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Abstract

Background: Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It
controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner
both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct
levels, particularly at the level of ligand-receptor interactions.

Methodology/Principal Findings: Here, we report that the Drosophila gene uninflatable (uif), which encodes a large
transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch
signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling
defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif*
inhibits Notch signaling in cis and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest
that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.

Conclusions/Significance: Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate
regulation of this signaling pathway for normal patterning.
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Introduction

Notch signaling is an evolutionarily conserved signaling

pathway that regulates a variety of different developmental

processes, including adult homeostasis and stem cell development

[1,2,3,4]. In Drosophila, both the Notch receptor and its canonical

ligands, Delta (Dl) and Serrate (Ser), are transmembrane proteins

with large extracellular domains consisting primarily of EGF-like

repeats. The canonical Notch pathway is activated by an

interaction between the Notch receptor on one cell with its ligand

on the neighboring cell. Such an interaction induces two

consecutive proteolytic processes that result in the release of the

Notch intracellular domain, which is then translocated to the

nucleus and activates transcription of its target genes by interacting

with the DNA-binding protein Suppressor of Hairless (Su(H)) and

the coactivator Mastermind.

Several Notch receptors and a large number of Notch ligands

and co-ligands have been identified in mammals and C. elegans

[5,6]. In Drosophila, a single Notch receptor and two canonical

ligands, Dl and Ser, are well characterized. Recently, an EGF-

repeat-containing protein, Weary (Wry), was identified as a new

Notch ligand important for the maintenance of normal heart

function in the adult fly [7]. The complexity of the biological

processes controlled by the Notch signaling pathway requires

precise regulation of its activity, particularly at the level of ligand-

receptor interactions. For example, the secreted glycoprotein

Scabrous (Sca) has been shown to positively modulate the Notch

activity in regulating proneural development in Drosophila eyes

[8,9]. In addition, Crumbs (Crb), an EGF-like repeat-containing

large transmembrane protein well characterized for its role in

epithelial organization [10], was recently shown to act as a negative

regulator of Notch signaling in the Drosophila wing [11]. A

significant part of the complexity and specificity of Notch signaling

is derived from the inhibitory action of Notch antagonists.

In this report, we describe the role of a recently identified gene,

uninflatable (uif), in antagonizing Notch signaling activities when

overexpressed. uif was initially characterized for its role in tracheal

development in Drosophila [12]. It encodes a transmembrane

protein with a large extracellular domain consisting of eighteen

EGF-like repeats, a feature common to the Notch receptor and its

ligands. Here, we show that Uif can antagonize the canonical

Notch signaling pathway, acting at a step that is dependent on the

extracellular domain of Notch. Our results suggest a model where

Uif antagonizes Notch activity in a neomorphic manner by
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influencing the accessibility of its extracellular domain available for

interacting with its ligands on neighboring cells during Notch

activation.

Results

Ectopic expression of an altered form of Uif causes
phenotypes characteristic of Notch signaling defects
To investigate the role of uif during development, we generated

UAS-Uif transgenic flies that express an altered form of Uif,

referred to as Uif*, which is a nearly full-length protein but has an

altered intracellular domain (see Materials and Methods and

below for details). We assumed initially that Uif* may act in

a dominant negative manner, but further studies made possible by

newly available tools revealed that its biological effects mirror

those of the wild type (wt) Uif protein (see below). Ubiquitous

expression of Uif* caused a semi-lethal phenotype (data not

shown). To circumvent this lethality problem and facilitate the

investigation of the role of uif in development, we used drivers to

express Uif* in a tissue-specific manner. Ectopic expression of Uif*

in the posterior compartment of the wing by engrailed-Gal4 (en-Gal4)

(en-Gal4.Uif*) resulted in significant tissue loss (Figure 1B and

1C). Defects were also observed when Uif* was expressed in other

compartments of the wing. For example, decapentaplegic-Gal4 (dpp-

Gal4) driven expression of Uif* at the anterior-posterior (AP)

boundary of the wing disc caused notched wing in the distal region

of the wing margin (Figure 1D). In addition, expression of Uif*

driven by A9-Gal4 and MS1096-Gal4 in the dorsal compartment of

the wing led to thickened veins (Figure 1E and 1F). These results

show that ectopic expression of Uif* causes patterning defects

during development.

The wing phenotypes caused by the ectopic expression of Uif*

are reminiscent of those caused by mutations affecting components

of the Notch signaling pathway, suggesting that ectopically

expressed Uif* may regulate Notch signaling. To evaluate this

possibility, we further targeted Uif* expression in sensory organ

precursor (SOP) cells. Notch signaling is required for SOP

selection and formation [13,14]. Consistent with the wing defects,

Uif* expressed in SOP cells caused SOP selection and formation

defects (Figure 1H and 1I), including patches of bristle loss

(asterisks in Figure 1H, driven by Eq-Gal4) and a nearly complete

loss of bristles in the notum and scutullem (rectangle in Figure 1I,

driven by pannier-Gal4 (pnr-Gal4)). Independent UAS-Uif* trans-

genic lines exhibited similar phenotypes (see Materials and

Methods for details). These results show that ectopic expression

of Uif* in two distinct tissues causes phenotypes that are

characteristic of Notch signaling defects. Since the Uif*-induced

defects in wing patterning and SOP selection were not mitigated

by reducing a wt copy of uif (in uif6/+ heterozygotes; data not

shown), we suggest that ectopically expressed Uif* acts in

a neomorphic manner.

Uif* genetically interacts with Notch pathway
components
To further investigate the role of Uif* in modulating the Notch

pathway activity, we performed genetic interaction studies

between Uif* and genes encoding Notch signaling components

(Figure 2). A9-Gal4.Uif* adult flies had a weak thickened vein

phenotype (Figure 2B; compare with wt Figure 2A) and N1/+
wings had small notches at the wing margin (arrow in Figure 2C).

However, the combination of N1/+ and A9-Gal4.Uif* led to

a much stronger phenotype, with a severe loss of wing margin

structures and more thickened veins (Figure 2E). Another Notch

allele, N55e11, which on its own only had a very mild wing defect as

heterozygotes (Figure S1A), similarly exhibited genetic interaction

with A9-Gal4.Uif*, leading to enhanced wing phenotypes

(Figure 2F). The thickened vein phenotype of the Dl9P/+ flies

(typically for veins III and V, indicated by arrows in Figure 2D)

was also synergistically enhanced by A9-Gal4.Uif*, with all veins

becoming more broadened and the entire wing becoming smaller

(Figure 2G).

In addition to Notch and Dl, we also analyzed two other

components of the Notch pathway in genetic interaction

experiments. Kuzbanian (Kuz) is a member of the ADAM family

of metalloproteases and mediates S2 cleavage of Notch [15].

Deltex (Dx) is an E3-ubiquitin ligase, which binds to the

intracellular domain of Notch and positively regulates Notch

signaling [16]. While flies that are heterozygous for Kuz or Dx had

no or mild wing phenotypes on their own (Figure S1B and S1C),

introduction of A9-Gal4.Uif* into these flies led to significantly

enhanced phenotype of thickened veins (Figure 2H and 2I;

compare with Figure 2B for A9-Gal4.Uif* alone). Uif* also

interacted genetically with genes for Notch pathway components

in SOP development. In particular, the neurogenic phenotype of

extra bristles caused by loss of Dl function was potentiated by

a simultaneous expression of Uif* under the control of sca-Gal4

(Figure 2J–2L). Together, these results document a genetic

interaction between Uif* and genes encoding components of the

Notch signaling pathway.

Rescue of Uif*-induced defects by downstream
components of the Notch signaling pathway
Previous studies have identified Notch downstream target genes

that can specifically and selectively suppress phenotypic defects

caused by mutations affecting Notch signaling in different tissues

[17,18]. If Uif* indeed exerts its biological effects by negatively

impacting the Notch signaling pathway, coexpression of the

relevant downstream components of the Notch pathway may

rescue Uif*-induced defects. We tested this idea in both the wing

and the eye. Our results show that the thickened vein phenotype of

A9-Gal4.Uif* adult wings (arrows in Figure 3B) was almost

completely suppressed by A9-Gal4.E(spl)mb (Figure 3D), which

on its own caused slightly thinner veins (Figure 3C and [19]).

Furthermore, the rough and small eye phenotype of the GMR-

Gal4.Uif* flies (Figure 3F) was significantly alleviated by

coexpression of E(spl)m7 (Figure 3H), which on its own did not

have any detectable abnormality (Figure 3G). These results,

together with those shown in Figure 2, further support the

hypothesis that Uif* perturbs developmental processes through its

inhibitory effects on the canonical Notch signaling pathway.

Expression of Uif* affects the expression of Notch target
genes
Notch signaling controls wing margin formation by activating its

downstream target genes, such as cut, wingless (wg) and vestigial (vg),

in a stripe of cells along the dorsal-ventral (DV) boundary of the

third instar larvae wing imaginal discs [20,21,22,23]. To in-

vestigate at a molecular level the effect of Uif* on Notch signaling,

we analyzed the expression patterns of Notch target genes. Two of

these target genes (Figure 4A and 4C), wg and cut, are known to

respond to low and high thresholds of Notch signaling activity,

respectively [11]. Our results show that, consistently, while Wg

expression was significantly reduced by dpp-Gal4 directed ectopic

expression of Uif* at the AP boundary (Figure 4D, arrow), Cut

expression was completely eliminated (Figure 4B, arrow). In

addition to endogenous target genes of Notch, we also analyzed

two reporter genes that contain Su(H) binding sites, vgBE-lacZ and

Uif Can Antagonize Notch Signaling
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E(spl)mb-lacZ [22,24]. Figure 4F and 4H show that the expression

of both reporters was also significantly decreased at the AP

boundary where dpp-Gal4 expresses (arrows). Together, these

results provide molecular evidence that expression of Uif* directly

affects the activity of the canonical Notch signaling pathway.

Full-length Uif can similarly antagonize Notch signaling
Uif* is almost a full-length form of the protein, with its C-

terminal ten amino acids truncated (see Materials and Methods for

details). It is well documented that removing the intracellular

domains of Dl and Ser can generate dominant negative forms of

these ligands [25]. To determine whether the defects caused by

Uif* might be due to a similar dominant negative effect, we

employed a recently available transgenic fly (GS11655 from the

Kyoto Drosophila Genetic Resource Center) that harbors Gal4-

binding sites upstream of the endogenous wt uif gene. Antibody

staining shows that this endogenous uif gene can respond to the

dpp-Gal4 driver leading to an increased wt Uif level (Figure S2A).

In wing discs of dpp-Gal4.GS11655 flies, Cut protein level was

significantly reduced at the AP boundary (arrow in Figure 5B).

The inhibitory effect of wt Uif on Wg expression was also

detectable (arrow in Figure 5D) but, as expected, weaker than that

on Cut. In addition, we detected notched wings in adults

expressing wt Uif under the control of dpp-Gal4 (asterisk in

Figure 5F). Together, these results show that overexpression of wt

Uif causes molecular and phenotypic defects that are similar to

those of Uif*. However, the effects of Uif* are stronger than wt Uif

(Figure S3), which we attribute to the higher accumulated levels of

Uif* in our experiments (Figure S2 and Discussion). An important

finding here is that these results argue against the possibility that

Uif* acts merely, if at all, as a dominant negative form of the

protein due to its altered intracellular domain, suggesting that

ectopically expressed Uif* and wt Uif are functionally equivalent

(though different in strengths) with respect to the regulation of

Notch signaling.

Uif* inhibits Notch signaling at a step dependent on the
extracellular domain of Notch
Similar to the Drosophila Notch ligands, Dl, Ser and Wry, Uif

also contains EGF-like repeats. It has been shown that the EGF-

like repeats of the Notch ligands directly interact with the

extracellular domain of Notch [26]. To determine whether Uif

may antagonize Notch signaling in a manner that is dependent on

the extracellular domain of Notch, we compared the effects of Uif*

on Notch receptors that either have or lack this domain.

Expression of full-length Notch (NFL) (driven by dpp-Gal4)

ectopically activated Notch target genes at the AP boundary close

to the DV boundary (arrow in Figure 6A; [21]). As expected, this

ectopic target gene expression was significantly suppressed by

coexpression of Uif* (Figure 6B). However, Uif* had no effect on

Figure 1. Ectopic expression of Uif* causes phenotypes that are characteristic of Notch signaling defects. (A) A wt adult wing. (B and C)
Targeted Uif* expression under the control of en-Gal4 causes loss of wing margin structures in the posterior wing compartment. These two panels
show different expressivity, ranging from a partial loss of wing margin (arrow in B) to an almost complete loss of the posterior wing margin (black line
in C). (D) A dpp-Gal4.Uif* adult wing shows wing margin loss (arrow) at the most distal tip area of the wing and an occasional loss of the anterior
cross vein (arrowhead). (E and F) Thickened veins, which resemble an aspect of the Notch loss of function phenotypes (particularly veins III and V,
arrows), observed in adult wings of A9-Gal4.Uif* (E) and MS1096-Gal4.Uif* (F) flies. (G–I) Expression of Uif* in the notal region causes losses of
sensory bristles. (G) A wt adult notum with a regular pattern of sensory bristles. (H) The notum of Eq-Gal4.Uif* flies shows random losses of
microchaeta (asterisks). (I) Expression of Uif* in the notum controlled by pnr-Gal4 leads to a great loss of sensory bristles (rectangle).
doi:10.1371/journal.pone.0036362.g001

Uif Can Antagonize Notch Signaling
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a constitutively active form of Notch that lacks its extracellular

domain (NECN) and activated its downstream target genes in

a ligand-independent manner (compare Figure 6D with 6C).

These results suggest that Uif modulates Notch signaling at a step

that is dependent on the extracellular domain of Notch.

Uif* inhibits Notch signaling through a cis mechanism
The ligands Dl and Ser can regulate Notch signaling through

both paracrine and autocrine interactions

[20,21,27,28,29,30,31,32,33]. Paracrine interaction leads to Notch

activation in trans (referred to as trans activation) whereas autocrine

interaction leads to Notch inhibition in cis (referred to as cis

inhibition). Both effects are achieved through physical interactions

between the extracellular domains of Notch and its ligands [31].

To further clarify the nature of Uif* action with regard to its

topological relationship with Notch, we took advantage of an

ectopic expression system, where both cis inhibitory and trans

activating effects of Notch ligands are exhibited simultaneously

[34,35]. Here, we used dpp-Gal4 to drive Ser or Dl ectopic

expression in the wing imaginal discs (Figure 7). In addition to trans

activation exhibited by the ectopic Wg expression, the cis

inhibitory effects of these ligands were simultaneously exhibited

by a reduction of Wg expression levels within the domain of

ligand-expressing cells (marked by GFP; asterisk in Figure 7A and

arrow in Figure 7C). However, such cis inhibitory effects are

incomplete and detectable only in cells expressing ligands at high

levels. Coexpression of Uif* with the ligands greatly enhanced the

cis inhibition, leading to a complete elimination of Wg expression

in almost all ligand-expressing cells (arrow in Figure 7B and

asterisk in 7D). These results suggest that ectopic expression of

Uif* negatively regulates Notch signaling through a cis inhibitory

mechanism, either working on its own or, more likely (as in our

experimental setting), working in concert with Ser or Dl.

Discussion

The canonical Notch signaling pathway is one of a limited

group of pathway modules that transduce signals from outside the

cell to alter gene expression inside the nucleus [1,2,3]. These

Figure 2. Uif* genetically interacts with genes for the Notch signaling pathway. (A) A wt adult wing. (B) An adult wing of the A9-Gal4.Uif*
fly showing mild thickened vein phenotype that resembles Dl loss of function phenotype (D). (C) A N1/+ wing showing a typical small notch at the
distal region of the wing margin (arrow). (D) A Dl9P/+ wing showing the thickened vein phenotype, particularly in the distal region of veins II and V
(arrows). Wings of either N55e11/+, kuze29-4/+, or Dx1/+ adult flies have no or mild defects (Figure S1). (E–I) Wings of A9-Gal4.Uif* in combination with
one copy of mutation of different Notch pathway components showing enhanced phenotypes as compared with either of them alone. Very small
wings with a great loss of wing margin structures and thickened veins are shown in A9-Gal4.UAS-Uif*; N1/+ (E) and A9-Gal4.UAS-Uif*; N55e11/+ (F);
blistering wing phenotype is also observed in the majority of adult flies (see Discussion). Thickened veins are shown in A9-Gal4.UAS-Uif*; Dl9P/+ (G)
A9-Gal4.UAS-Uif*; kuze29-4/+ (H) and A9-Gal4.UAS-Uif*; Dx1/+ (I) as compared with A9-Gal4.UAS-Uif* (B). (J–L) The notal region of an adult fly
expresses UAS-Uif* (J), UAS-DlDN (K) or UAS-DlDN plus UAS-Uif* (L) under the control of sca-Gal4. The neurogenic phenotype of extra bristles caused by
the loss of Dl function is potentiated by the simultaneous expression of Uif*.
doi:10.1371/journal.pone.0036362.g002

Uif Can Antagonize Notch Signaling
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pathways together orchestrate the developmental processes that

can be dauntingly complex. Yet it is the same modules that are

used repeatedly, not only in different organisms, but also in vastly

different processes within an organism [4,36]. Thus, how these

pathway modules are activated in a specific manner, with regard

to not only space and time but also the quantity of their signaling

output, represents a fundamental question in developmental

biology. Here we describe a newly characterized protein, Uif,

which can antagonize the canonical Notch signaling pathway in

a neomorphic manner. These findings underscore the importance

of the precise tuning of Notch activity in normal patterning.

EGF-like repeats are a common feature of Notch receptors,

ligands and co-ligands [6,37]. While Uif was originally character-

ized for its role in tracheal development, its EGF-like repeats

suggest a possible role in Notch signaling. Our results are

consistent with a model where ectopically expressed Uif may

modulate the accessibility of the extracellular domain of Notch to

its ligands during activation. It is possible that the EGF-like repeats

of Uif directly interact with the extracellular domain of Notch to

exert its inhibitory effect in a manner similar to the cis inhibition

by Notch ligands themselves [20,28,29,30,31,32,33]. Our finding

that Uif* acts on Notch through a cis inhibitory mechanism

(Figure 7) is supportive of this possibility. In our experiments, Uif*

is more effective than wt Uif in antagonizing Notch, and this

difference may be attributed to the difference in their expression

levels (Figure S2). These results suggest that ectopically expressed

Uif* and wt Uif have a similar neomorphic function in regulating

Notch signaling.

A proposed neomorphic function of Uif* and Uif in Notch

signaling is consistent with our results of loss of function analysis of

uif. Knockdown (assayed for adult wing phenotypes and Notch

target gene expression using independent RNAi lines; data not

Figure 3. Expression of Notch target genes rescues Uif*-induced defects. (A) A wt wing. Expression of Uif* under the control of A9-Gal4
causes thickened vein phenotype with broadened veins III and V (arrows in B). This defect can be significantly alleviated by coexpression of a Notch
downstream component, E(spl)mb (arrows in D). (C) shows control wing of A9-Gal4.E(spl)mb flies. A small and rough eye phenotype (F) in GMR-
Gal4.Uif* flies is significantly rescued by coexpression of E(spl)m7 (H). (E) and (G) show control eyes of GMR-Gal4/+ and GMR-Gal4.E(spl)m7 flies,
respectively.
doi:10.1371/journal.pone.0036362.g003

Figure 4. Uif* reduces the expression of Notch target genes.
Expression of Notch target genes, Cut (A and B), Wg (C and D), vgBE-lacZ
(E and F) and E(spl)mb–lacZ (G and H), in the third instar wing discs of
wild type larvae, with (B, D, F and H) or without (A, C, E and G) Uif*
overexpression. Genotypes are: (A and C) dpp-Gal4 UAS-GFP/+; (B and D)
dpp-Gal4 UAS-GFP/UAS-Uif*; (E) dpp-Gal4 UAS-GFP/vgBE-lacZ; (F) dpp-
Gal4 UAS-GFP/vgBE-lacZ UAS-Uif*; (G) E(spl)mb–lacZ/+; dpp-Gal4 UAS-
GFP/+ and (H) E(spl)mb–lacZ/+; dpp-Gal4 UAS-GFP/UAS-Uif*. Arrows
indicate a loss or a decreased expression of the Notch target genes at
the AP boundary of the wing discs where Uif* was expressed under the
control of dpp-Gal4 (B, D, F and H).
doi:10.1371/journal.pone.0036362.g004

Uif Can Antagonize Notch Signaling
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shown) or knockout (assayed for Notch target gene expression in

somatic mutant clones; Figure S4) of uif revealed neither Notch

loss of function nor gain of function phenotypes. However, it

remains formally possible that the endogenous uif gene has a native

role in regulating Notch signaling in tissues or cells (other than

those that we have examined) at a time during Drosophila

development. Further studies are required to investigate this

possibility.

Figure 5. Full-length wt Uif antagonizes Notch signaling. Overexpression of wt Uif by dpp-Gal4.GS11655 leads to a significant reduction in
the levels of both Cut and, to a lesser degree, Wg. (A) and (C) show Cut and Wg expression patterns in wing discs from the dpp-Gal4/+ control flies,
respectively. (B) and (D) show the Cut and Wg levels in wing discs from dpp-Gal4.GS11655 flies, respectively (see regions pointed by arrows). GFP in
(A9–D9) shows the expression pattern of dpp-Gal4. A notched wing detected in a dpp-Gal4.GS11655 adult fly (F), compared with a dpp-Gal4/+ control
wing (E). Flies were reared at 29uC.
doi:10.1371/journal.pone.0036362.g005

Figure 6. The inhibitory effect of Uif* is dependent on the extracellular domain of Notch. Ectopic expression of the full-length Notch (NFL)
under the control of dpp-Gal4 induces aberrant Wg (red) expression at the AP boundary where it intersects with the DV boundary (white arrow in A)
(A and A9). GFP (green) marks dpp-Gal4 positive cells (A9, B9, C9 and D9). Coexpression of Uif* with NFL reduces the ectopic induction of Notch
signaling mediated by NFL at the intersection between AP and DV boundaries (white arrow in B) (B and B9). Ectopic expression of the membrane
tethered active version of Notch (NECN) induces Wg (red) expression in the dpp-Gal4 region that is marked by GFP (green) (C and C9). Coexpression of
Uif* does not alter the Wg expression that is induced by NECN (D and D9).
doi:10.1371/journal.pone.0036362.g006

Uif Can Antagonize Notch Signaling
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The biological activities of Uif are not restricted to regulating

Notch signaling. The fact thatUif was originally characterized for its

role in tracheal inflation underscores the complexity of its biological

activities. In addition to the EGF-like repeats, Uif also contains

several other domains that may have important biological functions.

These domains include a C-type lectin-like (CLECT) domain, three

CUB domains, eight complement control protein (CCP) domains,

two coagulation factor 5/8 C-terminal (FA58C) domains and three

hyaline repeat (HYR) domains. Both CLECT and FA58C domains

are putative carbohydrate binding domains known to play

important roles in many diverse processes [38,39]. The CUB

domain is an evolutionary conserved protein domain found almost

exclusively in extracellular and plasma membrane-associated

proteins [40]. HYR is an immunoglobulin fold domain likely

involved in cell adhesion [41]. The CCP domains, also known as the

Sushi domains or Short Consensus Repeats (SCR), exist in a wide

variety of complement and adhesion proteins [42]. These domains

suggest that Uif may also play a role in cell adhesion. Indeed, in

a recent genetic modifier screen, uif was identified as a regulator

(Mod29) of the Drosophila Dystroglycan-Dystrophin Complex,

a specialized cell adhesion complex [43]. Mod29/Uif was suggested

to play roles in multiple developmental processes, including wing

vein formation, muscle and photoreceptor axon development, and

oogenesis [43]. Although it remains to be investigated whether Uif,

a large regulator with multiple conserved protein domains, may

functionally connect distinct cellular processes, our own unpub-

lished data offer some speculative insights. In particular, the

blistering wing phenotype caused by knockdown of Dl or Ser [44]

can be fully rescued by depletion of uif (data not shown), suggesting

that Uif may functionally extend the role of Notch ligands to cell

adhesion. Uif is an N-glycosylated protein, a modification shared by

several proteins known to play a role in the formation of large protein

complexes [45]. Understanding the full spectrum of the biological

functions of Uif during development and, importantly, its potential

role in harmonizing different cellular processes, represents future

challenges.

Materials and Methods

Generation of UAS-Uif* and UAS-UifRNAi transgenic flies
A pUAST-Uif* construct was made by inserting a part of the

uif cDNA sequence that encodes the first 165 amino acids of Uif

and a genomic DNA fragment encoding the remaining amino

acids of Uif-PA into the pUAST vector. This transgene is

expected to encode a protein that lacks the last ten amino acids

at the C-terminus of the predicted full-length Uif protein (amino

acid 3548 to amino acid 3557), with two amino acid changes

(N1567D and A3134T) and an addition of three extra amino

acids (SGR) immediately after amino acid 165 resulting from the

insertion of a restriction enzyme Not I site in the coding

sequence. After standard P element-mediated germline trans-

formation, three independent lines of transgenic flies that carry

pUAST-Uif* were obtained, all of which resulted in similar

phenotypes when expressed under different Gal4 drivers tested.

Immunostaining with antibodies against extracellular and in-

tracellular domains of Uif demonstrated that Uif* is properly and

stably expressed under the control of dpp-Gal4 (Figure S2B and

data not shown).

To construct UAS-UifRNAi flies, two pieces of non-overlapping uif

coding sequence were cloned into the pWIZ vector [46]. Germline

transformants that carry each sequence were generated by

standard procedures at the Rainbow Transgenic Flies Inc

(Camarillo, CA). At least three independent lines for each RNAi

constructs were tested for the RNAi strength and specificity.

Null mutant of uif and other Drosophila strains
uif null mutants were generated by homologous recombination

mediated gene targeting strategy [47,48]. One of the alleles,

designated uif6, which was molecularly verified and can be

Figure 7. Uif* enhances cis inhibition of Notch signaling by its ligands. (A and A9) dpp-Gal4.UAS-Ser leads to both cis inhibition (in the inner
region of the dpp-Gal4 expressing, GFP+ domain in the ventral part of the disc; marked by the asterisk) and trans activation of Wg (in cells
neighboring to the dpp-Gal4 expressing domain in the ventral compartment of wing disc; marked by arrowheads). The cis inhibition is incomplete
and, thus, Wg expression (arrows) is detected in the outer region of the dpp-Gal4 expressing domain. Coexpession of Uif* enhances cis inhibition,
leading to Wg reduction inside the dpp-Gal4 expressing domain, without affecting trans activation (arrowheads in B and B9). Expression of Dl by dpp-
Gal4 causes Wg expression mainly in the dorsal compartment both inside and outside of the dpp-Gal4 regions (C). Wg protein level inside of the dpp-
Gal4 expressing domain is lower, reflective of cis inhibition (arrow in C). When Uif* is coexpressed, this cis inhibition is enhanced, leading to a nearly
complete loss of Wg expression inside of the dpp-Gal4 expression domains (asterisks in D and D9), without affecting trans activation (outside of dpp-
Gal4 expression domain; arrowheads in D and D9). GFP (green) marks the domain where dpp-Gal4 is expressed (A9, B9, C9 and D9). See the main text
for further details.
doi:10.1371/journal.pone.0036362.g007
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completely rescued by a genomic transgene of uif (Figure S4 and

data not shown), was used in this study. The transgenic fly strain

used for genomic rescue was generated by direct injection of

a BAC clone (CH321-83F13, from P[acman] BAC libraries,

BPRC (BACPAC Resources Center)) that contains the uif

genomic fragment into flies, which harbor both the vas-phiC31

transgene (on X chromosome) and a attP target site (on 3rd

chromosome) [49]. Other fly strains that were used in this study

include: w1118, UAS-Uif* (this paper), Eq-Gal4 [50], pnr-Gal4,

Dl9P/TM3 Sb, N1, N55e11, kuze29-4, Dx1, sca-Gal4, UAS-DlDN, y1

w67c23; P{w[+mC]=GSV6}GS11655/SM1 (DGRC#203493,

Kyoto), en-Gal4, GMR-Gal4, UAS-GFP, dpp-Gal4, MS1096-Gal4,

A9-Gal4, vgBE-lacZ [34], E(spl)mb-lacZ, y w hsFlp122; ubi-GFP

FRT40A/CyO, UAS-UifRNAi-1, UAS-UifRNAi-2, UAS-E(spl)mb, UAS-
E(spl)m7, UAS-NFL, UAS-NECN [51], UAS-Dl30 [51] and UAS-Ser.

All flies were from the Bloomington Drosophila Stock Center at

Indiana University unless otherwise stated. All crosses were

carried out at 25uC according to standard procedures unless

stated otherwise.

Generation of anti-Uif antibodies
We generated antibodies against the extracellular domain and

the intracellular domain of Uif. Briefly, uif coding sequences for

amino acids 1113–1343 (extracellular domain) and 3440–3548

(intracellular domain) were cloned into the pET21b(+) vector.

The proteins were expressed in BL21 E. coli cells and purified

according to Qiagen Ni-NTA handbook. Purified proteins were

used to generate antibodies in rabbits at the Cocalico Biologicals

Inc (Reamstown, PA). The anti-Uif sera were subsequently

affinity purified with protein G beads (Invitrogen) prior to use in

immunostaining (1:500).

Immunohistochemistry
Immunostaining of wing imaginal discs was performed as

previously described [52,53]. In addition to antibodies against Uif

(see above), the following primary antibodies were used: mouse

anti-Wg (4D4, 1:20, the Developmental Studies Hybridoma Bank

[DSHB], University of Iowa, Iowa City, IA, USA), mouse anti-Cut

(2B10, 1:20, DSHB), rabbit anti-GFP (1:1000, Invitrogen) and

rabbit anti-b-Galactosidase (1:1000; Sigma). The secondary

antibodies used were conjugated to FITC or Cy3 (Jackson

Immunoresearch), each diluted at 1:200. Images were captured

on a Leica TSC SP5 confocal laser scanning microscope and

processed using Adobe Photoshop.

Supporting Information

Figure S1 Adult wings of N55e11/+, kuze29-4/+ and Dx1/+
heterozygous flies. (A) An adult wing of N55e11/+ flies shows

a mild delta vein phenotype in the most distal regions of veins IV

and V (arrows; compare with a wt wing in Figure 1A). (B and C)

kuze29-4/+ and Dx1/+ adult wings have normal wing pattern.

(TIF)

Figure S2 Wild type Uif and Uif* are expressed at
different levels in the wing disc. Wing discs immunnostained

with anti-Uif antibody showing the ectopic expressing level of wt

Uif (A and A0) or Uif* (B and B0). GFP marks the dpp-Gal4

expressing cells in A9, A0, B9 and B0. All experiments shown here

were performed side by side with images captured and processed

under identical settings. Flies were reared at 18uC.
(TIF)

Figure S3 Comparison of the effects of wt Uif and Uif*
on Cut expression. (A) Cut expression at the DV boundary in

the control wing disc (dpp-Gal4/+). Expression of wt Uif by dpp-

Gal4.GS11655 causes a detectable reduction of the Cut level at

the AP boundary (arrow in B). Panel C shows a stronger reduction

of Cut expression caused by Uif* (arrow). GFP marks dpp-Gal4

expressing cells. All experiments shown here were performed side

by side with images captured and processed under identical

settings.

(TIF)

Figure S4 Notch signaling is not detectably upregulated
in uif mutant clones. (A) Cut expression pattern in the wing

disc with FRT40A mock clones, marked by the absence of GFP

(A9). (B) No detectable changes of Cut expression pattern in the uif6

mutant clones (marked by GFP negative cells in B9) comparing

with the mock clones. (A0 and B0) are the overlaid images. (D)

Adult wing with uif6 mutant clones show wrinkles and reduced size

as compared with wild type (C), which is fully rescued by a copy of

uif genomic DNA (E).

(TIF)
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