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Abstract

Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine
(SAM) to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details
regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT) as a
model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of
cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose
in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is
essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose
unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal
reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed
mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.
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Introduction

Catechol O-methyltransferase (COMT) is a metalloenzyme that

metabolizes biologically active catechol-containing structures by

methylation of a single hydroxyl group [1]. A number of neuro-

transmitters contain a catecholamine moiety and are deactivated

by COMT. Activity of COMT is thus correlated with many

critical biological functions including cognition [2], stress response

[3], and pain sensitivity [4].

Crystallographic and enzymatic studies of COMT have given

significant insight to its mode of activity [5,6]. Its ligands bind in a

sequential manner. The cofactor S-adenosyl-L-methionine (SAM),

responsible for donating the methyl group to the catechol, initially

binds to the enzyme. This complex then binds a divalent metal

cation through coordination bonds to several acidic residues and a

single water molecule in the active site. Additional residues then

bind to the catechol substrate, and the metal coordinates to the

hydroxyl group inside the active site. The order in which each

ligand binds to COMT is vital; if the metal binds first, then the

SAM cofactor is unable to access its binding site. Similarly, if the

catechol binds first, both the metal and SAM are unable to access

their respective binding sites. Although the general kinetic

mechanism for COMT substrate binding is known, the structural

details that govern binding have yet to be identified. Current

crystal structures of COMT are bound to SAM, Mg2+, and an

inhibitor. Using computational docking tools (Experimental

Section; [7,8], we dock SAM to an apo-COMT protein to

determine the initial binding poses. We also perform docking

simulations with SAM inside a COMTNmetalNcatechol complex

(holo-COMT) and compare to the crystal structure. From our

results, we find that SAM binds to COMT via induced fit and also

hypothesize that the metal cation is critical for aligning SAM in a

conformation suitable for catalysis with the substrate. Here we

propose a mechanism whereby SAM initially binds to COMT,

and upon metal binding, subsequently reorients itself for the

enzyme to accommodate the substrate and facilitate methyl

transfer.

Methods

Discrete Molecular Dynamics Simulation of COMT
We generate a conformation of COMT in the absence of

ligands by performing discrete molecular dynamics simulations

(DMD). Traditional molecular dynamics simulate the motions of

particles by solving Newton’s equations of motion for a defined

system using an integration algorithm. In DMD, simulations

proceed according to the conservation laws of energy, momentum,

and angular momentum and are evaluated as a series of two-body

interactions. The efficiency of the engine is based on an algorithm

that searches through an event table, where velocities are only

modified as necessary. Here we classify an event as the instance in

which two particles are within a defined interaction range as defined

by their potential. The potentials used in DMD are discretized to

accommodate the discontinuous nature of the simulations. Further

details of the DMD algorithm can be found elsewhere [9].

To observe any potentially major conformational changes due

to the absence of ligands, we performed DMD simulations of

COMT at a temperature of 0.2 e/kB (using a Berendsen thermostat)
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for 16106 time units to ensure final equilibration. Further mini-

mization was performed in order to remove any potential steric

clashes and obtain the final structure.

Generation of Poses using MedusaDock
We employ the MedusaDock package to generate possible

ligand conformations within the protein active site, and utilize the

MedusaScore package to evaluate each conformation generated

by MedusaDock [7,8]. MedusaDock enables flexible docking of

both the ligand and the side-chain amino acids of the protein. We

perform all ligand docking simulations using the crystal structure

of human COMT (PDB: 3BWM) [5].

Prior to docking S-adenosyl methionine (SAM) to apo-COMT,

we stripped all crystallized ligands bound to COMT. Crystallo-

graphic waters that were in the active site were retained for our

docking simulations. Protein residues were protonated according-

ly. We define a 10610610 Å box for our docking simulations.

Within this box, the amino acid side-chains from the protein are

able to move.

We performed 200 docking simulations, where each simulation

began with a different seed number and each conformation

generated from a simulation was subsequently minimized. All

conformations were then ranked according to their free energy value.

The lowest energy structure is determined to be the native pose.

To model the entire complex with SAM, Mg2+, and catechol

bound (holo-COMT), we add several constraints and make several

modifications. First, we replace Mg2+ with Zn2+ since there are no

Mg2+ parameters previously defined in the MedusaScore force

field. However, previous experiments suggest that Zn2+ is a

suitable alternative for Mg2+ as it is ,80% as effective [10]. The

general mechanism is that the metal divalent ion displaces the

monovalent cationic amine group and acts as a steric block for the

rest of the methionine side-chain. We place constraints to fix the

position of the metal and catechol as found in the crystal structure,

while we flexibly dock SAM into the active site. We find that the

lowest energy pose recapitulates the crystal structure, with a heavy

atom root mean square deviation of 0.68 Å.

Generation of Poses using Glide
Two sets of docking simulations were performed with Glide

(Maestro package version 9.1 from Schrödinger, LLC). Within the

first set, SAM was docked onto the active site of COMT using the

crystal structure. However, because the algorithm only allows for

flexible docking of the ligand and not side-chains, we also perform a

second set of docking simulations using a structure of COMT derived

from our SAM docking simulations. This structure contains the side-

chain positions of SAM binding to apo-COMT as determined by

MedusaDock, and thus we expect to recapitulate the same results.

Prior to all docking simulations, both the ligand and protein

were prepared using LigPrep and the Protein Preparation Wizard

workflow, respectively. Receptor grids were generated at the active

site where SAM was occupied for each structure. The van der

Waals scaling was kept at 1, with no additional constraints added

to the protein or ligand. We performed docking simulations using

the extra precision option and with post-docking minimization.

Each SAM conformation derived from LigPrep was allowed to

sample ring conversions and nitrogen inversions.

Results and Discussion

COMT Accommodates Ligands via an Induced-Fit
Mechanism

Previous crystal structures of the rat COMT isoform show

minor conformational differences between apo-COMT and

holo-COMT [11]. Therefore, we performed DMD simulations

of COMT in the absence of all substrates to determine whether

the conformation of the human isoform remains identical to the

crystal structure. An alignment of the crystal structure and

simulated structure reveals few differences in the tertiary structure

between the two with an overall root mean square deviation

(RMSD) of 1.5 Å (Figure 1A). Secondary structural elements are

completely retained in the absence of ligands. The most notable

difference lies within the catechol-binding loop, which migrates

closer to the active site in the absence of ligands.

Although the overall structure of COMT remains identical in

the absence of ligands, the solvent accessibility of the active site

changes (Figure 1B). In the crystal structure, COMT forms two

pockets that accommodate the adenosine and methionine side-

chains of SAM. The adenosine pocket partially collapses, and the

methionine-binding motif completely closes in the absence of

SAM. Comparison of the two active sites shows two main

conformations of COMT: an open and a closed state. Within the

closed state of COMT, SAM cannot bind inside the active site and

therefore methylation cannot occur. To accommodate SAM, the

COMT must initially open so that SAM can access the active site.

Since only the adenosine-binding motif is partially open in the

closed COMT structure, this region of the SAM cofactor may be

responsible for initial binding and perhaps induces the open state.

Because the closed COMT state makes the active site inaccessible,

all docking simulations are performed with the open state of

COMT under an assumption of induced fit. Within the open state,

we refer to the absence of ligands as apo-COMT and the presence

of all ligands as holo-COMT.

Structural Characterization of SAM Conformations within
Apo-COMT and Holo-COMT

We determine the binding poses of SAM in the absence and

presence of a divalent cation metal by performing docking

simulations within the open state of COMT using MedusaDock.

In the absence of metal and substrate, portions of SAM bind to a

different groove of COMT (Figure 2A). The adenosine moiety of

SAM remains identical to the holo-COMT structure, with the

Ile91 side-chain packing on top of the pyrimidine portion of

adenine and the imidazole of His142 participating in a per-

pendicular edge-to-face aromatic interaction with the pyrimidine

(Figure 2B). The imidazole of adenine participates in an additional

edge-to-face interaction with the indole side-chain of Trp143.

Additional polar contacts are made between residues 118-120 and

the purine nitrogens. The two hydroxyl groups of the ribose

participate in hydrogen bonding interactions with the side-chain of

Glu90. A single water molecule from the active site satisfies an

additional hydrogen bond requirement of the amine bound at C6

of the adenosine motif.

Similarities between the structures of SAM docked inside apo-

COMT and holo-COMT end at the sulfonium center. In the apo-

COMT complex, the terminal amine group of SAM is involved in

a hydrogen-bonding network with the side-chains of Asp141 and

Asn170 and the backbone carbonyl of Met40 (Figure 2C). The

terminal carboxyl group participates in hydrogen bonding with

Lys144 and a single water molecule. In the holo-COMT complex,

the primary role of this water molecule is to occupy a coordination

site of the divalent metal cation. Its secondary role is to form a

hydrogen bond with the carboxyl terminus of the methionine side-

chain (Figure 2D). In absence of the metal, satisfying the hydrogen

bond of the carboxyl terminus becomes its primary role. Yet, its

role is non-essential for the overall conformation of SAM in apo-

COMT since Lys144 can satisfy both hydrogen bond require-

ments of the carboxyl terminus alone. The interactions highlighted

SAM Binding to Catechol O-Methyltransferase
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here with methionine underlie an important point for why

catalysis cannot occur without a metal. Lys144 is responsible for

deprotonating the catechol to create the oxyanion responsible for

attacking the methyl group. In this particular pose, the Lys144 is

preoccupied in a hydrogen-bonding network and is unavailable to

deprotonate.

Prior to catechol binding, a divalent metal cation must first

displace the positively charged amine group. Several divalent

cations are capable of contributing to enzymatic activity, although

the native metal is magnesium in vivo [10]. Here we modeled the

divalent metal cation using Zn2+, which is 80% as effective as

magnesium. We find that upon metal binding, steric occlusion

Figure 1. Structures of COMT open and closed conformations. (A) Structural alignment of closed COMT (generated from DMD simulations;
shown in cyan) and open COMT (obtained from PDB: 3BWM; shown in green). The RMSD between the two structures is 1.518 Å. (B) Surface
representations of the closed and open conformations of COMT (as labeled below each panel). Red surfaces of the protein correspond to negatively
charged regions, blue surfaces correspond to positively charged regions, and the white surfaces are neutral. The conformation of SAM (depicted in
green) is from the crystal structure and is placed for reference of comparison. The closed conformation of COMT does not allow SAM to bind and
interact with the residues inside the active site, therefore creating a steric clash when superimposing SAM onto the closed COMT model.
doi:10.1371/journal.pone.0024287.g001

Figure 2. Binding configurations of SAM with and without metal. (A) Alignment of SAM poses with and without metal. Cyan structure
represents without metal (apo-COMT; derived from simulation) and gray structure represents SAM in the presence of metal (holo-COMT; from PDB ID
3BWM). In the right panel, the yellow structure is dinitrocatechol and green sphere is Zn2+. Surface of protein is shown as an electrostatic map with
blue regions representing clusters of positive charge and red representing regions of negative charge. (B) Contacts made with adenosine portion of
SAM (identical for apo- and holo-COMT). Cyan structure is adenosine and green structures are corresponding residues. Yellow dashed lines indicate
contacts. (C) Contacts made with methionine portion of SAM (apo-COMT). Cyan structure is methionine portion of SAM. (D) Contacts made with
methionine portion of SAM (holo-COMT). (E) Comparison of angle between methyl donor and accepting hydroxyl in the presence and absence of
metal. Cyan structure is apo-COMT and gray structure is holo-COMT.
doi:10.1371/journal.pone.0024287.g002

SAM Binding to Catechol O-Methyltransferase
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prevents the methionine of SAM from binding to the negatively

charged pocket and is forced into an interior groove. The amine

group of the methionine maintains a hydrogen bond with Asp141,

albeit at a different position, but additionally forms hydrogen

bonds with the backbone carbonyl of Gly66 and the side-chain of

Ser72. The amide backbones of Ser72, Val42, and an additional

water molecule form hydrogen bonds with the carboxyl group of

SAM. Additional hydrophobic interactions are formed between

the methionine side-chain and residues 40, 42, 60, 68, and 89

inside this pocket (Figure 2D).

The results found here are initially surprising because it is

expected that SAM binds to apo-COMT as found in the crystal

structure of the holoenzyme complex. The amine and carboxyl tail

of SAM form favorable van der Waals contacts and satisfy their

hydrogen bonds in both conformations. However, the carboxylate

side-chains within the active site preferentially bind to the amine

side-chain of SAM, as the polar contacts are stronger than those

shared with the backbone carbonyl groups of holo-COMT.

Most of the lowest energy docking poses generated for apo-

COMT by MedusaDock are identical (Figure 3A) and deviate

from the crystal structure (Figure 3B). However, the SAM

conformation found for apo-COMT could potentially be an

artifact of the MedusaDock/MedusaScore suite. To test the

validity of our docking results, we utilize the docking program

Glide (see Methods) to score the poses found for apo-COMT. In

our initial docking test, we docked the crystal structure of COMT

to SAM. Because Glide only allows flexibility to be modeled within

the ligand, the lowest energy pose found was identical to the crystal

structure (with an energy of 213.45 kcal/mol). We adjust for the

lack of flexibility within the active site side-chains by redocking

SAM to the MedusaDock-generated structure of COMT.

Remarkably, we find that apo-COMT conformation of SAM is

recapitulated with Glide (Figure 3C). Furthermore, this confor-

mation is scored with a lower energy (215.93 kcal/mol) compared

to the crystal structure conformation.

Role of Divalent Metal Cation in Methyltransferases
The role that magnesium plays in COMT activity has remained

unclear to date. Without any metal bound to COMT, methylation

is 6.2% as effective as compared to with all cofactors present [10].

Reports from the crystal structure suggest that Mg2+ is necessary

for correctly aligning the oxyanion of the catechol substrate with

the carbocation of SAM. However, it is unknown what the exact

coordination complex of Mg2+ is in vivo due to the use of inhibitors

in all holo-COMT crystal structures. These inhibitors usually

contain electron-withdrawing groups on the catechol to lower the

nucleophilicity of the reactive oxygen atom. Molecular dynamic

simulations using a natural catechol substrate show catechol as a

monodentate ligand of Mg2+ [12,13]. The hydroxyl that

coordinates with Mg2+ is a further topic of debate.

Here we suggest that a divalent metal cation may also be

essential for structural rearrangements of the SAM cofactor. In our

model, the orientation of the methionine without metal present

positions the donating methyl group 6.1 Å away from the

oxyanion, compared to a separation of 2.7 Å in the presence of

metal (Figure 2E). Furthermore, the oxyanion and sulfonium no

longer form a 180u angle in between the methyl group. This angle

decreases to ,45u in the absence of metal. Therefore the

probability of SAM methylating the catechol is lowered.

Our results described here are derived purely from computa-

tion. Thus, crystallization of COMT in the absence of catechol

substrate would be required to validate our mechanism. Two

structures would be needed to support our mechanism: 1) COMT

crystallized with SAM (or S-adenosyl-homocysteine) to show the

alternate binding pose; 2) COMT crystallized with SAM and

metal to show SAM in its holo-COMT conformation. Agreement

between our docking poses and the proposed crystal structures

would demonstrate the existence of this alternative SAM

Figure 3. Analysis of SAM docking poses generated by
MedusaDock and Glide. (A) Comparison of MedusaDock-generated
structures of SAM versus the lowest energy pose of SAM obtained by
MedusaDock. The lowest energy pose for SAM is considered the
conformation that initially binds to apo-COMT. (B) Comparison of
MedusaDock-generated structures of SAM versus the crystal structure
of SAM within the holo-COMT complex. The lowest energy pose shown
in this plot corresponds to the conformations depicted in Figure 2D,E.
(C) Comparison of Glide generated structures of SAM versus the lowest
energy pose of SAM obtained by MedusaDock. The inset shows an
alignment between the lowest energy poses obtained by Glide (purple)
and MedusaDock (cyan); RMSD = 1.9 Å.
doi:10.1371/journal.pone.0024287.g003
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conformation in apo-COMT, and furthermore, show that the

metal is required for proper SAM binding.

The mechanism proposed here is of broad biological interest

since SAM serves as a common methyl donor for many methy-

lation reactions, including CpG methylation [14]. The binding site

of SAM on COMT is homologous with many SAM-dependent

methyltransferase structures, with several unique residues that

form part of the catechol-binding site. Thus, our mechanism could

be applicable to a broad range of methyltransferases that require a

divalent metal cation and SAM.
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