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Abstract

Background: Children with complex urogenital anomalies often require bladder reconstruction. Gastrointestinal tissues
used in bladder augmentations exhibit a greatly increased risk of malignancy, and the bladder microenvironment may play
a role in this carcinogenesis. Investigating the influences of the bladder microenvironment on gastrointestinal and urothelial
cell cycle checkpoint activation and DNA damage response has been limited by the lack of an appropriate well-
differentiated urothelial cell line system.

Methodology/Principal Findings: To meet this need, we have developed a well-differentiated conditionally immortalized
urothelial cell line by isolating it from the H-2Kb-tsA58 transgenic mouse. These cells express a thermosensitive SV40 large T
antigen that can be deactivated by adjustment of cell culture conditions, allowing the cell line to regain normal control of
the cell cycle. The isolated urothelial cell line demonstrates a polygonal, dome-shaped morphology, expresses cytokeratin
18, and exhibits well-developed tight junctions. Adaptation of the urothelial cell line to hyperosmolal culture conditions
induces expression of both cytokeratin 20 and uroplakin II, markers of a superficial urothelial cell or ‘‘umbrella cell.’’ This cell
line can be maintained indefinitely in culture under permissive conditions but when cultured under non-permissive
conditions, large T antigen expression is reduced substantially, leading to increased p53 activity and reduced cellular
proliferation.

Conclusions/Significance: This new model of urothelial cells, along with gastrointestinal cell lines previously derived from
the H-2Kb-tsA58 transgenic mouse, will be useful for studying the potential mechanisms of carcinogenesis of the
augmented bladder.

Citation: Dixon BP, Henry J, Siroky BJ, Chu A, Groen PA, et al. (2011) Cell Cycle Control and DNA Damage Response of Conditionally Immortalized Urothelial
Cells. PLoS ONE 6(1): e16595. doi:10.1371/journal.pone.0016595

Editor: Sue Cotterill, St. Georges University of London, United Kingdom

Received September 1, 2010; Accepted January 6, 2011; Published January 28, 2011

Copyright: � 2011 Dixon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work described herein was funded by a Kidney Foundation of Greater Cincinnati Research Award, the William Cooper Procter Pediatric Research
Award, and an institutional allocation of funding from a Child Health Research Career Development Award from the National Institutes of Health (K12 HD028827)
to BPD, and grant funding from the National Institutes of Health (R01 DK061458) to JJB. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: john.bissler@cchmc.org

Introduction

Bladder cancer is one of the most common cancers of the

urinary tract, with approximately 330,000 new cases worldwide

per year [1], and an estimated age-adjusted incidence in the

United States of 21.1 per 100,000 men and women per year [2].

Bladder cancer is associated with environmental exposures such as

tobacco use [3], occupational carcinogens [4], and infection with

Schistosoma haematobium [5]. Because many environmental muta-

genic compounds are concentrated in the urine, bladder

epithelium is frequently exposed to genotoxic stress. The resultant

DNA damage must be repaired effectively in order to maintain

genomic stability and avoid malignant transformation.

The gastrointestinal tissue portion of bladder augmentations

exhibits an eight- to fifteen-fold increased risk of malignancy over

that of native bladder tissues [6]. The etiology of this increased risk

is poorly understood but may stem from cellular stresses

experienced by the non-native bladder tissue in the bladder

microenvironment [7]. Both acute exposure and gradual adapta-

tion to hyperosmolal conditions lead to the accumulation of DNA

damage and cause this accumulation by disruption of components

of the DNA damage response pathway [8,9]. Urothelial cells lining

the mammalian lower urinary tract have adapted to the

hyperosmolal urinary microenvironment by organizing into a

stratified epithelium, developing tight junctions [10,11] and

forming the asymmetric unit membrane (AUM) consisting of

uroplakins [12]. Urothelial cells also accumulate osmolytes such as

betaine, myo-inositol, and taurine [13] to balance the effects of

hyperosmolality. Using transitional cell carcinoma cell lines, we

recently identified that bladder-derived cells maintain the capacity

to recognize and repair DNA damage within hyperosmolal

microenvironments [14]. Activation of the DNA damage response

following adaptation to a hyperosmolal microenvironment appears

to be tissue-specific to bladder-derived cells, as we found that these

processes are compromised in gastric- and colon-derived adeno-

carcinoma cell lines [14] under such hyperosmolal conditions. A

tissue-specific capacity of urothelial cells to activate the DNA

damage response under osmotic stress, and corresponding failure
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of gastrointestinal cells to do so, may underlie the accumulation of

mutations in the gastrointestinal tissues in augmentation cysto-

plasties [15], potentially leading to their increased risk of

carcinogenesis [6,7].

Unfortunately, the systematic examination of such tissue-specific

effects of the bladder microenvironment on DNA damage

recognition is hampered by the lack of truly appropriate urothelial

models. Cultured primary urothelial cells are highly differentiated

[10], but demonstrate phenotypic variability between passages

[16,17], and undergo senescence after a finite number of passages

[18,19]. Urothelial cells immortalized by the wild-type SV40 large

T antigen such as the UROtsa and BL-1 cell lines express some

markers of urothelium [20,21], and are phenotypically stable

between generations. However, because the large T antigen binds

critical proteins such as p53 (for review see Cheng et al [22]), its

constitutive expression may interfere with activation of cell cycle

checkpoints and apoptosis in response to DNA damage. Similarly,

the urothelial cell line derived by Chapman et al is constitutively

immortalized by human telomerase reverse transcriptase

(hTERT), and although demonstrated to be non-tumorigenic in

vivo [19], may not be suitable for assessing the cell biology of

malignant transformation as telomerase expression alters the

expression of genes regulating tumorigenesis [23]. Well-differen-

tiated transitional cell carcinoma cell lines such as RT4 and KK47

[24,25] also express markers of urothelial differentiation such as

uroplakins and cytokeratins [26,27], but have profound derange-

ments in cell cycle regulation limiting their usefulness as a model of

urothelium to study the DNA damage response.

To circumvent the limitations and complement the capacities of

current model systems, we developed a conditionally immortalized

urothelial cell line derived from H-2Kb-tsA58 mice. Use of these

animals to produce primary cell lines that are conditionally

immortalized has been well described in the scientific literature

[28–34]. The derived cell line exhibited differentiation characteristics

of urothelium including a polygonal, dome-shaped monolayer of cells

with well-developed tight junctions and cytokeratin 18 expression.

Cytokeratin 20 and uroplakin II expression could be induced by

adaptation of the cells to hyperosmolal culture conditions. In

addition, cell cycle control was restored by significant reduction of

the SV40 large T antigen and an increase in the cellular activity of

p53 under non-permissive conditions as evidenced in part by a

decrease in cell proliferation. Likewise the activation of cell cycle

checkpoints in response to DNA damage was intact under these latter

conditions as was evidenced by S-phase cell cycle arrest following the

induction of double strand breaks. To our knowledge, this is the first

urothelial cell line that is both well-differentiated and conditionally

immortalized, exhibiting normal regulation of cell proliferation and

cell cycle checkpoint activation by adjustment of culture conditions.

As such, this cell line is an invaluable model of urothelium for studies

focused on bladder carcinogenesis, and is the appropriate cell line for

comparison to similarly-derived gastrointestinal epithelial cell lines to

elucidate the mechanisms underlying the increased risk of malignancy

of augmented bladders.

Methods

Ethics Statement
The Institutional Animal Care and Use Committee and

Institutional Biosafety Committee of the Cincinnati Children’s

Research Foundation approved all animal experimental proce-

dures (IACUC protocol #9D09068 and IBC Protocol #2009-

0086), and these experiments were carried out in accordance with

standards as described in the NIH Guide to the Care and Use of

Laboratory Animals.

Preparation of Explant Cultures of Urothelium from
Mouse Bladder

The H-2Kb-tsA58 mouse (ImmortomouseTM), transgenic for the

thermosensitive mutant of the SV40 large T antigen (tsA58)

expressed by an interferon-inducible MHC Class I promoter, was

obtained from Charles River Laboratories, (Wilmington, MA).

The tsA58 antigen is ubiquitously expressed, although at the non-

permissive body temperature of the mouse (39uC) the protein

product of the transgene is unstable and is degraded. Once tissues

are removed from the animal, cell lines established from these

tissues may be conditionally immortalized under permissive tissue

culture conditions of 33uC and in the presence of recombinant

mouse interferon gamma (IFN-c).

ULTI (Urothelial Large T, Inducible) cells were isolated from

these mice using a modification of procedures described by Kreft

et al [16,17]. Briefly, following CO2 asphyxiation, an incision was

made from the symphysis pubis through the sternum, and the

urinary bladder was resected in its entirety. Bladders were rinsed

with phosphate-buffered saline (PBS), divided sagitally into two

equal parts, and mucosa separated from the muscle layer and

submucosa. The mucosa was applied to Cyclopore 0.45 mm

membrane supports (Becton Dickinson, Franklin Lakes, NJ) in 6

well dishes. Each well contained DMEM:Ham’s F12 media

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine

serum (FBS, Hyclone, Logan, UT), 1% penicillin/streptomycin

(Invitrogen), amphotericin B 2.5 mg/ml (Sigma, St. Louis, MO),

1% insulin/transferrin/ethanolamine/selenium (ITES) media

supplement (Sigma), mouse epidermal growth factor 10 ng/ml

(Sigma), and mouse IFN-c 10 U/ml (Invitrogen). Cultures were

incubated at 5% CO2, 37uC for 24 hours, then incubated at 5%

CO2, 33uC and observed for growth. Media was refreshed from

both the inserts and wells twice weekly. Once outgrowth of cells

from the mucosal pieces became confluent (at approximately 28

days in culture), the cells were subcultured with 0.25% trypsin and

0.02% EDTA onto 100 mm plastic dishes coated with type I

collagen (Becton Dickinson). To drive the ULTI urothelial cells

towards a non-transformed phenotype, subcultured cells were

grown at 37uC in media identical to that used in the explant

Table 1. Reverse transcriptase PCR primer pairs, annealing
temperature (Tannealing), and predicted PCR product size for
cytokeratin 18, cytokeratin 20, uroplakin II, and
glyceraldehyde-3-phosphate dehydrogenase (G3PDH).

Primer Pairs TAnnealing

Predicted
Product Size

Mus musculus Cytokeratin 18 (Krt18) 58uC 469 bp

Forward TTTAGAGTCAAGTATGAGAC

Reverse AGTTGATGTTCTGGTTTTTC

Mus musculus Cytokeratin 20 (Krt20) 52uC 467 bp

Forward TCAGATTGAAGTTTGAGACT

Reverse CAGAGACTCTTTCATGCTGA

Mus musculus Uroplakin II (Upk2) 65uC 233 bp

Forward CGACAGCAAAGTGGTTAAGT

Reverse CCATGTTTTTTCGAGGAAGC

Mus musculus G3PDH (Gapdh) 58uC 752 bp

Forward AGGTCGGTGTGAACGGATT

Reverse ATACTTGGCAGGTTTCTCCA

doi:10.1371/journal.pone.0016595.t001
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experiments, with the exception of the removal of IFN-c and

amphotericin B and the reduction of the FBS concentration to

0.5%.

Established Cell Lines and Reagents
The RT4 transitional cell carcinoma and NIH 3T3 mouse

fibroblast cell lines were obtained from the American Type

Culture Collection (ATCC, Manassas, VA) and maintained in cell

culture in DMEM:F12 media (Invitrogen) supplemented with 10%

FBS and 1% penicillin/streptomycin. Conditionally immortalized

gastrointestinal epithelial cell lines ImSt (gastric), YAMC (colon),

and MSIE (small intestine), also derived from the H-2Kb-tsA58

mouse, were generous gifts from Dr. Robert Whitehead

(Vanderbilt University, Nashville, TN) and were maintained in

identical media to our derived urothelial cell line. Etoposide,

pifithrin-a and sterile filtered DMSO were obtained from Sigma

Chemical.

Crystal violet cell proliferation assay
ULTI cells were seeded into 96 well plates at a density of 5000

cells/well in complete media containing FBS at concentrations of

10%, 5%, 3%, 2%, 1%, 0.75%, 0.5%, 0.25%, and 0%, both with

and without IFN-c. Cultures containing IFN-c were incubated at

33uC, and cultures lacking IFN-c were incubated at 37uC, both for

72 hours. Wells were then washed with PBS, fixed with 4%

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA),

washed with ddH2O, and incubated with 0.1% crystal violet

(Becton Dickinson) for 30 minutes. Cells were again washed with

ddH2O, and treated with 10% glacial acetic acid. Absorbance was

then read at 540 nm with a Bio-Rad Benchmark Plus microplate

spectrophotometer. The experiment was carried out in triplicate,

and to account for minor variation in initial seeding density

between experiments, absorbances from each experiment were

normalized to that of 10% FBS in both conditions. Student’s t-test

was applied between absorbances measured from cells cultured at

33uC and from cells cultured at 37uC for each concentration of

FBS to determine statistical significance.

Cell cycle analysis by flow cytometry
ULTI cells were seeded into 60 mm plastic dishes at a density of

16105 cells/dish in complete media containing either 10% or

0.5% FBS, both with and without the addition of 10 U/ml IFN-c.

Cultures containing IFN-c (with either 10% or 0.5% FBS) were

incubated at 33uC, and cultures lacking IFN-c (with either 10% or

0.5% FBS) were incubated at 37uC, each for 72 hours. Cells were

then detached with trypsin-EDTA (Invitrogen), pelleted by

centrifugation, resuspended in staining buffer consisting of

propidium iodide 50 mg/mL, NP-40 0.3%, and RNAse A 1 mg/

mL in PBS, and incubated at 4uC for 30 minutes. Cells were then

filtered, analyzed with a Becton-Dickinson FACSCanto II

cytometer, and the resulting data was interpreted using FlowJo

v8.8.6 (TreeStar, Ashland, OR). Experiments were carried out in

triplicate, and the mean percentage of cells in G0/G1, S, and G2/

M phases were calculated.

In a separate set of experiments, cells were seeded at a density of

16105 cells/dish in complete media containing either 10% FBS

and 10 U/ml IFN-c, or 0.5% FBS without IFN-c. Cultures

containing IFN-c and 10% FBS were incubated at 33uC, and

cultures without IFN-c and 0.5% FBS were incubated at 37uC,

each for 72 hours. At 60 hours of incubation, cells were treated

with etoposide (a potent inhibitor of topoisomerase II that causes

double strand DNA breaks) at a final concentration of 25 mM, or a

similar volume of the DMSO vehicle. Cells were then detached,

pelleted, stained with propidium iodide, and analyzed in the same

manner as the previous experiment.

In a third set of experiments, cells were seeded at a density of

16105 cells/dish in complete media without IFN-c containing

0.5% FBS and incubated at 37uC for 72 hours. At 54 hours of

incubation, cells were treated with either pifithrin-a (a specific

inhibitor of p53) at a final concentration of 20 mM or a similar

volume of the DMSO vehicle, then at 60 hours of incubation

(without washing) treated with etoposide 25 mM or DMSO

vehicle. Cells were then detached, pelleted, stained with propidium

iodide, and analyzed in the same manner as the previous

experiments.

Western blot analysis
ULTI cells were subcultured onto plastic dishes both in

complete media containing 10% FBS as described above, as well

as in media lacking IFN-c and containing 0.5% FBS, at a density

of 1.06106 cells per 100 mm dish. NIH 3T3 fibroblasts were also

cultured in standard media as described above. ULTI cultures

were either maintained at 33uC in the presence of IFN-c, or 37uC
in the absence of IFN-c for twenty-four hours, treated with either

pifithrin-a 20 mM or DMSO vehicle for six hours, then (without

washing) treated with either etoposide 25 mM or DMSO vehicle

for twelve hours. Whole cell lysates were then generated by lysis

into ice-cold RIPA buffer (50 mM Tris HCl pH 8, 150 mM NaCl,

1% Nonidet-P40, 0.5% sodium deoxycholate, 0.1% SDS)

supplemented with protease and phosphatase inhibitors (10 mM

NaF, 1 mM Na3VO4, 1 mM PMSF, 2 mg/ml aprotinin, and

10 mg/ml leupeptin). Cell suspensions were sonicated and cellular

debris was pelleted by centrifugation. Supernatants were aliquoted

and stored at -80uC.

Protein concentration of these lysates was determined by

bicinchoninic acid assay (Pierce, Rockford, IL) according to the

manufacturer’s instructions. Equal amounts of protein were

separated by SDS-PAGE and transferred to Immobilon-P PVDF

membranes (Millipore, Billerica, MA). Membranes were blocked

with 5% nonfat dry milk in TBS with 0.1% Tween 20 v/v (TBST),

then probed with antibody against SV40 large T antigen (1:2000,

Santa Cruz Biotechnology, Santa Cruz, CA); total p53 (1:40,000),

phospho-p53, serine 15 (1:10,000), cleaved caspase 3 (1:1000), and

PARP (1:2000) (Cell Signaling Technology, Danvers, MA); p21cip1

(1:1000, BD Pharmingen, San Jose, CA), total ATM (1:1000,

Novus Biologicals, Littleton, CO), phospho-ATM, serine 1981

(1:1000, Rockland Immunologicals, Gilbertsville, PA), and

cH2AX (1:2000, Trevigen, Gaithersburg, MD). Equal protein

loading was confirmed by blotting for G3PDH (1:40,000;

Figure 1. The ULTI mouse urothelial cell line is conditionally immortalized under permissive conditions, but restores cell cycle
control under non-permissive conditions. A) Crystal violet proliferation assay, in which absorbances were normalized to that of 10% FBS to
reduce interexperimental variability. Open circles represent cells grown under permissive conditions (33uC +IFN-c), whereas closed circles represent
cells grown under non-permissive conditions (37uC -IFN-c). Error bars represent standard error of the mean. B) Cell cycle analysis of ULTI cells under
both permissive and non-permissive conditions, and with 10% and 0.5% FBS concentration, by propidium iodide DNA labeling flow cytometry. C)
Quantitation of cell cycle phase of ULTI cells under both permissive and non-permissive conditions, and with 10% and 0.5% FBS concentration. Dark
grey bars indicate percent of cells in G0/G1, white bars indicate percent of cells in S phase, and light grey bars indicate percent of cells in G2/M phase.
Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0016595.g001
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Trevigen). Membranes were then probed with horseradish

peroxidase-linked secondary antibody (GE Healthcare Bioscienc-

es, Piscataway, NJ), and protein bands detected by chemilumi-

nescence with the Amersham ECL Plus kit (GE Healthcare

Biosciences) and developed by autoradiography.

Phase contrast and scanning electron microscopy of ULTI
cells

ULTI cells subcultured onto plastic dishes were examined with

Köhler illumination by phase contrast microscopy on a Zeiss

Axiovert 200M inverted microscope using the 20x objective. Cells

were also subcultured onto Cyclopore 0.45 mm membrane

supports (Becton Dickinson), then once the cells reached

confluence fixed with 2% (w/v) paraformaldehyde and 2% (v/v)

glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, for 2 hours at

4uC. After rinsing in 0.1 M cacodylate buffer and postfixation with

1% (w/v) OsO4, specimens were chemically desiccated with

1,1,1,3,3,3-hexamethyldisilazane (Sigma). Subsequently, the cells

were sputter-coated with a gold/palladium 40% mixture in a

Denton Vacuum Desk IV, and examined in a Hitachi S-3000N

scanning electron microscope.

Immunofluorescence of cytokeratin 18, ZO-1, and
occludin

ULTI cells were seeded onto glass coverslips, and maintained at

37uC in the absence of IFN-c for four days. Cells were then rinsed

with ice-cold PBS, fixed with 4% paraformaldehyde in PBS, and

permeabilized with 0.5% Triton X-100 (Sigma) in PBS. Cells were

blocked with 15% FBS in PBS, then incubated either with mouse

monoclonal anti-cytokeratin 18 antibody (1:200, Chemicon/

Millipore), or a combination of rabbit polyclonal anti-ZO-1

antibody (1:400, Zymed Laboratories, Carlsbad, CA) and mouse

monoclonal anti-occludin antibody (1:500, Zymed) in PBS with

1% bovine serum albumin (BSA, Sigma) overnight at 4uC. The

cells were rinsed with PBS, then incubated with anti-rabbit or anti-

mouse secondary antibodies conjugated to Alexa-Fluor 488 and

Alexa Fluor 633 (Molecular Probes/Invitrogen) at 1:500 dilution

made in PBS with 1% BSA. Cells were then mounted with

ProLong Gold with DAPI (Invitrogen) and coverslips applied to

glass slides. Slides were analyzed for cytokeratin 18 with a Zeiss

Axiovert 200M inverted fluorescent microscope using 40x and

100x oil-immersion objectives. ZO-1 and occludin expression was

assessed with a Zeiss LSM510 confocal microscope equipped with

argon 488 nm and HeNe 633 nm laser light sources. Optical

sections were taken at 0.5 mm intervals. Orthogonal and z-stack

reconstructions were performed with NIH Image J 1.37a software.

Reverse transcriptase PCR of cytokeratin 18, cytokeratin
20, and uroplakin II

ULTI cells as well as YAMC, MSIE, and ImSt gastrointestinal

cells and NIH 3T3 fibroblasts were seeded into type I collagen-

Figure 2. The ULTI mouse urothelial cell line has an intact DNA
damage response under permissive conditions, but aberrant
cell cycle checkpoint and apoptosis activation which normal-
izes under non-permissive conditions. A) Western blot of whole
cell lysates from NIH 3T3 fibroblasts or ULTI cells under both permissive

and non-permissive conditions, pretreated with pifithrin-a or DMSO
vehicle, then exposed to etoposide or DMSO vehicle. B) Cell cycle
analysis by propidium iodide DNA labeling flow cytometry of ULTI cells
treated with etoposide (ETOP) or DMSO vehicle under both permissive
conditions with 10% FBS, and non-permissive conditions with 0.5% FBS.
C) Quantitation of cell cycle phase of ULTI cells treated with etoposide
(ETOP) or DMSO vehicle under both permissive conditions with 10%
FBS and non-permissive conditions with 0.5% FBS. Dark grey bars
indicate percent of cells in G0/G1, white bars indicate percent of cells in
S phase, and light grey bars indicate percent of cells in G2/M phase.
Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0016595.g002
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Figure 3. The G1/S cell cycle checkpoint activation of the ULTI mouse urothelial cell line under non-permissive conditions is
sensitive to p53 inhibition. A) Cell cycle analysis by propidium iodide DNA labeling flow cytometry of ULTI cells pretreated with pifithrin-a (PFTa)
or DMSO vehicle, then treated with etoposide (ETOP) or DMSO vehicle under non-permissive conditions with 0.5% FBS. B) Quantitation of cell cycle

Novel Urothelial Cell Line
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coated plastic dishes with media as described above without IFN-

c, and maintained at 37uC for four days. Cells were scraped into

ice-cold sterile PBS, pelleted, and total cellular RNA was extracted

from pelleted cells using TRI reagent (Sigma) according to the

manufacturer’s instructions and quantitated by spectrophotome-

try.

In experiments designed to mimic the hyperosmolal bladder

microenvironment, ULTI cells were gradually adapted to

hyperosmolality in culture by increasing the media osmolality by

50 mOsm/kg every 24 hours from a basal media osmolality (,300

mOsm/kg) to target osmolalities of 450 and 600 mOsm/kg. Cells

were seeded into plastic dishes with media lacking IFN-c and

containing 0.5% FBS and maintained at 37uC. Every 24 hours,

culture media was aspirated and replaced with fresh media

adjusted to the corresponding osmolality by the addition of sterile-

filtered 5M NaCl (Sigma) or 5M urea (Fluka). To remove

isocyanates, a degradation product of urea, 20 mL of 5M urea

stock solution was exchanged with 1 g of AG-501-X8 resin (Bio-

Rad) in the method published by Zhang et al [35] immediately

prior to use. Cells were scraped into PBS and total cellular RNA

extracted with TRI reagent as above.

To provide tissue RNA for comparison, total cellular RNA was

extracted with TRI reagent from homogenized stomach, intestine,

heart, and bladder tissue from euthanized wild-type mice.

Following treatment of 0.3–1 mg of extracted RNA with 2 Units

of RNAse-free DNAse I (New England Biolabs, Ipswich, MA) and

heat deactivation of the DNAse, cDNA was generated by reverse

transcription using oligo-dT20 primers and the SuperScript III

First-Strand Synthesis System (Invitrogen) according to the

manufacturer’s instructions. Aliquots of cDNA were then used to

detect cytokeratin 18, cytokeratin 20, uroplakin II, and G3PDH

by PCR with AccuPower PCR PreMix tubes (Bioneer, Alameda,

CA). Forward and reverse primer sets, PCR reaction annealing

temperature, and predicted product sizes are listed in Table 1. The

PCR program template for all reactions was as follows: 94uC65

minutes, followed by forty cycles of (94uC61 minute, annealing

temperature630 seconds, 72uC630 sec), and final extension of

72uC610 minutes. PCR products were separated by agarose gel

electrophoresis, stained with SYBRH Safe (Invitrogen) and imaged.

Results

ULTI cells regulate cell proliferation normally under non-
permissive conditions

Cells grown in permissive conditions for SV40 large T antigen

expression (33uC +IFN-c) continued to show robust proliferation

as measured by crystal violet assay despite a reduction in FBS

concentration from 10% through to 0.5% (Figure 1a). However,

cells grown in non-permissive conditions (37uC -IFN-c) had a

normal stepwise reduction in cell proliferation at each decreasing

concentration of FBS. The difference in absorbance between cells

cultured in permissive versus non-permissive conditions was

statistically significant (p,0.05) at 3%, 2%, 0.75%, and 0.5% FBS.

Aneuploidy was excluded in cells grown under both permissive

and non-permissive conditions by cell cycle analysis with flow

cytometry using propidium iodide DNA labeling (Figure 1b). Cells

cultured under non-permissive conditions with either 10% or

0.5% FBS demonstrated a reduction in the proportion of cells in

S-phase and an increase of cells in G0/G1 compared to cells

cultured at permissive conditions with the same FBS concentration

(Figure 1c), indicating proliferation may be manipulated by

inducing or suppressing SV40 large T antigen expression.

The DNA damage response of ULTI cells is unaffected by
conditional immortalization

The DNA damage response pathway was assessed by western

blot analysis in whole cell lysates from ULTI cells exposed to

etoposide under both permissive and non-permissive conditions, as

well as NIH 3T3 cells. This pathway was appropriately activated

following induction of DNA damage with etoposide in ULTI cells

cultured under both permissive and non-permissive conditions as

determined by both autophosphorylation of the ataxia telangecta-

sia mutated (ATM) kinase on serine 1981 and phosphorylation of

H2AX on serine 319 (cH2AX) by ATM (Figure 2a). This

activation was increased under permissive conditions when

compared to non-permissive conditions, which could be explained

by progression through the cell cycle despite the presence of

double strand DNA breaks.

SV40 large T antigen expression was substantially reduced in

cells grown under non-permissive conditions compared to cells in

permissive conditions (Figure 2a), confirming the conditional

transformation of this cell line. Treatment of cells with etoposide

also caused a substantial reduction in cellular levels of SV40 large

T antigen. The large T antigen is known to undergo targeted

proteasomal degradation as part of the DNA damage response

[36].

phase of ULTI cells pretreated with pifithrin-a (PFTa) or DMSO vehicle, then treated with etoposide (ETOP) or DMSO vehicle under non-permissive
conditions with 0.5% FBS. Dark grey bars indicate percent of cells in G0/G1, white bars indicate percent of cells in S phase, and light grey bars indicate
percent of cells in G2/M phase. Error bars represent standard error of the mean.
doi:10.1371/journal.pone.0016595.g003

Figure 4. The ULTI mouse urothelial cell line exhibits an
epithelial morphology. A) Phase contrast micrograph obtained with
20X objective of a monolayer of ULTI cells, showing a polygonal
morphology. B) Phase contrast micrograph obtained with 20X objective
of ULTI cells demonstrating the organization of these cells into densely
packed sheets. C) Phase contrast micrograph obtained with 20X
objective of a confluent monolayer of RT4 transitional cell carcinoma
cell line, also demonstrating a densely packed arrangement of smaller
cells. D) Scanning electron micrograph (500X) of ULTI cells, showing a
domed, polygonal morphology with smooth apical surface. Bar at the
bottom right of the panel represents 100 mm.
doi:10.1371/journal.pone.0016595.g004
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Cell cycle checkpoint activation and apoptosis are
inhibited under permissive conditions through a
functional inactivation of p53

Levels of p53 were increased in cells grown under permissive

conditions compared to cells grown under non-permissive conditions

(Figure 2a), indicating sequestration and decreased degradation of p53

due to its binding to SV40 large T antigen at permissive conditions.

The phosphorylation of p53 on serine 15 increased with etoposide

exposure under both permissive and non-permissive conditions

(Figure 2a). However, levels of p21, an effector of cell cycle arrest

whose expression is induced by p53, were significantly increased in cells

grown under non-permissive conditions when compared to those

grown under permissive conditions, although p21 expression increased

following exposure to etoposide under permissive conditions (Figure 2a).

As measured by flow cytometry, G1/S-phase cell cycle

checkpoint activation was attenuated under permissive conditions

(Figure 2b, upper panels). Cells exposed to DNA damage induced

by etoposide under these conditions had similar proportions of

cells in S-phase comparing etoposide treatment (52.9%) to control

(47.7%, Figure 2c). In contrast, cells cultured under conditions

non-permissive for large T antigen expression and exposed to

etoposide displayed a prominent S-phase arrest (Figure 2b, lower

panels), with a significant increase in the population of S-phase

cells in response to damage (from 21.9% to 44.3%) indicating

activation of this cell cycle checkpoint (Figure 2c).

The checkpoint activation under non-permissive conditions was

sensitive to p53 inhibition. Pretreatment with pifithrin-a led to a

diminution of the S-phase arrest (Figure 3a, lower panels) and

reduction in the S-phase population of cells damaged with

etoposide (18.0%, Figure 3b) when compared to cells pretreated

with DMSO vehicle then damaged with etoposide (34.8%). The

reduction in S-phase arrest in cells cultured under non-permissive

conditions, pretreated with pifithrin-athen damaged with etopo-

side indicates that p53 is functionally active under non-permissive

conditions and mediates the S-phase arrest.

Irreversible DNA damage that accumulates to a critical

threshold triggers apoptosis, mediated in large part by p53 and

induction of its effectors, PUMA and Bax. Cells damaged with

etoposide under permissive growth conditions had a substantial

decrease in activation of the apoptotic pathway as determined by

cleavage of caspase 3, a key step at the convergence of the intrinsic

and extrinsic apoptosis pathways, and poly-ADP ribose polymer-

ase (PARP), a downstream substrate of caspase 3, when compared

to cells damaged under non-permissive conditions (Figure 2a). The

activation of the apoptotic pathway in cells damaged with

etoposide under non-permissive conditions was blunted by

pretreatment with pifithrin-a, indicating p53 is indeed a mediator

of DNA damage-induced apoptosis under such conditions.

NIH 3T3 fibroblasts, used as a control murine cell line with wild-

type p53 and lacking SV40 Large T antigen expression, demonstrated

a normal activation of ATM, cH2AX, increase in p21 abundance,

cleavage of caspase 3, and PARP following exposure to etoposide

(Figure 2a). Cellular abundance of p53 was much less in the NIH 3T3

cells than in the ULTI cell line, but both total p53 levels and

phosphorylation of p53 on serine 15 were found to be appropriately

increased following damage with etoposide (data not shown).

ULTI cells have an epithelial morphology consistent with
bladder urothelium, and express epithelial protein
markers

Phase contrast images of the ULTI cell line revealed a

monolayer of domed, polygonal cells with epithelial morphology

Figure 5. The ULTI cell line expresses epithelial markers of differentiation. A) Cytokeratin 18 immunofluorescence of ULTI cells, obtained
with 40X objective. Filamentous staining is noted characteristic of the cytokeratins. B) Cytokeratin 18 immunofluorescence of RT4 transitional cell
carcinoma cells, obtained with 40X objective. Similar staining to ULTI cells is noted. Withholding primary antibody to assess nonspecific binding of
the secondary antibody found no such staining. C) Confocal immunofluorescence of ULTI cells. Circumferential linear staining is noted with occludin
(green, left panel) and ZO-1 (red, middle panel), which colocalizes upon merge of the images (yellow, right panel). D) Orthogonal reconstruction of
axial images demonstrating colocalization of occludin and ZO-1.
doi:10.1371/journal.pone.0016595.g005
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(Figure 4a). These cells were arranged in tight clusters (Figure 4b),

suggestive of mature tight junctions and focal adhesions [37]. This

cluster arrangement is characteristic of other cell lines of urothelial

origin such as the transitional cell carcinoma line RT4 (Figure 4c),

which is by comparison smaller than primary urothelial cells [24].

Scanning electron microscopy of ULTI cells also demonstrated a

densely packed monolayer of domed polygonal cells (Figure 4d),

although the cell surface appeared smooth, lacking ridges

consistent with the AUM in fully differentiated urothelial or

‘‘umbrella’’ cells.

ULTI mouse urothelial cells expressed cytokeratin 18 in a

cytoplasmic distribution characteristic of the intermediate filament

compartment (Figure 5a). A similar staining pattern was noted in

the RT4 transitional carcinoma cell line (Figure 5b), supporting

the epithelial nature of the derived mouse cell line. To further

define the epithelial nature of these cells, expression of the tight

junction proteins ZO-1 and occludin were characterized by

confocal immunofluorescent microscopy. The ULTI cell line

exhibited linear staining for both ZO-1 and occludin in a

circumferential pattern (Figure 5c), which colocalized both in the

axial plane and upon orthogonal reconstruction of the confocal

images (Figure 5d). RT4 cells also demonstrated a similar

circumferential staining with ZO-1 and occludin, whereas the

3T3 fibroblast cell line demonstrated discrete staining only at focal

cell-cell junctions (data not shown).

Differentiation state of ULTI cell line
To further define the differentiation state of the ULTI cell line,

gene expression analysis for cytokeratins and uroplakin was

undertaken using RT-PCR. These studies compared expression

from the ULTI cell line as well as other conditionally immortalized

epithelial cell lines (YAMC, MSIE, ImSt) and from various mouse

tissues. Both the ULTI cell line and the conditionally immortalized

gastrointestinal cell lines expressed cytokeratin 18, but did not

express cytokeratin 20 (Figure 6a) under standard non-immortal-

ized culture conditions. Mouse stomach, intestine and bladder

tissue all demonstrated expression of both CK18 and CK20

(Figure 6b). Uroplakin II expression was limited to mouse bladder

tissue and was not expressed by the ULTI cell line under standard

conditions (Figure 6b). Following gradual adaptation of the ULTI

cells to 450mOsm/kg and 600mOsm/kg with sodium chloride,

but not urea, expression of uroplakin II was detected (Figure 6c).

Cytokeratin 20 expression was also following adaptation to

450mOsm/kg and 600mOsm/kg with sodium chloride as well

as urea (Figure 6c). Amplification of G3PDH confirmed equal

loading of RNA and generation of cDNA (Figures 6a, 6b, and 6c).

Discussion

In order to develop meaningful strategies aimed at the

prevention and treatment of bladder cancer, and especially cancer

of the augmented bladder, a greater understanding of the role of

the DNA damage response, DNA repair, activation of cell cycle

checkpoints and apoptosis, and the influence of the bladder

microenvironment on these processes in both native bladder and

gastrointestinal tissues is critical. Population based genetic studies

have indicated a role for DNA repair proteins like ERCC1 [38] as

well as the MYC, TP63, and PSCA loci (reviewed in [39]) in the

pathogenesis of bladder cancer but unfortunately, there are no

suitable in vitro models of urothelium that have proper regulatory

control of cell cycle checkpoints and apoptosis as well as an intact

DNA damage response.

To address this limitation, we have developed a conditionally

immortalized mouse urothelial cell line that exhibits an epithelial

morphology (Figure 4), formation of tight junctions (Figure 5), and

expression of urothelial markers such as cytokeratin 18. (Figures 5 and

6). Under the standard isoosmolal culture conditions used for the cell

proliferation, DNA damage response, and cell cycle analysis

experiments, ULTI cells did not terminally differentiate as they

lacked expression of cytokeratin 20 [40] or uroplakin II [11]

Figure 6. ULTI cells express cytokeratin 20 and uroplakin II in
addition to cytokeratin 18 under hyperosmolal conditions.
A) RT-PCR of cytokeratin 18, cytokeratin 20, and G3PDH using RNA
isolated from cell lines. B) RT-PCR of cytokeratin 18, cytokeratin 20,
uroplakin II, and G3PDH from RNA isolated from mouse tissues and ULTI
cell line. C) RT-PCR of cytokeratin 18, cytokeratin 20, uroplakin II, and
G3PDH from RNA isolated from ULTI cell line under basal and
hyperosmolal conditions and NIH 3T3 cells. The panel displaying the
uroplakin II PCR products is composed of two images from two
separate areas of the same gel image.
doi:10.1371/journal.pone.0016595.g006
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(Figure 6a and 6b). A similar pattern of intermediate differentiation

under standard culture conditions has been observed with other

conditionally immortalized cell lines such as the gastrointestinal

YAMC, MSIE, and ImSt cell lines [41] and even successive passages

of primary urothelial cells [17,42]. As expression of both cytokeratin

20 and uroplakin II were detected following adaptation to a

hyperosmolal milieu (Figure 6c), chronic osmotic stress may serve

as a differentiation stimulus in these cells towards an ‘‘umbrella cell’’

phenotype, suggesting that induction of cytokeratin 20 and uroplakin

expression in this cell line may be linked to activation of elements of

the osmotic stress response by proteins such as TonEBP [43].

This urothelial cell line can be subcultured more than 50

passages under permissive cell culture, but has a stable phenotype

under non-permissive conditions. The conditional transformation

of ULTI cells was confirmed as cells under permissive conditions

displayed robust proliferation over a wide range of FBS

concentrations (Figures 1a and 1b), indicating that the induced

expression of SV40 large T antigen is the primary determinant of

cell proliferation under these conditions. Cells grown under non-

permissive conditions showed an expected stepwise decrease in cell

proliferation with decreasing FBS concentration, indicating

normal cell cycle control and regulation of proliferation in

response to the reduction of growth factors.

ULTI cells demonstrated an appropriate activation of the DNA

damage response pathway mediated by ATM and its downstream

targets such as cH2AX in cells exposed to etoposide under both

permissive and non-permissive conditions. However, only ULTI

cells exposed to etoposide under non-permissive conditions

activated a G1/S-phase cell cycle checkpoint, and activated

mediators of apoptosis such as caspase-3 and PARP (Figures 2a

and 2b), whereas cells under permissive conditions failed to

respond in this normal fashion. Levels of p53 were higher under

permissive conditions corresponding to increased expression and

stability of the SV40 large T antigen and subsequent binding to,

and sequestration of, p53 [22]. However, levels of p21 were

dramatically increased in the cells under non-permissive condi-

tions despite decreased abundance of p53. This finding is expected

because intracellular levels of p21 are affected by other regulators

of the cell cycle, such as p16INK4a [44], and are involved in cellular

quiescence [45]. ULTI cells under non-permissive conditions with

very low (0.5%) FBS concentration had decreased proliferation

(Figure 1a) and an increased population of G0/G1 cells (Figure 1b),

supporting the likelihood that p21 expression was induced in such

a p53-independent manner.

Phosphorylation of p53 on serine 15 following etoposide

treatment occurred under both permissive and non-permissive

conditions (Figure 2a). Although the overall abundance of p53 was

greater under permissive conditions, the degree of change between

DMSO and etoposide treatment was much greater under non-

permissive conditions indicating a more sensitive detection of

DNA damage under non-permissive conditions mediated by p53.

Selective inhibition of p53 activity with pifithrin led to a decreased

level of cleaved caspase 3 and cleaved PARP under non-permissive

conditions following etoposide treatment (Figure 2a), as well as a

blunted activation of the G1/S cell cycle checkpoint (Figures 3a

and 3b). This confirms that, under such conditions, p53 plays a

critical role in the activation of cell cycle checkpoints and apoptosis

due to DNA damage induced by etoposide. This finding supports

the notion that p53 is no longer sequestered by the SV40 large T

antigen and would therefore be able to induce expression of its

apoptotic effectors such as Bax and PUMA.

In conclusion, the ULTI mouse urothelial cell line is both well-

differentiated and conditionally immortalized due to the ability to

modulate cellular levels of the SV40 large T antigen following

adjustment of the cell culture milieu. Although the DNA damage

response mediated by ATM is intact in these cells under both

permissive and non-permissive conditions, activation of cell cycle

checkpoints and apoptosis may be inhibited by the induced

expression of the SV40 large T antigen under permissive

conditions promoting cell proliferation despite the presence of

DNA damage. These pathways are restored when cells are grown

under non-permissive conditions. This reversible immortalization

is unique to this urothelial cell line, and makes this cell line the

optimal model for the characterization of cell cycle checkpoint

activation, apoptosis, and the DNA damage response in

urothelium. This cell line will be critical in experiments aimed at

providing insight into the effect of bladder microenvironment on

the DNA damage response and into the pathomechanisms leading

to carcinogenesis of native and augmented bladders.
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