tissues

in a brain by taking into consideration the local tissue volume prior

to warping. After spatial normalization, we can then measure the

volumes of GM, WM, and CSF in each predefined ROI. More

details about the ROI hierarchy are given in Section ‘‘Hierarchical

ROI Construction’’.

Method Overview
The overview of the proposed method is illustrated in Fig. 1.

Each brain image is parcellated in multi-resolution according to

hierarchically predefined ROIs. The local volumes of GM, WM,

and CSF are then measured within these ROIs and used to construct

an anatomical brain network. Each node of the network represents

an ROI, and each edge represents the correlation of local tissue

volumes between two ROIs. The edge values (the correlations) are

concatenated to form the feature vectors for use in classification. This

gives rise to a large amount of features. For a robust classification,

both feature selection and feature embedding algorithms are used to

remove many noisy, irrelevant, and redundant features. Only

essentially discriminative features are kept to train our classifier that

can be well generalized to predict previously unseen subjects. In the

following, the description of the proposed method is divided into

three parts: hierarchical ROI construction (Section ‘‘Hierarchical

ROI Construction’’), feature extraction (Section ‘‘Feature Extrac-

tion’’), and classification (Section ‘‘Classification’’).

Hierarchical ROI Construction
In this paper, a four-layer ROI hierarchy is proposed to

improve the classification performance of volumetric measure-

ments. Each layer corresponds to a brain atlas with different

resolution. To make the explanation of our method clear, the

bottommost layer that contains the finest ROIs is denoted as L4,

while the other three layers are denoted as Ll , where l~1,2,3. A

smaller l denotes a coarser ROI which is in a layer closer to the

top of the hierarchy. In our approach, the bottommost layer L4

contains 100 ROIs obtained according to [27]. These ROIs

include fine cortical and subcortical structures, ventricle system,

cerebellum, brainstem, etc. Note that in our case, the cerebellum

and the brainstem are removed and the respective ROIs are not

actually used. The number of ROIs reduces to 44 and 20,

respectively, in the layers L3 and L2 by agglomerative merging of

the 100 ROIs in the layer L4. In the layer L3, the cortical

structures are grouped into frontal, parietal, occipital, temporal,

limbic, and insula lobe in both left and right brain hemispheres.

Each cortical ROI has three sub-ROIs, namely the superolateral,

medial and white matter ROIs. The subcortical structures are

merged into three groups in each hemishphere of the brain,

namely, the basal ganglia, hippocampus and amygdala (including

fornix), and diencephalon. Other ROIs include the ventricle and

the corpus callosum. In the layer L2, the sub-groups of the

superolateral, medial or white matter parts within each cortical

ROI are merged together. All the subcortical ROIs are grouped

into one ROI. Other ROIs remain the same in the layer L2 as in

the layer L3 . The topmost layer L1 contains only one ROI, the

whole brain. This layer L1 is included because when correlated

with the ROIs in L4, it gives us a measurement comparable to the

original volumetric measurements, thus allowing us to also include

the original volumetric features for classification. The ROIs for

different layers are shown in Fig. 2 (a). The number of ROIs in

each layer of the hierarchy is illustrated in Table 2.

Feature Extraction
With the ROI hierarchy defined above, an anatomical brain

network can be constructed for each subject, from which

informative features are extracted for classification. For each

brain network, its nodes correspond to the brain ROIs, and its

undirected edges correspond to the interactions between two

ROIs. There are two types of nodes in our model (Fig. 2-left): the

simple ROI in the bottommost layer L4, and the compound ROI

in the other layers. Similarly, we have two types of edges, each

modelling within-layer and between-layer ROI interactions,

respectively (Fig. 3-right).

The brain network may be quite complicated. For instance,

Fig. 2 (b) partially shows the network connections between ROIs in

the layers of L2, L3 and L4, respectively. To determine

informative features from the network, the computation of ROI

interactions is initially conducted on the bottommost layer L4, and

then propagated to other layers effectively via a membership

matrix that indicates the relationship of ROIs from different

layers. The process is detailed as follows.

Firstly, let us consider the bottommost layer L4, which consists

of 100 ROIs. Let f i denote the 3|1 vector of the i-th ROI in L4,

consisting of the volumetric ratios of GM, WM, and CSF in that

ROI. We can obtain an N4|N4 matrix C4, where N4 is the

number of ROIs in L4. The (i, j)-th component in C4 corresponds

to the weight of the edge between the i-th node and the j-th node

Table 1. Demographic information of the subjects involved
in the study.

Normal Control P-MCI

No. of Subjects 125 100

No. & Percentage of males 61(48:8%) 57(57%)

Baseline age, mean(STD) 76:1(5:1) 75:0(7:1)

Baseline MMSE, mean(STD) 29:1(1:0) 26:5(1:7)

doi:10.1371/journal.pone.0021935.t001

Hierarchical Brain Networks for MCI Prediction
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in L4. We define C4(i,j)~corr(f i,f j), the Pearson correlation

between feature vectors f i and f j .

For any other layer Ll , let Rl
i represent the i-th ROI in the layer

Ll . The number of ROIs in the layer Ll is denoted as Nl . A

membership matrix Ml (Fig. 4) is used to define the composition of

the compound ROI Rl
i in Ll . The matrix Ml has Nl rows and N4

columns. Each row corresponds to a single compound ROI in Ll .

Each column corresponds to a single simple ROI in L4. The (i, j)-

th component of Ml takes the value of either 1 or 0, indicating

whether the j-th ROI in L4 is included in the i-th ROI in Ll . Take

Fig. 4 for example. If the ROI Rl
i is composed of the simple nodes

R4
m, R4

n and R4
t in L4, the elements of (i,m), (i,n) and (i,t) in Ml

are set to 1, while the others in the i-th row are set to 0. In

particular, for the whole brain in L1, the membership matrix M1 is

a row vector with all N4 elements set to 1. The following shows

that the within-layer and between-layer ROI interactions can be

calculated by simply performing some linear operations on the

matrix C4 based on the membership matrix Ml .

Within-layer ROI interaction. Given the ROI interactions

in the bottommost layer L4, the ROI interactions within each of

the higher layers are computed as follows. Let Rl
i and Rl

j represent

the i-th and j-th ROIs in a certain layer Ll . Again, a matrix Cl is

defined similar to C4, but its (i, j)-th component now indicates the

correlation between the compound ROIs Rl
i and Rl

j . Suppose Rl
i

and Rl
j contain a and b simple ROIs respectively. The correlation

between Rl
i and Rl

j is computed as the mean value of all the

correlations between a simple ROI node from Rl
i and a simple

ROI node from Rl
j , that is,

corr(Rl
i ,R

l
j)~

1

a|b

X
R4

m[Sl
i

X
R4

n[Sl
j

corr(R4
m,R4

n),

where R4
m and R4

n represent the simple ROIs in L4, and Sl
i and Sl

j

are two sets containing the simple nodes that comprise Rl
i and Rl

j ,

respectively.

Represented in the form of matrix, the correlation matrix Cl

can be computed as follows:

Cl(i,j)~corr(Rl
i ,R

l
j)~

1TKi,j � :C41

a|b
, ð1Þ

where Cl(i,j) denotes the (i,j)-th element in the matrix Cl , the

vector 1 is the Nl|1 vector with all elements equal to 1, the

symbol �: represents component-wise product of two matrices, and

the N4|N4 matrix Ki,j~Ml(i,:)T6Ml(j,:) is the Kronecker

product of the i-th and the j-th rows in the membership matrix

Ml .

Between-layer ROI interaction. The correlation matrix

that reflects between-layer interactions can be defined similarly to

that of within-layer interactions. First, let us consider the

correlation matrix for two different layers Ll1 and Ll2 (where

l1~1,2,3; l2~1,2,3; and l1=l2). It is defined as:

Cl1,l2 (i,j)~corr(R
l1
i ,R

l2
j )~

1TK(l1,i),(l2,j) � :C41

a|b
, ð2Þ

where K(l1,i),(l2,j)~Ml1 (i,:)T6Ml2 (j,:) is the Kronecker product of

the i-th row in Ml1 and the j-th row in Ml2 .

Now, let us consider the correlation matrix for two layers Ll and

L4. It can be simply computed as:

C4,l~MlC4=:H,

where H is an N4|N4 matrix, whose elements in the i-th row are

all equal to
P

j Ml(i,j), and the symbol =: denotes the component-

wise division of two matrices.

Feature vector construction. Note that the hierarchical

anatomical brain network may not have the property of small-

worldness as shown in DTI and fMRI networks [28,29], because

the connections in our case are not based on functions or real

Figure 1. Overview of our proposed method.
doi:10.1371/journal.pone.0021935.g001

Hierarchical Brain Networks for MCI Prediction
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neuron-connections. Some prior knowledge could be used to

prune the edges if it is believed that two ROIs are independent of

each other conditioned on the disease. However, in our approach

we keep all the connections so that new relationships between

structural changes and the disease are not left unexplored. But on

the other side, since our network is fully connected, some

commonly used network features, such as local clustering

coefficients, do not work efficiently as they do for sparse

networks in DTI and fMRI. The local clustering coefficient for

a node i is computed by averaging its connections to all the other

nodes in the network, which might eliminate the necessary

discrimination. Therefore, we directly use the weights of edges as

features, that is, we concatenate the elements in the upper triangle

Figure 2. Illustration of hierarchical ROIs. Left: Hierarchical ROIs in three different layers; Right: Network connections between ROIs within
different layers.
doi:10.1371/journal.pone.0021935.g002

Table 2. Number of ROIs in the hierarchy.

Layer Number of ROIs

L1 1

L2 20

L3 44

L4 100

doi:10.1371/journal.pone.0021935.t002

Hierarchical Brain Networks for MCI Prediction
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matrices of correlation matrices computed above. Moreover,

before computing the correlation of the volumetric features f i and

f j , we employ a normalization step by subtracting �ff from f i, where
�ff is the mean volume (in GM, WM, and CSF) of different ROIs

belonging to the same subject. By centerizing features in this way,

we can obtain a better classification accuracy.

Classification
Since a hierarchical fully-connected brain network is used in our

study, the dimensionality of the network features is very high:

originally more than 10,000 features for each subject. To address

this issue, in this paper, we propose a classification scheme to

efficiently learn discriminative information from this large amount

of network features. The scheme involves feature dimensionality

reduction and classification. The overview of the whole process is

given in Fig. 5. As shown, we use both a two-step feature selection

(Step 1 and Step 2 in Fig. 5) and a feature embedding (Step 3 in

Fig. 5) algorithms to efficiently reduce the dimensionality of

features. This gives rise to a small number of discriminative

features that can be well separated by a linear classifier. In

particular, the features of the training subjects are first selected

according to their relevance with respect to the clinic labels. This

step reduces the original more than 10,000 features to about

200*300 features. Then in the second step, about 60*80
features are further selected based on their predictive power in a

Partial Least Square (PLS) model [30]. After the two-step feature

selection, another PLS model is trained to embed the selected

60*80 features into a low dimensional space that maintains their

discriminative power. After feature selection and feature embed-

ding, each subject is represented by only 4 to 5 features. These

features are fed into a linear SVM classifier for differentiating MCI

patients and normal controls (Step 4 in Fig. 5).

In the rest of this section, our proposed classification scheme is

explained in detail. Firstly, in Section ‘‘Problem on identifying

discriminative features’’, we justify the necessity of incorporating

both feature selection and feature embedding into the dimension-

ality reduction module in Fig. 5. Then a brief introduction about

the Partial Least Square analysis is given in Section ‘‘Partial Least

Figure 3. Explanation of the network model. Left: Two types of nodes are included in the hierarchical network: the simple node in L4, and the
compound node in Ll (l~1,2,3). Each compound node is obtained by grouping several simple nodes agglomeratively. Right: Two types of edges are
included in the hierarchical network, each modeling the within-layer and between-layer interactions, respectively.
doi:10.1371/journal.pone.0021935.g003

Figure 4. Explanation of the membership matrix. The i-th row in the membership matrix Ml represents the composition of the node Rl
i in Ll .

In our example, since Rl
i is composed of the simple nodes R4

m , R4
n and R4

t in L4 , the elements of (i,m), (i,n) and (i,t) in Ml are set to 1, while the others
in the i-th row are set to 0.
doi:10.1371/journal.pone.0021935.g004

Hierarchical Brain Networks for MCI Prediction
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Square analysis’’, which is the key technique used in our

classification scheme. PLS integrates the dimensionality reduction

process (Step 1 * 3 in Fig. 5) and the classification process (Step 4

in Fig. 5) by considering classification labels when seeking a low

dimensional embedding space. It also integrates feature selection

(Step 2 in Fig. 5) and feature embedding (Step 3 in Fig. 5) into the

same framework to optimize the selection performance. Finally,

we summarize how PLS is used to facilitate the classification in our

case step by step in Section ‘‘Summary of the proposed

classification scheme’’.

Problem on identifying discriminative features. When

the number of predefined ROIs is large, the traditional

volumetric-based approaches encounter the high feature

dimensionality problem. Therefore some preprocessing steps are

conducted to reduce the feature dimensionality before

classification. There are usually two ways: i) select a subset of

the most discriminative features from the original feature set,

known as feature selection, or ii) combine the original features

linearly or non-linearly to get a lower dimensional feature space,

known as feature embedding. Both methods have been reported in

the literature. In [4,5], a small subset of features are selected by

SVM-Recursive Feature Elimination (SVM-RFE) proposed in

[31] and then fed into a nonlinear SVM with a Gaussian kernel. In

[32], the volumetric feature vector concatenating the GM, WM

and CSF in ROIs are nonlinearly embedded into a lower

dimensional feature space by Laplacian Eigenmap, and then a

clustering method is used to predict the AD from the normal

control.

Compared with volumetric features, the dimensionality of our

proposed network features is even much higher. To address this

problem, we propose to use both feature selection and feature

embedding to efficiently reduce the feature dimensionality. The

reason is two-fold. Firstly, feature selection alone may still give rise

to many informative features for the classification. For example,

suppose that only 10 ROIs really contribute to the discrimination.

The dimension of volumetric features may be maximally reduced

to 10 if the feature selection method is effective. However, the

number of the corresponding network features that model the

pairwise interactions of the 10 ROIs might be up to 45. This

possible number is only computed for the layer L4. If considering

about the interactions of ROIs between different hierarchical

layers, this number will be further increased. Secondly, feature

embedding based on the original high dimensional features may

not be able to accurately estimate the underlying data structure

due to the existence of too many noisy features. Also, a large

amount of features will greatly burden the computation of

embedding.

In short, either feature selection or feature embedding alone may

not be sufficient to identify the discriminative network features

with respect to classification. Therefore, a dimensionality reduc-

tion process is proposed, which couples feature selection and

feature embedding via Partial Least Square (PLS) analysis [30]. As

a supervised learning method, PLS considers about the informa-

tion in the classification labels and thus achieves a better

discrimination than many of the commonly used unsupervised

methods, for example, Principal Components Analysis (PCA) and

the Laplacian Eigenmap. As the key technique used in our

classification scheme, a brief introduction about PLS is given to

make our paper self-contained.

Partial Least Square analysis. PLS models the relations

between the predictive variables (the features X) and the target

variables (the labels Y) by means of latent variables. It is often

compared to PCA that only models the eigenstructure of X
without considering the relationship between X and Y. PLS

Figure 5. Overview of the proposed classification scheme.
doi:10.1371/journal.pone.0021935.g005
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maximizes the covariance of the projections of X and Y to latent

structures, as well as the individual variance of X and Y. This

method has advantages on data set where the size of the samples is

much smaller than the size of the features.

In particular, let the n|d matrix X represent the d-dimensional

feature vectors for the n subjects, and Y represent the

corresponding 1-dimensional label vector. PLS decomposes the

zero-mean matrix X and the zero-mean vector Y into

X~TPTzE

Y~UQTzF
ð3Þ

where T~(t1,t2, � � � ,tp) and U~(u1,u2, � � � ,up) are n|p matrices

containing p extracted latent vectors, the d|p matrix P and the

1|p vector Q represent the loadings, and the n|d matrix E and

the n|1 vector F are the residuals. The latent matrices T and U
have the following properties: each column of them, called a latent

vector, is a linear combination of the original variables X and Y,

respectively; and the covariance of two latent vectors ti and ui is

maximized. PLS can be solved by an iterative deflation scheme. In

each iteration, the following optimization problem is solved:

½cov(ti,ui)�2~ max
jjwi jj~1

½cov(Xwi,Y)�2,

where X and Y are deflated by subtracting their rank-one

approximations based on ti{1 and ui{1. Once the optimal weight

vector wi is obtained, the corresponding latent vector ti can be

computed by ti~Xwi. For more details, please see [30].

Summary of the proposed classification scheme. Taking

advantages of PLS analysis, our proposed method achieves good

classification and generalization in four steps, as shown in Fig. 5.

In Step 1, the discriminative power of a feature is measured by its

relevance to classification. The relevance is computed by Pearson

correlation between each original feature and the classification

label. The larger the absolute value of the correlation, the more

discriminative the feature. Features with correlation values lower

than a threshold are filtered out.

In Step 2, a subset of features are further selected from the result

of Step 1 in order to optimize the performance of PLS embedding

in Step 3. In particular, a PLS model is trained using the selected

features from Step 1. Then a method called Variable Importance

on Projection (VIP) [33] is used to rank these features according to

their discriminative power in the learned PLS model. The

discriminative power is measured by a VIP score. The higher

the score, the more discriminative the feature. A VIP score for the

j-th feature is

VIPj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
Pp

k~1 r2
kw2

jkPp
k~1 r2

k

s
,

where d is the number of features, p is the number of the latent

vectors as defined above, wjk is the j-th element in the vector wk,

and rk is the regression weight for the k-th latent variable, that is,

rk~uTk tk. About 60*80 features with the top VIP scores are

selected for feature embedding in the next step.

In Step 3, using the features selected in Step 2, a new PLS model

is trained to find an embedding space which best preserves the

discrimination of features. The embedding is performed by

projecting the feature vectors in the matrix X onto the new

weight vectors W~(w1,w2, � � � ,wp) learned by PLS analysis. In

other words, the representation of each subject changes from a

row in the feature matrix X to a row in the latent matrix T. The

feature dimensionality is therefore reduced from d to p (p%d ).

In Step 4, after PLS embedding, a small number of features in

the new space are able to capture the majority of the class

discrimination. This greatly reduces the complexity of relation-

ships between data. Therefore, these features are used to train a

linear SVM for predicting MCI patients and normal controls. In

our case, a linear SVM can achieve better or at least comparable

classification accuracies as a non-linear SVM.

The advantages of PLS for our network features over some

commonly used unsupervised and supervised nonlinear methods,

such as Laplacian eigenmap embedding and Kernel Fisher

Discriminant Analysis (KFDA), have been evidently shown in

our experiment in Section ‘‘Comparison of Classifiers’’.

Results and Discussion

In our study, we conduct two kinds of comparisons, that is, to

compare the discrimination power of the network and the

volumetric features, and to compare the performance of different

classifiers for the network features. The discussion of the

classification results are given at the end of this section.

Please note that, as MCI patients are highly heterogeneous, the

comparison of the absolute classification accuracy with the existing

works in the literature is meaningless. Therefore in our study, we

evaluate the improvement of our proposed approach over the

conventional volumetric features by comparisons on the same data

set with the same experiment configuration. Furthermore, to

investigate the generalization of the proposed method, we conduct

experiments repetitively on different random partitions of training

and test data sets with different partition ratios. The average

classification accuracy estimated in this way tends to be more

conservative than the traditional Leave-One-Out approach. More

discussions are given below.

Comparison of Features
Firstly, we compare the efficacy of different features with respect

to classification. The data set is randomly partitioned into 20

training and test groups with 75 samples for training and 75

samples for test. For a fair comparison, our proposed classification

process is applied similarly to both the volumetric and the network

features.

As aforementioned, our network features differ from the

conventional volumetric features in two aspects: i) the network

features model the regional interactions; ii) the network features

are obtained from a four-layer hierarchy of brain atlases. The

contributions of these two aspects are investigated separately. To

test the advantages of using regional interactions over local

volumes, we compare the network and the volumetric features on

the same hierarchical structure (either single-layer or four-layer).

To test the advantages of using the hierarchical network structure,

we compare network features obtained from different layers (the

bottommost layer and all four layers) in the hierarchy. Moreover,

we compare the networks with and without the cross-layer

connections to further explore the function of the hierarchial

structure. In summary, five methods are tested in the experiment:

N Method I is the proposed method in this paper, using the four-

layer hierarchical network features.

N Method II only uses the network features from the bottommost

layer L4. It tests the classification performance of network

features on a single layer.

N Method III uses the network features from all the four layers,

but removing the edges across different layers. It tests how the

Hierarchical Brain Networks for MCI Prediction
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cross-layer connections in the hierarchy contribute to the

classification.

N Method IV uses the volumetric features (the concatenation of

GM, WM and CSF ratios in the ROIs) from the bottommost layer

L4. It corresponds to the conventional volume-based method.

N Method V uses volumetric measures from all four layers. It

tests if the volumetric features obtained from the hierarchy can

achieve similar classification performance as the hierarchical

network features.

The results are summarized in Table 3. The classification accuracy

in Table 3 is averaged across the 20 randomly partitioned training

and test groups. A paired t-test is conducted between Method I

and the other four methods respectively, to demonstrate the

advantage of our proposed method. The t-value and the

corresponding p-value of the paired t-test are also reported. It

can be seen from Table 3 that Method I is always statistically

better (the significance level 0:05) than any of the other four

methods. In addition to comparing the average accuracies in

Table 3, the classification accuracies are also compared on each of

the 20 training-test groups between the four-layer network features

(Method I) and the conventional volume features (Method IV) in

Fig. 6, and between the four-layer network features (Method I) and

the single-layer network features (Method II) in Fig. 7.

Combining the results from Table 3, Fig. 6 and Fig. 7, we

observe the following:

N Our proposed hierarchical network features in Method I

outperform the conventional volumetric features in Method

IV. The advantage may come from using both regional

interactions and the hierarchical structure.

N To demonstrate the benefit purely from using the regional

interactions, the same atlases in the hierarchy are applied to

volumetric features as in Method V. It can be seen from

Table 3 that the hierarchical structure does not improve the

discrimination of the single-layer volumetric features in

Method IV. Moreover, the benefit of using regional interac-

tions can also be shown by the better result of the single-layer

network features in Method II than the single-layer volumetric

features in Method IV.

N To demonstrate the benefit purely from the hierarchy, we

compare the classification performance of the single-layer

network features in Method II and the four-layer network

features in Method I. The advantage of the four-layer structure

is statistically significant over the single-layer. Moreover, the

result that Method I statistically outperforms Method III

indicates the necessity of using the cross-layer edges in the

network.

It is noticed that different ratios of training and test partitions may

lead to a variation in the classification accuracy. To reflect the

influence of this factor, we test seven different numbers of training

samples, occupying 50% to 80% of the total data size. For each

number of training samples, 20 training and test groups are

randomly generated and the average classification accuracy is

summarized in Fig. 8. When 150 training samples are used, the

test accuracy in Fig. 8 corresponds to the classification accuracy of

85:07% obtained by Method I in Table 3. In general, the

classification accuracy goes up slightly when the number of the

training samples increases. This is not surprising because the larger

the number of training samples, the more the learned information.

It can be seen that the network features show a consistent

improvement in classification accuracy of approximately 3% in all

cases, compared to those by using the conventional volumetric

features. Averaged across different numbers of training samples,

the classification accuracy becomes 84:35% for the network

features, and 80:83% for the volumetric features, which represents

an overall classification performance of these two different

features. A paired t-test is performed on the seven different ratios

of training-test partitions using both features. The obtained p-

value of 0:000024 indicates that the improvement of the network

features over the volumetric features is statistically significant.

It is worth noting that the influence of different ratios of

training-test partitions on the classification result is often ignored

in many existing works. One possible reason is that a Leave-One-

Out validation is used when the size of the data is small. This often

leads to the use of more than 90% data for training, which tends to

produce a more optimistic result compared with using other lower

ratios of training data.

Comparison of Classifiers
The classification performance of our proposed classification

scheme is compared with other six possible schemes shown in

Table 4. To simplify the description, our proposed scheme is

denoted as P1, while the other six schemes in comparison are

denoted as P2*P7. To keep consistent with P1, each of the six

schemes P2*P7 is also divided into four steps: rough feature

selection, refined feature selection, feature embedding and classifi-

cation, corresponding to Step 1*Step 4 in P1. Please note that the

first step, rough feature selection, is the same for all schemes

P1*P7. In this step, the discriminative features are selected by their

correlations with respect to the classification labels. From the second

step onwards, different schemes utilize different configurations of

strategies, as shown in the second column of Table 4.

To clarify the settings of our experiment, the Laplacian

embedding used in P7 is described as follows. The embedding is

applied on a connection graph that shows the neighboring

relationship of the subjects. Based on the connection graph, the

distance between two subjects is computed as the shortest distance

between the corresponding two nodes in the graph. This distance

is used to construct the adjacent matrix and Laplacian matrix used

in the Laplacian embedding. The Laplacian embedding in our

experiment is different from the one in [32] where the distance

between two subject is computed based on the deformation

estimated by the registration algorithm.

The classification results are summarized in Fig. 9 and Table 4.

Please note that the classification accuracy at each number of

training samples in Fig. 9 is an average over 20 random training

and test partitions as mentioned in Section ‘‘Comparison of

Features’’. Also, the overall classification accuracy in Table 4 is an

average of accuracies at different numbers of training samples in

Fig. 9. The best overall classification accuracy of 84:35% is

obtained by our proposed scheme P1: VIP selection + PLS

Table 3. Comparison of discrimination efficacy of different
features.

Mean Test Accuracy (%) Paired t-test

t-value p-value

Method I 85.07+3.92 - -

Method II 83.0+3.65 3.1349 0.00272

Method III 83.13+3.43 3.0009 0.00367

Method IV 81.93+3.76 3.3558 0.00166

Method V 81.47+3.95 4.4163 0.00015

doi:10.1371/journal.pone.0021935.t003
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Figure 7. Classification comparison using different hierarchical structure. The classification performance is compared between the four-
layer network features in Method I and the single layer network features in Method II on 20 training/test groups. Each group contains 150 training
samples and 75 test samples randomly partitioned from our data set.
doi:10.1371/journal.pone.0021935.g007

Figure 6. Classification comparison using different features. The classification performance is compared between our proposed method
(four-layer network features as in Method I) and the conventional volumetric method (Method IV) on 20 training/test groups. Each group contains
150 training samples and 75 test samples randomly partitioned from our data set.
doi:10.1371/journal.pone.0021935.g006
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embedding + a linear SVM. This is slightly better than P2, where a

nonlinear SVM is used. It can be seen that the classification

schemes with PLS embedding (P1*P4) achieve an overall

accuracy above 84%, better than those without PLS embedding

(P5*P7). The supervised embedding methods, i.e., PLS (P1*P4)

and KFDA (P7), perform better than the unsupervised Laplacian

Eigenmap embedding (P6). Moreover, PLS embedding (P1*P4)

preserves more discrimination than the nonlinear supervised

embedding of KFDA (P7).

Although the proposed scheme P1 achieves the best classification

performance, the difference between P1*P4 is not significant. This

may indicate that the discriminative dimensionality reduction by

PLS embedding plays a more important role than the classifier type

in improving classification performance. After PLS embedding, the

data complexity is greatly reduced and the intrinsic relationship

underlying the data becomes more evident, therefore allowing even

simple classifiers to achieve performance comparable to more

sophisticated classifiers. Although the difference between P1*P4 is

not significant, P1 is still preferred over P2 and P4 because the linear

SVM employed in P1 is much faster than the nonlinear SVM

employed in P2 and P4. P1 is also preferred over P3, because the

VIP selection employed in P1, while yielding improvement over P3,

does not increase the computational cost substantially.

Spatial Patterns
Note that each network feature characterizes the relationship

between two ROIs, instead of an individual ROI as in the

conventional approaches. Therefore, for the first time, we study

the relative progression speed of the disease in different ROIs of the

same subject, which eliminates the impact of personal variations.

On the contrary, the conventional methods study the absolute

progression speeds of ROIs among different subjects. Normalizing

subjects by the whole brain volume in conventional methods may

not completely remove the personal variations.

To be an essentially discriminative network feature, the two

associated ROIs may satisfy one of the two following conditions:

N One ROI shows significant difference between the MCI group

and the normal control group, while the other ROI is relatively

constant with respect to the disease. Therefore the correlation

between these two ROIs varies over the two groups in

comparison.

 

 

Figure 8. Classification comparison using network features and volumetric features with different numbers of training samples.
doi:10.1371/journal.pone.0021935.g008

Table 4. Configurations of classification Schemes.

Schemes Configurations classification accuracy overall (%)

P1 VIP selection + PLS embedding + linear SVM 84.35

P2 VIP selection + PLS embedding + nonlinear SVM 84.03

P3 no selection + PLS embedding + linear SVM 84.11

P4 no selection + PLS embedding + nonlinear SVM 84.10

P5 SVM-RFE selection + no embedding + nonlinear SVM 80.07

P6 no selection + Laplacian Eigenmap embedding + nonlinear SVM 79.16

P7 no selection + KFDA embedding + linear SVM 81.08

doi:10.1371/journal.pone.0021935.t004
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N Both ROIs change with the disease, but their change speeds

are different over two different groups.

The selected features are different for the twenty randomly

partitioned training and test groups used in Section ‘‘Comparison

of Features’’. Table 5 shows the most discriminative features selected

by more than half of the training and test groups. It can be clearly

seen that hippocampus remains the most discriminative ROI in

differentiating the normal controls and MCI patients. Table 5 is

separated into two parts. On the upper portion of the table, the two

ROIs of a network feature may be both associated with the MCI

diagnosis, such as hippocampus, entorhinal cortex, uncus, fornix,

globus palladus, cingulate etc, as reported in the literature

[4,5,7,10,13,15,19,20,34,35]. A typical example is the correlation

between hippocampus and ventricle. It is known that the

enlargement of ventricle is a biomarker for the diagnosis of the

AD [36]. However, different from the hippocampus volume loss that

often occurs at the very early stage of the dementia, the ventricle

enlargement often appears in the middle and late stages. Therefore,

the progression pattern of disease in these two regions is different.

Their correlation is thus selected as the discriminative feature. On

the lower portion of the table, the first ROI is associated with the

disease, while the second ROI is not. For example, it has been

reported that the anterior and posterior limbs of internal capsule and

the occipital lobe white matter are not significantly different between

MCI patients and normal controls in a DTI study [37].

Metrics
In our network design, each edge represents the correlation or

the ‘‘similarity’’ between a pair of ROI nodes. Pearson correlation

is just one of the possible similarity measurements. By viewing

Pearson correlation as an inverse distance, it is straightforward to

include other commonly used distance metrics, e.g., the Euclidean

distance, the L1-norm distance, and the kernel based distance, for

measuring the feature similarity between ROI pairs. By virtue of

separating the computation of the hierarchy and the regional

interactions, our proposed method can be easily generalized to

other metrics with merely a slight revision of (1) and (2) as follows.

The within-layer interaction is computed as

Dl(i,j)~
1TKi,j � :D41

a|b
, ð4Þ

and the between-layer interaction is computed as

Dl1,l2 (i,j)~
1TK(l1,i),(l2,j) � :D41

a|b
, ð5Þ

 

 

Figure 9. Comparison of seven classification schemes on network features. The classification accuracy is plotted over different number of
training samples. For a given number of training samples, the classification accuracy is averaged over 20 training/test groups randomly partitioned
from our data set using this number of training samples. The scheme configurations are shown in Table 4.
doi:10.1371/journal.pone.0021935.g009

Table 5. Selected discriminative features.

hippocampus – amygdala

hippocampus - lingual gyrus

hippocampus – uncus

hippocampus - prefrontal/superolateral frontal lobe

hippocampus - globus palladus

hippocampus - entorhinal cortex

hippocampus - cingulate region

hippocampus – ventricle

hippocampus and amygdala and fornix – ventricle

uncus – fornix

hippocampus - posterior limb of internal capsule

globus palladus - anterior limb of internal capsule

hippocampus - occipital lobe WM

doi:10.1371/journal.pone.0021935.t005
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where D4 is a general metric that measures the relationship between

two ROIs in the bottommost layer L4. The definitions of other

symbols remain the same. If Pearson correlation is used, these two

equations become identical to (1) and (2). It can be seen that, for a

different metric, the hierarchy can be left intact and only the regional

interactions in the bottommost layer need to be recomputed.

Using (4) and (5), we test the performance of the three

alternative metrics: the Euclidean distance D4
L2(i,j), the L1-norm

distance D4
L1(i,j), and the kernel based distance D4

ker(i,j). They are

defined as follows:

D4
L2(i,j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

k~1

(f ik{f jk)2

vuut ,

D4
L1(i,j)~

X3

k~1

jf ik{f jkj,

D4
ker(i,j)~exp{

E(f i{f j)E2

2s2
:

ð6Þ

The Euclidean distance and the L1-norm distance measure the

linear relationship between a pair of ROI nodes. No parameter

needs to be set. The kernel based distance provides a non-linear

measurement of ROI feature similarity. The parameter s is set, by

cross-validation, to be 0:2 times the average Euclidean distance

between ROI pairs. Based on the 20 random training and test

partitions as in Section ‘‘Comparison of Features’’, the average

classification accuracies are reported in Table 6. For comparison,

the accuracies of our network approach using Pearson correlation,

and the conventional volumetric approach are also repeated in the

table. In addition, the test accuracies over different numbers of

training samples for different metrics are plotted in Fig. 10. It can

be seen that, Pearson correlation yields the best performance,

followed by the kernel based distance. These two distances give

significant improvement over the conventional volumetric ap-

proach, whereas the Euclidean and the L1-norm distances do not.

The importance of the choice of the metric is quite visible: only

when a proper metric is selected, the network construction may

bring useful information compared with the conventional

volumetric approach.

Conclusion
In this paper, we have presented how hierarchical anatomical

brain networks based on T1-weighted MRI can be used to model

brain regional correlation. Features extracted from these networks

are employed to improve the prediction of MCI from the

conventional volumetric measures. The experiments show that,

without requiring new sources of information, the improvement

brought forth by our proposed approach is statistically significant

compared with conventional volumetric measurements. Both the

network features and the hierarchical structure contribute to the

improvement. Moreover, the selected network features provide us

a new perspective of inspecting the discriminative regions of the

dementia by revealing the relationship of two ROIs, which is

Table 6. Comparison of different metrics for modeling the
regional interactions.

Mean Test Accuracy (%)

Euclidean 82.27

L1 80.07

Kernel 84.47

Pearson Correlation 85.07

Volumetric 81.93

doi:10.1371/journal.pone.0021935.t006

Figure 10. Comparison of different metrics used for modeling the regional interactions. The classification accuracy is plotted over
different number of training samples. For a given number of training samples, the classification accuracy is averaged over 20 training/test groups
randomly partitioned from our data set using this number of training samples.
doi:10.1371/journal.pone.0021935.g010
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different from the conventional approaches. The flexibility to

generalize our proposed method has been demonstrated by

different distance metrics tested in our experiment.
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