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Abstract

A mediation model explores the direct and indirect effects between an independent variable and a dependent variable by
including other variables (or mediators). Mediation analysis has recently been used to dissect the direct and indirect effects
of genetic variants on complex diseases using case-control studies. However, bias could arise in the estimations of the
genetic variant-mediator association because the presence or absence of the mediator in the study samples is not sampled
following the principles of case-control study design. In this case, the mediation analysis using data from case-control
studies might lead to biased estimates of coefficients and indirect effects. In this article, we investigated a multiple-
mediation model involving a three-path mediating effect through two mediators using case-control study data. We propose
an approach to correct bias in coefficients and provide accurate estimates of the specific indirect effects. Our approach can
also be used when the original case-control study is frequency matched on one of the mediators. We employed
bootstrapping to assess the significance of indirect effects. We conducted simulation studies to investigate the performance
of the proposed approach, and showed that it provides more accurate estimates of the indirect effects as well as the
percent mediated than standard regressions. We then applied this approach to study the mediating effects of both smoking
and chronic obstructive pulmonary disease (COPD) on the association between the CHRNA5-A3 gene locus and lung cancer
risk using data from a lung cancer case-control study. The results showed that the genetic variant influences lung cancer risk
indirectly through all three different pathways. The percent of genetic association mediated was 18.3% through smoking
alone, 30.2% through COPD alone, and 20.6% through the path including both smoking and COPD, and the total genetic
variant-lung cancer association explained by the two mediators was 69.1%.
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Introduction

A mediation model is a statistical approach that explores the

direct and indirect effects of an independent variable (i.e., initial

variable) on a dependent variable (i.e., outcome variable) by

including one or more mediating variables (or mediators) [1]. In

some scenarios, the mediation model can infer the causal effects

from the initial variable to the mediator variable and then to the

outcome variable [1]. Mediation models have been widely applied

in many different fields [2], such as psychology, behavioral science,

genetic epidemiology, prevention research, and political commu-

nication research. Recently, there have been efforts in using

mediation analysis to dissect the direct and indirect effects of

genetic variants on complex diseases in genetic variant association

studies [3–7]. Most of these studies used data from genome-wide

association (GWA) studies, in which the outcome variables were

selected on the basis of case-control study design. For example, our

group has applied single-mediator analysis (i.e., the Baron-Kenny

procedure) to identify the mediation effects of smoking and

chronic obstructive pulmonary disease (COPD) on the association

between the CHRNA5-A3 genetic locus and lung cancer risk

using data from a case-control GWA study of lung cancer [6].

However, ignoring the case-control study design and applying

standard regressions might result in biased estimations of the

indirect effects. According to recent studies of secondary

phenotypes, the bias could arise in the estimations of the genetic

variant-mediator association because the presence or absence of

the mediator (i.e., cases and controls with respect to the mediator)

is not sampled following the principles of case-control study de-

sign [8–12]. In this case, the mediation analysis using data from
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case-control studies might lead to biased indirect effect estimates,

either over- or under-estimated depending on the prevalence

values of outcome and mediators.

Lung cancer GWA studies have consistently shown that the

CHRNA5-A3 gene cluster is strongly associated with an increased

risk of lung cancer. Also, multiple studies have associated SNPs

spanning this region with heavy smoking, nicotine dependence,

smoking cessation and COPD [13–19]. Thus, there is a debate

about whether the genetic variants have an impact on lung cancer

risk directly or exert their effect largely through the profound effect

of the variants on smoking intensity [20–22] or COPD [23].

Further work investigating this association concluded that there

are dual pathways between the genetic variant and lung cancer

association, independently via a direct effect on lung carcinogen-

esis and through smoking behavior [6,7,15,24–26]. More recent

studies of current smokers have shown that the genetic variants on

CHRNA5-A3 gene cluster have a stronger association with

cotinine levels than with self-reported smoking behavior, and

suggested that the effect of the genetic variants on lung cancer risk,

is largely, if not exclusively, through their effect on smoking

intensity [27–29]. However, in an accompanying editorial Spitz et

al [21] concluded that the degree to which the association is

mediated by smoking is yet to be determined. Prior studies focused

on one mediator (e.g., smoking) at a time, and none has studied

multiple mediators simultaneously in one model. However, in

reality, more than one mediator could affect the association

between the genetic variant and lung cancer risk. In our previous

analysis [6], we found that in single-mediator analyses smoking

and COPD were mediators of the association between the single-

nucleotide polymorphism (SNP) rs1051730 and risk of lung

cancer. However, analyzing multiple mediators in one model

could have some advantages over such single-mediator analyses

[30].

The multiple-mediation model used for the study of the SNP,

smoking, COPD and lung cancer risk is depicted as a path

diagram in Figure 1. The multiple-mediation model includes a

three-path mediating effect through both smoking and COPD,

which allows one mediator (i.e., smoking) to causally affect the

other mediator (i.e., COPD) [31]. This causal association is

biologically compelling because smoking is the known major risk

factor for COPD [32]. The underlying assumption of this three-

path mediating effect is that the individuals carrying the

deleterious allele of rs1051730 are more likely to be heavy

smokers, which in turn leads to a higher risk of COPD, which in

turn increases the risk of lung cancer. Thus, in addition to the

indirect effects passing through each of the mediators alone, we

will investigate the indirect effect passing through both mediators.

To our knowledge, there has been no previous study

investigating such a multiple mediation model in the case-control

study design setting, in which the standard regression approach

could provide biased estimations for the indirect effects as we

described above. Therefore, we developed an approach to conduct

a multiple-mediation analysis using the model shown in Figure 1.

We conducted simulations to investigate the performance of the

proposed approach, and these showed the approach can provide

accurate estimates of the indirect effects. The bootstrapping

approach was applied to assess the significance of the indirect

effects and total effect. We also developed an approach for when

the original case-control study is frequency matched on one of the

mediators, as in our lung cancer case-control study where controls

are frequency matched to cases with respect to smoking status. We

applied the proposed approach to the multiple-mediation study of

the simultaneous mediating effects of smoking and COPD on the

association between SNP rs1051730 and lung cancer risk using

lung cancer case-control GWA study data.

Methods

Let X, M1, M2, and Y denote the genetic variant, two mediator

phenotypes, and the disease variable, respectively. We assumed

binary random variables for both mediator variables and the

disease variable, denoted as M1~f0, 1g, M2~f0, 1g, and

Y~f0, 1g, respectively, with 0 representing non-occurrence and

1 representing occurrence of the mediator phenotypes or the

disease. We considered a SNP locus with two alleles: deleterious

allele A and normal allele a. We first assumed a dominant or

recessive genetic model for the genetic variant and also denoted it

as a binary random variable, X~f0, 1g. For a dominant genetic

model, 0 represents genotype (a, a) and 1 represents genotypes (A,

a) and (A, A); for a recessive genetic model, 0 represents genotypes

(a, a) and (A, a) and 1 represents genotype (A, A). Note that if an

additive genetic model was assumed, a categorical random

variable X~f0, 1, 2g was denoted to represent genotypes (a, a),

(A, a), and (A, A), respectively. Given the random variables, X, M1,

M2, and Y, the association among all random variables shown in

Figure 1 can be expressed using the following conditional

probabilities with logistic models:

Pr (M1~1jX~i)~
exp (a0za1i)

1z exp (a0za1i)
, ð1Þ

Pr (M2~1jX~i, M1~j)~
exp (b0za2izdj)

1z exp (b0za2izdj)
, and ð2Þ

Figure 1. Path diagram of the multiple-mediation model for the study of SNP rs1051730, smoking behavior, COPD, and lung
cancer. X: initial predictor variable (SNP). M1: mediator (smoking behavior). M2: mediator (COPD). Y: outcome variable of interest (lung cancer).
doi:10.1371/journal.pone.0047705.g001
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Pr(Y~1jX~i, M1~j, M2~k)~
exp (c0zc0izb1jzb2k)

1zexp (c0zc0izb1jzb2k)
,ð3Þ

where a0, b0, c0, a1, a2, b1, b2, d, and c9 are regression coefficients

and i, j, k = 0, 1. There are different indirect effects in this model

[33] (see Figure 1): (i) the indirect effect passing through the

mediator M1, bypassing M2, which can be assessed as a1b1

(denoted as IE1); (ii) the indirect effect passing through the

mediator M2, bypassing M1, which can be assessed as a2b2

(denoted as IE2); and (iii) the three-path indirect effect passing

through both mediators, which can be assessed as a1db2 (denoted

as IE3). Therefore, the total indirect effect passing through the

mediators can be given as the summation of the above indirect

effects: a1b1+a2b2+a1db2 (denoted as IEt). The regression coefficient

c9 represents the effect of the genetic variant on the disease not

mediated by either mediator and is usually called the direct effect.

In general, the total effect of the genetic variant on the disease is

estimated by regressing the disease variable on the genetic variant

variable directly. However, the previous analysis has shown that

the total effect estimated in this way could be biased when the

disease variable and/or mediator variables are binary [34].

Therefore, in this study we reported the total effect (TE) using

an alternative formula defined as the summation of the indirect

and direct effects (denoted as TE = IEt+c9). In this case, the

percentages of the association explained by the different mediation

paths (percent mediated, PM) can be assessed as the specific

indirect effects divided by the defined total effect, respectively, and

denoted as PM1 = IE1/TE, PM2 = IE2/TE, PM3 = IE3/TE, and

PMt = IEt/TE, which represents PM of M1 bypassing M2, PM of

M2 bypassing M1, PM of both M1 and M2, and the total PM

through different paths, respectively.

When the data of interest are randomly sampled from the

general population, the estimations of the indirect effects and the

percent mediated are accurate. However, if the data are sampled

based on a case-control study design, the estimated associations

among the initial variable and both mediators (i.e., a1, a2, and d)

will be biased if standard logistic regressions are employed, which

in turn, will result in biased estimations of indirect effects and the

percent mediated [8–12]. To obtain accurate estimations of the

coefficients a1, a2, and d, we modified the bias-correction approach

proposed in our previous study [12]. Briefly, the biased coefficient

estimated from the logistic regression, the prevalence values of the

disease, and both mediator phenotypes can be expressed using

non-linear equations. The prevalence values are obtained from the

literature, and the robustness of this approach to the misspecifica-

tion of prevalence values has been investigated in our previous

works [12,35]. Solving the system of non-linear equations gives us

the corrected coefficients. For the purpose of the multiple-

mediator model, different non-linear equations were employed

to correct different coefficients. The correction approach for the

regression coefficient d for the M1–M2 association, while regressing

M2 on M1 and X (see Figure 1), is given below. The correction

approaches for the other parameters, namely a1 and a2, are given

in Text S1.

Correction of Coefficient d
As stated above, the regression coefficient d, of the M1–M2

association while regressing M2 on M1 and X, could be biased. We

used the following non-linear estimating equation approach to

correct the bias. Given a sample of N participants, of which N1 are

cases (Y = 1) and N0 are controls (Y = 0) with respect to the disease,

the odds ratio (OR) for the association between the mediators M1

and M2 (exp(d)) can be expressed as follows:

OR~F (c0,b0,d)~
E11E00

E10E01

, ð4Þ

where Ekj is the expected number of individuals in the sample, with

M2 = k and M1 = j, which is given as

Ekj~E(nkj jN0,N1)~

X
r
(Nr| Pr (M2~k, M1~jjY~r))|

Nr

N
~
X

r

N2
r

N
pkjjr,

where j, k, r = 0, 1. The conditional probability pkj|r is written as

pkjjr~ Pr (M2~k, M1~jjY~r)

~
Pr(Y~rjM2~k, M1~j) Pr (M2~kjM1~j) Pr (M1~j)

Pr (Y~r)

~
prjkjpkjjpj

qr
, for j, k, r = 0, 1.

The probabilities p1 and q1 represent the prevalence of the

mediator M1 and the disease, respectively, in the general

population. The conditional probabilities pr|kj and pk|j are given

as functions of regression coefficients:

Pr (M2~kjM1~j)~
( exp (b0zdj))k

1z exp (b0zdj)
and

Pr (Y~rjM1~j, M2~k)~
( exp (c0zb1jzb2k))r

1z exp (c0zb1jzb2k)
,

where b0, c0, and d are unknown coefficients of interest. Based on

the conditional probabilities given above, we can write the

estimated prevalences of the disease and the mediator M2 as

follows:

fY ~G(c0,b0,d)~
X

j

X
k

p1jkjpkjjpj , ð5Þ

fM2
~H(b0,d)~

X
j
p1jjpj : ð6Þ

Given a sample with N independent individuals for a case-

control study of the disease (Y), one can estimate the regression

coefficients b1 and b2 as well as the biased coefficient d using

logistic regressions based on Equations (1),(3). Therefore,

Equations (4),(6) are a system of nonlinear equations with three

unknown variables, c0, b0, and d. We employed the ‘‘fsolve’’

function in Matlab [36] to solve the nonlinear equation system

with the use of default settings. By default, the ‘‘fsolve’’ function

uses the trust-region dogleg algorithm, which is a variant of the

Powell dogleg method [37]. The solution to this nonlinear

equation system will give us the corrected estimate for coefficient

d for the association between two mediators. As mentioned above,

for brevity, the details of correction for the coefficients a1 and a2

were given in Text S1. We denoted the corrected coefficients as ~aa1,

~aa2, and ~dd . Given these corrected coefficients, the indirect effects

can be estimated as IE1 = ~aa1b1, IE2 = ~aa2b2, and IE3 = ~aa1
~ddb2.

Additive Genetic Model
When the genetic variant is assumed to be additive, special care

needs to be taken. In this situation, we used a categorical random

variable, X~f0, 1, 2g, to denote the three genotypes (a,a), (A,a),
and (A,A). We employed the property that the biased OR

Assessing Multiple Mediators in Case-Control Study
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obtained using logistic regression is given by the per-allele OR and

adapted the approach for an additive model proposed in our

previous study [35]. To obtain the true per-allele OR, we assessed

biased OR in two ways. First, we obtained the biased OR1 by

calculating the OR of SNP random variable X = 1 versus X = 0,

which gives the OR for heterozygous genotype against wild-type

homozygous genotype. Second, we obtained the biased OR2 by

calculating the OR of SNP random variable X = 2 versus X = 0,

which gives the OR for homozygous genotype for variant allele

against wild-type homozygous genotype. On the basis of OR1 and

OR2, and following the different formulas in our previous study

[12], we obtained two corrected coefficients, and the final

corrected coefficient for the additive genetic model is the average

of these.

Frequency-matched Case-Control Study
Frequency matching is an important and commonly used study

design for known risk confounders and has been widely used in

case-control studies [38]. In the analysis of real lung cancer data,

because smoking is a well-known risk confounder for the

association between lung cancer and other risk factors, controls

were frequency matched to lung cancer cases with respect to

smoking status. That is, for the multiple mediation model shown in

Figure 1, the disease cases and controls are frequency matched on

the mediator M1. In this scenario, frequency-matching design also

contributes to bias in the estimate of the coefficients for

associations among the SNP and the mediators (i.e., a1, a2, and

d). Therefore, we adapted the approach proposed in our previous

work [12] with some modifications. We first considered the

calculation of ~aa1. The expected numbers of individual Eji can be

calculated as

Eji~E(njijN1)zE(njijN0)~

N2
1

N
Pr (M1~j,X~ijY~1)z

N2
0

N
hijj0(hjj1{({1)jD),

for i = 0, 1, 2 and j = 0, 1.

The parameter D was denoted as the difference in the

proportions of individuals with the presence of the mediator M1

in the disease cases and controls, given as D= prop(M1 = 1|Y = 0)

prop(M1 = 1|Y = 1). In reality, the selection of controls in a

frequency-matched study does not have to be perfect, that is, the

proportions of individuals with the matched variables do not have

to be exactly the same in the disease cases and controls (D= 0). For

example, in the study of lung cancer, the proportion of current

smokers was 48% in lung cancer cases and 42% in controls, and

the difference in the proportions was D= 20.06. Therefore, the

inclusion of the parameter D can take into account variations that

occur when selecting controls that are frequency matched on the

mediator, and therefore, improve the robustness of our approach.

The conditional probabilities hijj0 and hjj1 can be calculated using

the same formulas given in our previous work [12]:

hijj0~ Pr (X~ijM1~j,Y~0)

~
Pr (Y~0jM1~j,X~i) Pr (M1~jjX~i) Pr (X~i)X

l
Pr (Y~0jM1~j,X~l) Pr (M1~jjX~l) Pr (X~l)

and

hjj1~ Pr (M1~jjY~1)

~

X
l
Pr (Y~1jM1~j,X~l) Pr (M1~jjX~l) Pr (X~l)

fY

,

for i = 0, 1, 2, and j = 0, 1.

When assessing the corrected coefficient ~dd, we used a similar

formula to evaluate the expected numbers of individual Ekj:

Ekj~E(nkj jN1)zE(nkj jN0)

~
N2

1

N
Pr (M2~k,M1~jjY~1)z

N2
0

N
gkjj0(gjj1{({1)jD),

for j, k = 0, 1.

The conditional probabilities gkjj0 and gjj1 are defined as:

gkjj0~ Pr (M2~kjM1~j,Y~0)

~
Pr(Y~0jM2~k,M1~j)Pr(M2~kjM1~j)Pr (M1~j)P

l Pr(Y~0jM2~l,M1~j)Pr(M2~ljM1~j)Pr (M1~j)

and

gjj1~ Pr (M1~jjY~1)

~

P
l Pr (Y~1jM2~l,M1~j) Pr(M2~ljM1~j) Pr (M1~j)

fY

,

for j, k = 0, 1.

If the original disease case-control study is frequency matched

on the mediator M1, the estimated value of b1 will be non-

significant or biased and will not represent the true association

between the mediator M1 and the disease. However, because the

matching design considers the known risk-confounding factor at

the study design phase, we typically know the associated risk.

Therefore, for the frequency-matching case-control studies, we

added one more constraint on the value of b1, which is fixed as the

known risk coefficient (from the literature or estimated from

unmatched case-control studies). Given the new formulas for Eji

and Ekj, one can follow the same procedure described for the

unmatched study to assess the corrected coefficients ~aa1 and ~dd,

respectively. The corrected coefficient ~aa2can be evaluated using

the same formula of Eki that was used in the unmatched case-

control study because the calculation of ~aa2does not involve the

matched mediator variable M1.

Bootstrapping Confidence Intervals for Indirect Effects
Bootstrapping has been employed to evaluate the significance of

indirect effects in a multiple-mediator model [30,33] to overcome

the difficulty in assessing standard errors for the indirect effects. In

this study, we also used the empirical confidence intervals (CIs),

based on a resampling-based method with replacement [39]. Given

the regression coefficients b1, and b2 obtained using the standard

regression and the corrected coefficients ~aa1, ~aa2, and ~dd obtained

using the proposed approach, the empirical CIs of the corrected

individual indirect effects IE1 = ~aa1b1, IE2 = ~aa2b2, and IE3 = ~aa1
~ddb2, as

well as the total indirect effect IEt = ~aa1b1+~aa2b2+~aa1
~ddb2, were obtained

by the following steps:

1. Take B samples with replacement from the study data, each

with n1 individuals from the disease cases and n0 samples from

the disease controls (n = n0+n1). Note that n0#N0 and n1#N1,

where N0 and N1 are numbers of cases and controls with

respect to the disease in the study sample.

Assessing Multiple Mediators in Case-Control Study
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2. Evaluate the bootstrap regression coefficients using logistic

regressions based on the bootstrap samples. Denote the

bootstrap coefficients as a�1u, a�2u, b�1u, b�2u, and d�u , u = 1, 2,

…, B. The corrected coefficients ~aa�1u, ~aa�2u, and ~dd�u , u = 1, 2, …, B

are calculated by using the approaches described above.

3. The bootstrap indirect effects are assessed as IE�1u~~aa�1ub�1u,

IE�2u~~aa�2ub�2u, IE�3u~~aa�1u
~dd�u b�2u a n d IE�tu~~aa�1ub�1u+ ~aa�2ub�2u+

~aa�1u
~dd�u b�2u, u = 1, 2, …, B. Let IE�1½u�, IE�2½u�, IE�3½u� and IE�t½u� be

the uth ordered bootstrap indirect effects estimations, respectively.

Then the 100(1- c)% CIs of indirect effects are given as

( IE�1½Bc=2�, IE�1½B(1{c=2)�) , ( IE�2½Bc=2�, IE�2½B(1{c=2)�) , ( IE�3½Bc=2�,

IE�3½B(1{c=2)�), and (IE�t½Bc=2�,IE
�
t½B(1{c=2)�), respectively.

Simulation Approach
We performed simulation studies to investigate the performance

of our approach for evaluating the indirect effects in the multiple-

mediation model in a case-control study (Figure 1). To mimic the

real data analysis of lung cancer, we assumed a single di-allele SNP

with a minor allele frequency (MAF) of 37%. We used 14%, 24%,

and 12% as the prevalence values for the disease (Y), the mediator

M2, and the mediator M1, respectively, which approximate the

prevalence values of lung cancer [40], COPD [41], and heavy

smokers [42] in ever smokers. We considered two different sets of

regression coefficients for the associations among the SNP, the

mediators, and the disease. For the first scenario, we fixed the

coefficients as a1 = 0.4055, a2 = 0.4055, d = 0.6931, c9 = 0.4055,

b1 = 1.0986, and b2 = 1.0986, which correspond to ORs of 1.5, 1.5,

2, 1.5, 3, and 3, respectively; for the second scenario, we fixed the

coefficients as a1 = 0.3365, a2 = 0.3365, d = 0.3365, c9 = 0.6931,

b1 = 0.4055, and b2 = 0.4055, which correspond to ORs of 1.4, 1.4,

1.4, 2, 1.5, and 1.5, respectively. The ORs used in this simulation

studies were chosen to reflect the observed ORs found in many

GWA studies of common human diseases [20,43–45]. According

to these settings, the theoretical true values of the percentage of the

total indirect effect among the association of interest are about

75% for scenario one and 32% for scenario two. For each

scenario, we considered different study designs (i.e., unmatched

study and frequency-matched study with respect to mediator M1)

and different genetic models for the SNP (i.e., dominant, additive,

and recessive genetic models). For the frequency-matched study,

we also considered different values for the parameter D (0, 60.05,

60.1), which represents the difference in the proportion of

individuals with the mediator M1 in disease cases (Y = 1) and

controls (Y = 0). On the basis of these parameters, we obtained the

values for the intercept regression coefficients a0, b0, and c0 for

different situations.

First, we generated genotypes for a SNP using the genotype

frequencies, which can be calculated from the MAF. The mediator

M1 values were then generated on the basis of the dataset of

realizations of the SNP using Equation (1), assuming different

genetic models for the SNP. Conditioned on mediator M1 and the

SNP values, we used Equation (2) to generate the values of the

mediator M2. Last, the disease cases and controls were generated

conditional on values of the SNP and both mediators M1 and M2

using Equation (3). In this way, we simulated a large amount of

data on the population of interest and then randomly sampled

1,000 disease cases (Y = 1) and 1,000 disease controls (Y = 0). When

a frequency-matched case-control study design with respect to the

mediator M1 was considered, the 1,000 disease cases were still

sampled randomly. However, the 1,000 controls were sampled so

that the proportion of the presence of the mediator M1 in the

controls was approximately equal to that in the cases [38]. The

average results of coefficients and indirect effects reported for the

simulation studies were based on 1,000 replicate datasets.

Results

Simulation Study
The average results of the regression coefficients a1, a2, b1, b2, c9,

and d estimated using both standard logistic regression and the

approach proposed in this article are reported in Table 1. In the

table, the top panel shows the results for the first simulation

scenario and the bottom panel shows the results for the second

simulation scenario. The true regression coefficients used to

generate the data are also listed in the table for the purpose of

comparison. For each scenario, we investigated different study

designs (unmatched and frequency-matched), different genetic

models (dominant, additive, and recessive), and differences in the

proportions of the matched variable (M1) between the disease cases

and controls (D= 0, 60.05, and 60.1).

For the unmatched case-control study design, when the

standard logistic regressions were applied, the estimates of c9, b1,

and b2 were close to the corresponding true values, which was

expected because selection of the disease cases and controls does

not introduce bias in these estimations. For example, for scenario

one using the dominant genetic model (unmatched study), the

estimated values for c9, b1, and b2 were 0.4041, 1.0967, and

1.0989, respectively, which were very close to the true values of

0.4055, 1.0986, and 1.0986 used for the simulations. However, the

estimated values for a1, a2, and d were 0.4615, 0.4547 and 0.7551,

respectively, which were biased compared to the true values of

0.4055, 0.4055, and 0.6931. On the other hand, the proposed

approach led to estimates of ~aa1, ~aa2, and ~dd as 0.4119, 0.4069, and

0.6942, respectively, which agreed well with the true values.

When the case-control study was frequency-matched with

mediator M1, in addition to the coefficients a1, a2, and d, the

coefficient b1 was also highly biased, as expected when the

standard regression approach is applied; the coefficients c9 and b2

were still correctly estimated, as in the unmatched study. For

example, in scenario one for frequency-matched design, when the

proportion of individuals with presence of M1 was higher in cases

than in controls by 5% (D= 20.05) and the dominant genetic

model was assumed, the estimated values of c9 and b2 were 0.4072

and 1.1003, respectively, which were close to the true values of

simulation; however, the estimated values of a1, a2, d, and b1 were

0.3500, 0.4502, 0.5171, and 0.1189, respectively, which were

all highly biased compared to the true values. When we applied

the proposed correction approach, however, accurate estimates

of ~aa1, ~aa2, and ~dd were obtained (0.3986, 0.4020, and 0.6930,

respectively).

Table 2 reports the average results for the indirect effects and

the percent mediated through two mediators on the effect of the

genetic variant on the disease, assessed on the basis of the

regression coefficient results reported in Table 1. The true indirect

effects, total effect, and percent mediated are listed in the table for

each scenario. We considered several specific indirect effects

involved in the multiple-mediation model (Figure 1), including the

indirect effect through the mediator M1, bypassing mediator M2

(IE1), the indirect effect through the mediator M2, bypassing

mediator M1 (IE2), the three-path indirect effect through both

mediators (IE3), and the total indirect effect, which is the

summation of all the specific indirect effects (IEt). We also

reported the total effect of the genetic variant on the disease (TE),

as well as the percentages of the SNP-disease association explained

by different paths (PM1, PM2, PM3, and PMt). For scenario one, on

the basis of the coefficients used for the simulations, the true values
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of the specific indirect effects and the total effect were given as

IE1 = a1b1 = 0.405561.0986 = 0.45, IE2 = a2b2 = 0.405561.0986 =

0.45, IE3 = a1db2 = 0.405560.693161.0986 = 0.31, IEt = IE1+IE2+
IE3 = 1.20, and TE = IEt+c9 = 1.61, respectively; and the true

values of the percent mediated by different indirect effects were

given as PM1 = IE1/TE = 0.45/1.61 = 28%, PM2 = IE2/TE =

0.45/1.61 = 28%, PM3 = IE3/TE = 0.31/1.61 = 19%, and PMt =

IEt/TE = 1.20/1.61 = 75%, respectively. For scenario two, the

true values of the indirect effects, total effect, and corresponding

percentages mediated were assessed using the same formulas and

were given as follows: IE1 = 0.14, IE2 = 0.14, IE3 = 0.05, IEt = 0.32,

and TE = 1.01 for indirect effects and total effect and PM1 = 13%,

PM2 = 13%, PM3 = 5%, and PMt = 32% for the percentages

mediated through different indirect effects. Similar to Table 1,

Table 1. Mean values of regression coefficients a1, a2, d, c9, b1 and b2 based on standard logistic regressions, as well as the
corrected coefficients ~aa1, ~aa2 and ~dd based on the proposed approach.*

Matching Genetic Standard Approach Our Approach

Status D Model a1 a2 d c9 b1 b2 ~aa1 ~aa2
~dd

Scenario I (true values): 0.4055 0.4055 0.6931 0.4055 1.0986 1.0986 0.4055 0.4055 0.6931

Unmatched 2 DOM 0.4615 0.4547 0.7551 0.4041 1.0967 1.0989 0.4119 0.4069 0.6942

2 ADD 0.4415 0.4437 0.7354 0.4095 1.1034 1.1033 0.4021 0.4037 0.6758

2 REC 0.4353 0.4316 0.7572 0.4023 1.1031 1.1013 0.4058 0.3950 0.6964

Matched on M1 0 DOM 0.3085 0.4503 0.4408 0.4068 20.1513 1.1010 0.3914 0.4021 0.6797

0 ADD 0.2996 0.4409 0.4341 0.4073 20.1906 1.0957 0.3901 0.3990 0.6786

0 REC 0.2849 0.4397 0.4468 0.4079 20.1389 1.1029 0.3792 0.4026 0.6865

20.05 DOM 0.3500 0.4502 0.5171 0.4072 0.1189 1.1003 0.3986 0.4020 0.6830

20.05 ADD 0.3331 0.4427 0.5046 0.4102 0.0753 1.1016 0.3976 0.4020 0.6786

20.05 REC 0.3329 0.4369 0.5181 0.4063 0.1326 1.1060 0.3927 0.3998 0.6850

0.05 DOM 0.2853 0.4487 0.3852 0.4068 20.3954 1.0989 0.3982 0.4005 0.6889

0.05 ADD 0.2751 0.4445 0.3681 0.4030 20.4297 1.0981 0.3982 0.4066 0.6742

0.05 REC 0.2688 0.4389 0.3846 0.4049 20.3824 1.0999 0.3929 0.4022 0.6889

20.1 DOM 0.3886 0.4554 0.5969 0.4056 0.4399 1.0999 0.3963 0.4074 0.6777

20.1 ADD 0.3722 0.4467 0.5809 0.4083 0.3915 1.0999 0.3998 0.4058 0.6696

20.1 REC 0.3719 0.4342 0.6081 0.4114 0.4570 1.1035 0.3922 0.3968 0.6902

0.1 DOM 0.2603 0.4441 0.3165 0.4076 20.6167 1.1080 0.4003 0.3956 0.6824

0.1 ADD 0.2497 0.4411 0.3140 0.4094 20.6532 1.1041 0.3987 0.3998 0.6828

0.1 REC 0.2461 0.4401 0.3320 0.4079 20.6077 1.1009 0.3987 0.4030 0.6960

Scenario II (true values): 0.3365 0.3365 0.3365 0.6931 0.4055 0.4055 0.3365 0.3365 0.3365

Unmatched 2 DOM 0.3817 0.3712 0.3530 0.6917 0.4097 0.4055 0.3432 0.3350 0.3365

2 ADD 0.3631 0.3647 0.3473 0.6966 0.4074 0.4087 0.3384 0.3383 0.3327

2 REC 0.3577 0.3518 0.3560 0.7030 0.4107 0.4046 0.3319 0.3256 0.3396

Matched on M1 0 DOM 0.2901 0.3711 0.3078 0.6960 20.0720 0.4098 0.3324 0.3341 0.3345

0 ADD 0.2733 0.3681 0.2985 0.6938 20.1272 0.4138 0.3283 0.3414 0.3256

0 REC 0.2730 0.3627 0.3093 0.6934 20.0568 0.4045 0.3243 0.3367 0.3355

20.05 DOM 0.3601 0.3756 0.3421 0.6921 0.3405 0.4063 0.3282 0.3393 0.3264

20.05 ADD 0.3369 0.3665 0.3395 0.6927 0.2725 0.4130 0.3308 0.3389 0.3276

20.05 REC 0.3498 0.3594 0.3440 0.6990 0.3613 0.4090 0.3288 0.3330 0.3281

0.05 DOM 0.2363 0.3734 0.2688 0.6974 20.3943 0.4090 0.3354 0.3364 0.3286

0.05 ADD 0.2230 0.3623 0.2677 0.6928 20.4428 0.4087 0.3228 0.3369 0.3269

0.05 REC 0.2215 0.3655 0.2793 0.6944 20.3818 0.4053 0.3308 0.3395 0.3387

20.1 DOM 0.4759 0.3664 0.3962 0.6986 0.9516 0.4044 0.3385 0.3298 0.3238

20.1 ADD 0.4299 0.3636 0.3845 0.6934 0.8454 0.4015 0.3352 0.3360 0.3153

20.1 REC 0.4452 0.3705 0.3952 0.6961 0.9827 0.4059 0.3280 0.3445 0.3225

0.1 DOM 0.1888 0.3710 0.2477 0.6952 20.6665 0.4027 0.3335 0.3347 0.3337

0.1 ADD 0.1796 0.3636 0.2461 0.6963 20.7098 0.4049 0.3203 0.3380 0.3318

0.1 REC 0.1750 0.3497 0.2501 0.6975 20.6562 0.4056 0.3330 0.3235 0.3369

DOM: dominant genetic model; ADD: additive genetic model; REC: recessive genetic model
*All the results are based on 1,000 replicates, each with 1,000 disease cases and 1,000 disease controls.
doi:10.1371/journal.pone.0047705.t001
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the top panel of Table 2 reports the results for scenario one and

the bottom panel reports the results for scenario two. The results

from both the standard logistic regressions and the proposed

approach are reported.

For the unmatched case-control study, when the standard

regression approach was applied, the estimates of the specific

indirect effects, as well as the total effect, were biased compared to

the true values. This was expected because the coefficients used to

assess the indirect effects and total effect were biased. For example,

for scenario one with a dominant genetic model (unmatched

study), the specific indirect effects and the total effect were given as

IE1 = 0.51, IE2 = 0.50, IE3 = 0.38, IEt = 1.39, and TE = 1.79,

Table 2. Mean values of different indirect effects, the total effect, and the percentages mediated for both standard regression and
our approach.*

Matching Genetic Standard Approach Our Approach

Status D Model IE1 IE2 IE3 IEt TE PM1 PM2 PM3 PMt IE1 IE2 IE3 IEt TE PM1 PM2 PM3 PMt

Scenario I (true values): 0.45 0.45 0.31 1.20 1.61 28% 28% 19% 75% 0.45 0.45 0.31 1.20 1.61 28% 28% 19% 75%

Unmatched 2 DOM 0.51 0.50 0.38 1.39 1.79 28% 28% 21% 77% 0.45 0.45 0.31 1.21 1.62 28% 28% 19% 75%

2 ADD 0.49 0.49 0.36 1.33 1.74 28% 28% 20% 77% 0.44 0.45 0.30 1.19 1.60 28% 28% 19% 74%

2 REC 0.48 0.48 0.36 1.32 1.72 28% 28% 21% 77% 0.45 0.44 0.31 1.19 1.60 28% 27% 19% 75%

Matched on M1 0 DOM 20.05 0.50 0.15 0.60 1.00 25% 49% 15% 59% 0.43 0.44 0.29 1.17 1.57 27% 28% 19% 74%

0 ADD 20.06 0.48 0.14 0.57 0.97 26% 50% 15% 58% 0.43 0.44 0.29 1.16 1.56 27% 28% 19% 74%

0 REC 20.04 0.48 0.14 0.58 0.99 24% 49% 14% 59% 0.42 0.44 0.29 1.15 1.56 27% 28% 19% 74%

20.05 DOM 0.04 0.50 0.20 0.73 1.14 4% 43% 17% 64% 0.44 0.44 0.30 1.18 1.59 28% 28% 19% 74%

20.05 ADD 0.02 0.49 0.19 0.70 1.11 2% 44% 17% 63% 0.44 0.44 0.30 1.18 1.59 28% 28% 19% 74%

20.05 REC 0.04 0.48 0.19 0.72 1.12 4% 43% 17% 64% 0.43 0.44 0.30 1.17 1.58 27% 28% 19% 74%

0.05 DOM 20.11 0.49 0.12 0.50 0.91 213% 54% 13% 55% 0.44 0.44 0.30 1.18 1.59 28% 28% 19% 74%

0.05 ADD 20.12 0.49 0.11 0.48 0.88 214% 55% 13% 54% 0.44 0.45 0.30 1.18 1.58 28% 28% 19% 75%

0.05 REC 20.10 0.48 0.11 0.49 0.90 212% 54% 13% 55% 0.43 0.44 0.30 1.17 1.58 27% 28% 19% 74%

20.1 DOM 0.17 0.50 0.25 0.93 1.33 13% 38% 19% 70% 0.44 0.45 0.30 1.18 1.58 27% 28% 19% 74%

20.1 ADD 0.14 0.49 0.24 0.87 1.28 11% 38% 19% 68% 0.44 0.45 0.29 1.18 1.59 28% 28% 19% 74%

20.1 REC 0.17 0.48 0.25 0.90 1.31 13% 37% 19% 69% 0.43 0.44 0.30 1.17 1.58 27% 28% 19% 74%

0.1 DOM 20.16 0.49 0.09 0.42 0.83 219% 59% 11% 51% 0.44 0.44 0.30 1.18 1.59 28% 28% 19% 74%

0.1 ADD 20.16 0.49 0.09 0.41 0.82 220% 59% 11% 50% 0.44 0.44 0.30 1.18 1.59 28% 28% 19% 74%

0.1 REC 20.15 0.48 0.09 0.42 0.83 218% 58% 11% 51% 0.44 0.44 0.31 1.19 1.60 27% 28% 19% 74%

Scenario II (true values): 0.14 0.14 0.05 0.32 1.01 13% 13% 5% 32% 0.14 0.14 0.05 0.32 1.01 13% 13% 5% 32%

Unmatched 2 DOM 0.16 0.15 0.06 0.36 1.05 15% 14% 5% 34% 0.14 0.14 0.05 0.32 1.01 14% 13% 5% 32%

2 ADD 0.15 0.15 0.05 0.35 1.05 14% 14% 5% 33% 0.14 0.14 0.05 0.32 1.02 13% 14% 5% 32%

2 REC 0.15 0.14 0.05 0.34 1.04 14% 14% 5% 33% 0.14 0.13 0.05 0.31 1.02 13% 13% 5% 31%

Matched on M1 0 DOM 20.02 0.15 0.04 0.17 0.86 23% 18% 4% 19% 0.13 0.14 0.05 0.32 1.01 13% 13% 5% 31%

0 ADD 20.04 0.15 0.03 0.15 0.84 24% 18% 4% 18% 0.13 0.14 0.04 0.32 1.01 13% 14% 4% 31%

0 REC 20.02 0.15 0.03 0.16 0.86 22% 17% 4% 19% 0.13 0.14 0.04 0.31 1.01 13% 14% 4% 31%

20.05 DOM 0.12 0.15 0.05 0.32 1.01 12% 15% 5% 32% 0.13 0.14 0.04 0.31 1.01 13% 14% 4% 31%

20.05 ADD 0.09 0.15 0.05 0.29 0.98 9% 15% 5% 29% 0.13 0.14 0.04 0.32 1.01 13% 14% 4% 31%

20.05 REC 0.12 0.15 0.05 0.32 1.02 12% 14% 5% 31% 0.13 0.14 0.04 0.31 1.01 13% 13% 4% 31%

0.05 DOM 20.10 0.15 0.03 0.08 0.78 212% 20% 3% 11% 0.14 0.14 0.05 0.32 1.02 13% 13% 4% 31%

0.05 ADD 20.10 0.15 0.02 0.07 0.76 213% 19% 3% 9% 0.13 0.14 0.04 0.31 1.00 13% 14% 4% 31%

0.05 REC 20.09 0.15 0.03 0.09 0.78 211% 19% 3% 11% 0.13 0.14 0.05 0.32 1.01 13% 14% 5% 31%

20.1 DOM 0.45 0.15 0.08 0.68 1.37 33% 11% 6% 49% 0.14 0.13 0.04 0.31 1.01 14% 13% 4% 31%

20.1 ADD 0.36 0.15 0.07 0.57 1.27 29% 12% 5% 45% 0.14 0.13 0.04 0.31 1.01 14% 13% 4% 31%

20.1 REC 0.44 0.15 0.07 0.66 1.35 32% 11% 5% 49% 0.13 0.14 0.04 0.31 1.01 13% 14% 4% 31%

0.1 DOM 20.13 0.15 0.02 0.04 0.74 217% 20% 3% 5% 0.14 0.13 0.05 0.31 1.01 13% 13% 4% 31%

0.1 ADD 20.13 0.15 0.02 0.04 0.73 218% 20% 2% 5% 0.13 0.14 0.04 0.31 1.01 13% 14% 4% 31%

0.1 REC 20.12 0.14 0.02 0.04 0.74 216% 19% 2% 6% 0.14 0.13 0.05 0.31 1.01 13% 13% 5% 31%

DOM: dominant genetic model; ADD: additive genetic model; REC: recessive genetic model
*Includes the indirect effect through M1 (i.e., IE1 = a1b1), the indirect effect through M2 (i.e., IE2 = a2b2), the three-path indirect effect through M1 and M2 (i.e., IE3 = a1db2),
the total indirect effect (i.e., IEt = IE1+IE2+IE3), the total effect (i.e., TE = IEt+c9), and the percentages of the SNP-disease association explained by different paths (i.e.,
PM1 = IE1/TE, PM2 = IE2/TE, PM3 = IE3/TE, and PMt = IEt/TE). All results are based on 1,000 replicates, each with 1,000 disease cases and 1,000 disease controls.
doi:10.1371/journal.pone.0047705.t002
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respectively, which were all biased compared with the true values

of 0.45, 0.45, 0.31, 1.20, and 1.61, respectively. This, in turn,

caused the percentages mediated through different indirect effects

to be biased as well. For the same example, the percentages

mediated by different indirect effects were estimated as

PM1 = 28%, PM2 = 28%, PM3 = 21%, and PMt = 77%, respective-

ly. Compared with the true values of 28%, 28%, 19%, and 75%,

we can observe that the percentage mediated through the three-

way path of both mediators was slightly biased (PM3 = 21% versus

19%) and led to a biased estimate for the total percent mediated

(PMt = 77% versus 75%). However, by employing the corrected

coefficients ~aa1, ~aa2, and ~ddfrom the proposed approach to assess the

indirect effects, total effect, and percent mediated, we obtained

accurate estimates of IE1 = 0.45, IE2 = 0.45, IE3 = 0.31, and

IEt = 1.21 for different indirect effects, TE = 1.62 for the total

effect, and PM1 = 28%, PM2 = 28%, PM3 = 19%, and PMt = 75%

for the percentages mediated through different indirect effects, all

of which agreed well with the true values.

When the case-control study was frequency matched with

mediator M1, the magnitudes of bias in the estimations of indirect

effects, total effect, and percent mediated were larger than those

for the unmatched study when applying the standard approach.

For example, in scenario one for the frequency-matched design,

when the proportion of individuals with presence of M1 was higher

in the cases than in the controls by 5% (D = 20.05) and the genetic

model was assumed as dominant, the estimates of indirect effects

and total effect were IE1 = 0.04, IE2 = 0.50, IE3 = 0.20, IEt = 0.73,

and TE = 1.14, respectively, which were highly biased compared

with the true values of 0.45, 0.45, 0.31, 1.20, and 1.61,

respectively. Accordingly, the percentages mediated through

different indirect effects were estimated as 4%, 43%, 17%, and

64%, respectively, which were also biased compared with the true

values of 28%, 28%, 19%, and 75%, respectively. On the other

hand, the proposed approach provided estimates of IE1 = 0.44,

IE2 = 0.44, IE3 = 0.30, and IEt = 1.18 for different indirect effects,

TE = 1.59 for the total effect, and PM1 = 28%, PM2 = 28%,

PM3 = 19%, and PMt = 74%, which were all close to the true

values.

Therefore, we observed from the overall simulation results that

the standard logistic regressions provided biased estimates for the

coefficients a1, a2, and d in all situations (e.g., frequency-matched

and unmatched studies) and biased estimates for the coefficient b1

when the study was frequency matched on the mediator M1, which

in turn led to biased estimates of the indirect effects, total effect,

and percent mediated by two mediators. The magnitude of the

bias in the estimations increased when the proportion difference

(D) was relatively large and positive, when the original study was

frequency matched on mediator M1, and when the true values

used for the simulations were relatively large (i.e., scenario one

versus scenario two). However, the approach proposed in this

article can uniformly provide accurate estimates for the coefficients

a1, a2, and d, and in turn provide accurate estimates for the indirect

effects, total effect, and percent mediated for all situations.

Application to the Study of Lung Cancer, COPD, Smoking
and SNP rs1051730

We applied our approach to assess the mediating effects of

smoking behavior and COPD simultaneously on the association

between the SNP rs1051730 and lung cancer risk using a multiple-

mediation model (Figure 1) based on the data from a lung cancer

GWA study [6,20,25]. This analysis included N1 = 1,153 lung

cancer case subjects who were current or former smokers and

N0 = 1,137 control subjects frequency matched to the cases by age,

sex, and smoking status. All the case and control subjects were

Caucasian. Lung cancer cases were accrued at The University of

Texas MD Anderson Cancer Center and were histologically

confirmed. Controls were ascertained through a multi-specialty

physician practice from the same area. Questionnaire data

providing information on smoking were obtained by personal

interview. This study was approved by the institutional review

board at MD Anderson Cancer Center, and all participants

provided written informed consent (LAB10-0347). We selected the

number of cigarettes per day, or daily smoking quantity (SQ), as

the measurement of smoking intensity. The SQ measure is

categorized into two levels: SQ,25, light smokers (coded as 0);

SQ$25, heavy smokers (coded as 1) [42]. All the lung cancer cases

and controls also self-reported whether a physician had ever

diagnosed them with COPD, which was categorized as present or

absent. The genetic variant (rs1051730) was coded as having

additive effects, as in the original GWA study [20]. Since the lung

cancer controls were frequency matched to the cases by smoking

status, we employed the proposed approach for frequency

matching with respect to the mediator M1 to investigate the

mediating effects of smoking and COPD. All the analyses were

adjusted for age.

Table 3 reports the estimated coefficients, indirect effects, total

effects, and percentages mediated for the SNP-lung cancer

association obtained using both the standard and proposed

approaches. As we showed in the simulation studies, the estimated

coefficients b2 and c9 should be unbiased, but the estimated

coefficients a1, a2, and d will be biased. Also, the estimated

coefficient b1 for smoking-lung cancer association was statistically

non-significant at the 0.05 level of significance (b1 = 0.1036, 95%

CI = 20.0667, 0.2739) owing to the frequency matching on

smoking status. To assess the corrected coefficients ~aa1, ~aa2, and ~dd,

we estimated the MAF of the SNP rs1051730 from the data as

37%, and therefore, under Hardy-Weinberg proportion, the

genotyping frequenciesp̂pi, i = 0, 1, and 2, were calculated as

0.40, 0.46, and 0.14, respectively. The prevalences of lung cancer

(f̂fY ), COPD (f̂fM2
), and heavy smokers (f̂fM1

) in ever smokers were

obtained from the literature as 14% [40], 24% [41], and 12%

[42], respectively. We further assumed the OR of association

between SQ and lung cancer as 1.86, as reported by Peto et al.

[46]. The 95% CIs of the coefficients for the proposed approach

were obtained on the basis of our previous work [11]. To obtain

the 95% CIs for different indirect effects and total effect, we

performed the bootstrapping approach, as described in the

Methods section, with B = 10,000. In addition to the estimates of

the specific indirect effects, we also reported the percentage of

each specific indirect effect, thus explaining the total SNP-lung

cancer association.

When the standard logistic regression approach was applied, not

all three specific indirect effects were statistically significant, as

evidenced by some bootstrap CIs containing zeros (Table 3). The

first indirect effect carries the effect of the SNP on increasing lung

cancer risk through only smoking, bypassing COPD. This indirect

effect was assessed by the product of a1 and b1 and shown to be

statistically non-significant because the 95% bootstrap CI

contained zero (IE1 = a1b1 = 0.0257, 95% CI = 20.0181, 0.0752).

This biased result using the standard approach was not surprising

because the case-control data used for this analysis was frequency

matched by smoking status (see also our simulation results for

frequency-matched study design). The second indirect effect

carries the effect of the SNP on increasing lung cancer risk

through only COPD, bypassing smoking behavior. This indirect

effect was assessed by the product of a2 and b2 and shown to be

statistically significant, as the 95% bootstrap CI did not contain

zero (IE2 = a2b2 = 0.2615, 95% CI = 0.0283, 0.4059). This result
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means that an individual carrying the deleterious allele for SNP

rs1051730 is more likely to develop COPD, and in turn, lung

cancer, independent of the individual’s smoking behavior. The last

indirect effect is the effect of the SNP on lung cancer risk through

both smoking and COPD, which is the product of a1, d, and b2,

and this effect was also statistically significant

(IE3 = a1db2 = 0.1753, 95% CI = 0.0733, 0.2995). This result shows

that the individual carrying the deleterious allele is more likely to

become a heavy smoker, which in turn causes COPD and then

leads to a higher lung cancer risk. The total indirect effect was

evaluated as the summation of the three specific indirect effects,

and as expected, it was statistically significant (IEt = IE1+IE2+
IE3 = 0.4625, 95% CI = 0.1890, 0.6481). Meanwhile, the direct

effect of c9 was also statistically significant (c9 = 0.2350, 95%

CI = 0.1101, 0.3599), which suggested that the SNP also affects

lung cancer risk through a pathway or pathways other than

smoking and COPD.

The total effect of the SNP on lung cancer risk was calculated as

the sum of the direct (c9) and total indirect (IEt) effects

(TE = 0.6975, 95% CI = 0.3864, 0.9079). Given the total effect,

we also calculated the percentage of the SNP-lung cancer

association explained by each of the specific indirect effects. The

percentages mediated were estimated as 3.7%, 37.5%, and 25.1%

for the three specific indirect effects, respectively, suggesting that

the path through smoking alone explains 3.7% of the SNP-lung

cancer association, the path through COPD alone explains about

37.5% of the association, and the path through both smoking and

COPD explains about 25.1% of the association. Thus, the results

obtained from the standard approach suggested that the SNP

influences the lung cancer risk indirectly through two pathways

(COPD only and both smoking and COPD) but not through the

smoking only pathway. However, this conclusion is likely to be

biased, as our simulation results showed that the case-control study

design could introduce bias in the estimations of indirect effects,

and furthermore, frequency matching on the basis of smoking

status could conceal the true underlying association.

Therefore, we applied the new approach proposed in this article

to estimate the indirect effects of smoking and COPD on the

association between the SNP and lung cancer risk (see Table 3).

The indirect effect of smoking, bypassing COPD, was evaluated by

using the product of ~aa1 and the fixed b1 value (i.e., log(1.86)) and

was found to be equal to IE1 = 0.1385, 95% CI = 0.0601, 0.2195,

which was statistically significant. This result suggested that an

individual carrying the deleterious allele is more likely to become a

heavy smoker and, in turn, have a higher risk of lung cancer,

independent of the individual’s COPD risk. The other two indirect

effects were calculated as the products of ~aa2b2 and ~aa1
~ddb2,

respectively, and were also statistically significant (IE2 = 0.2284,

95% CI = 0.0398, 0.4624; IE3 = 0.1558, 95% CI = 0.0566,

0.3123). The total indirect effect (IEt = 0.5227, 95% CI = 0.2722.

0.8476) and the total effect (TE = 0.7577, 95% CI = 0.4846,

1.0987) were higher than those obtained from the standard

approach, mainly due to the significant indirect effect through

smoking only. The percentages of the SNP-lung cancer association

explained by each of the specific indirect effects were also

calculated and suggested that the path through smoking alone

explains about 18.3% of the association, the path through COPD

alone explains about 30.2% of the association, and the path

through both explains about 20.6% of the association. The results

obtained from the proposed approach showed that the SNP

rs1051730 influences lung cancer risk indirectly through all three

pathways and suggested that a higher percentage of the SNP-lung

cancer association was explained by the two mediators with three

pathways than indicated by the results obtained from the standard

regression approach (69.1% versus 66.3%).

Discussion

In this study, we investigated the multiple-mediation model

involving a three-path mediating effect using data from a case-

control study. Such multiple-mediation models have been studied

previously but not in the context when the study subjects are

sampled according to case-control design [31,33]. We found that

bias arises in evaluating the indirect effects if the case-control

sampling study design is ignored and standard logistic regressions

are applied. Therefore, we proposed an approach to correct bias

in estimating coefficients from the mediation analysis and provide

accurate estimates of the specific indirect effects. This approach

can also be employed when the original case-control study is

frequency matched on one of the mediators. We employed the

bootstrapping approach to assess the significance of the indirect

effects. We conducted simulation studies to investigate the

performance of the proposed approach and showed that,

compared with the standard approach, the proposed approach

provides more accurate estimates of the indirect effects as well as of

the percentages mediated by the mediators. The multiple-

mediation model investigated in this study is related to directed

graphic models, which have been applied to the study of genetic

data. For example, Zhu and Zhang [47] investigated the

association between genetic variants and multiple traits using a

similar scenario as considered in Figure 1. However, their analysis

was focused on testing multiple traits (e.g., primary disease and

mediators) simultaneously for identifying a common genetic

variant, while our study is focused on decomposing the potential

direct and/or indirect effects of a genetic variant on the primary

disease. Moreover, their study was based on a family-based study

design, while our study is focused on a case-control study design of

Table 3. Mediation analysis results using data from a lung
cancer genome-wide association study.*

Standard Approach Our Approach

Estimates 95% CIs Estimates 95% CIs

a1 0.2477 (0.1270, 0.3684) 0.2231 (0.1024, 0.3438)

a2 0.2395 (0.0741, 0.4049) 0.2092 (0.0438, 0.3746)

d 0.6482 (0.4148, 0.8816) 0.6397 (0.4063, 0.8731)

b1 0.1036 (20.0667, 0.2739) 2 2

b2 1.0919 (0.8422, 1.3416) 2 2

c9 0.2350 (0.1101, 0.3599) 2 2

IE1 (PM1) 0.0257 (3.7%) (20.0181, 0.0752) 0.1385 (18.3%) (0.0601, 0.2195)

IE2 (PM2) 0.2615 (37.5%) (0.0283, 0.4059) 0.2284 (30.2%) (0.0398, 0.4624)

IE3 (PM3) 0.1753 (25.1%) (0.0733, 0.2995) 0.1558 (20.6%) (0.0566, 0.3123)

IEt (PMt) 0.4625 (66.3%) (0.1890, 0.6481) 0.5227 (69.1%) (0.2722, 0.8476)

TE 0.6975 (0.3864, 0.9079) 0.7577 (0.4846, 1.0987)

CI: Confidence interval
*Both daily smoking quantity and COPD were used as the mediators in the
multiple-mediator model. The 95% CIs for the indirect effects were estimated
based on 10,000 bootstraps. Includes the indirect effect through smoking (i.e.,
IE1 = a1b1), the indirect effect through COPD (i.e., IE2 = a2b2), the three-path
indirect effect through smoking and COPD (i.e., IE3 = a1db2), the total indirect
effect (i.e., IEt = IE1+IE2+IE3), the total effect (i.e., TE = IEt+c9), and the percentages
of the SNP-lung cancer association explained by different paths (i.e., PM1 = IE1/
TE, PM2 = IE2/TE, PM3 = IE3/TE, and PMt = IEt/TE).
doi:10.1371/journal.pone.0047705.t003
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the primary disease in which the controls may be frequency-

matched to cases with respect to one of the mediators.

We applied the approach to investigate the mediating effects of

smoking and COPD on the association between the SNP

rs1051730 and lung cancer risk using lung cancer case-control

GWA study data where the multiple-mediation model was

employed. We concluded on the basis of the results obtained

from the proposed approach that the SNP rs1051730 influences

lung cancer risk indirectly through all three pathways: through

smoking only, bypassing COPD (18.3%); through COPD only,

bypassing smoking (30.2%); and through both smoking and

COPD (20.6%). The percentages mediated through different

pathways (total 69.1%) obtained using the proposed approach

were more correct, according to our simulation results, whereas

the percentages mediated obtained using the standard approach

were either under-estimated or over-estimated. Our findings that

COPD mediates the effect of the SNP on the lung cancer

association concurs with a previous study of the association

between the SNP rs16969968 (in tight linkage disequilibrium with

rs1051730) and COPD [23], in which the authors proposed that

the association between the a5 subunit nAChR SNP and lung

cancer could be largely explained through its relationship to

COPD. Importantly, our results confirm previous findings from

our group [6] that the association between the SNP rs1051730 and

COPD was mediated by smoking behavior (percentage mediat-

ed = ,40%). Thus, the study emphasizes the complex interrela-

tionships among smoking, genes, COPD, and lung cancer.

One may argue that the use of self-reported, physician-

diagnosed emphysema as a COPD measure could result in

misclassification of the disease. For example, some studies have

shown that when spirometry is used to assess COPD in smokers,

estimates of undiagnosed COPD range from 50–80% [23,48–52].

Such misclassification would lead to under-estimation of effect

sizes for the association between genetic variants and COPD risk.

However, a few studies suggest that the questionnaire-based

approach to defining COPD is quite accurate for epidemiologic

studies [53–55].

This study extends our previous work investigating the

mediating effects of smoking and COPD on the association

between the rs1051730 SNP and lung cancer using a single-

mediator model [6]. However, the previous study ignored the

case-control study design, which might under-estimate the indirect

effect of each mediator, as well as the percent mediated by each

mediator. VanderWeele et al. [7] used a weighted regression

approach [56] to address the problem of case-control study design

when assessing the direct and indirect effects of genetic variants on

15q25.1 on the lung cancer risk through smoking. That study

focused on only a single mediator (i.e., smoking) and showed that

smoking intensity only explained a small portion (,5%) of the

association between the SNP rs1051730 and lung cancer risk,

which differs from the percentage we have obtained for the path

through smoking only (,18%). This difference could be due to

multiple reasons. First, different types of data sets were employed

in the two studies: we used only ever smokers, whereas

VanderWeele et al. used both never and ever smokers for the

analysis. Second, we employed a multiple-mediation model, so the

indirect effect through smoking only was assessed by controlling

for the other mediator, COPD, whereas VanderWeele et al. did

not include COPD in their model. Moreover, the study of

VanderWeele et al. used a different measure based on ORs to

evaluate the percentage of the effect of the SNP mediated by

smoking intensity, which assumes a rare outcome disease [56] and

is not applicable to our situation because lung cancer is not rare in

ever smokers. Most importantly, the difference in the results is due

to the different scales used for the smoking intensity measure as the

mediator variable. In the study of VanderWeele et al. [7], the

square root of the number of cigarettes smoked per day was

employed as a continuous mediator variable. In this case, the

mediating effect can be interpreted as the effect at the square-root

scale of the individual smoking one cigarette per day on the

association between the SNP and lung cancer risk. In contrast, in

our study we categorized the individuals into light smokers (,25

cigarettes smoked per day [mean number of cigarettes smoked per

day = 17]) and heavy smokers ($25 cigarettes smoked per day

[mean number of cigarettes smoked per day = 38]). In this sense,

the mediating effect should be interpreted as the effect of heavy

smoking compared to light smoking on the association between the

SNP and lung cancer risk, which as expected, would be higher

than the square-root scale used in the VanderWeele study [7].

Munafo et al. [27] studied the association between genetic

variants on chromosome 15q25 locus and tobacco exposure as

measured by self-reported daily cigarette consumption and also

based on a single measurement of cotinine levels in current

smokers. They found that the genetic variants have a stronger

association with cotinine level than with self-reported cigarette

consumption and the per-allele increase in cotinine level indicated

a per-allele increase risk of lung cancer with OR = 1.31. Since the

lung cancer GWA studies suggested that the genetic variants

increase lung cancer risk by 1.32 fold [20], Munafo and colleagues

concluded that the association of 15q25 locus with lung cancer risk

is likely to be mediated largely via tobacco exposure. Compared to

our approach, this study in actuality did not perform any formal

mediation analysis, but inferred the results partially based on the

published data, and therefore, could not provide the percentage of

the genetic variant-lung cancer association mediated by tobacco

exposure. This fact was also noted by Spitz et al. [28]. The major

difference in the conclusions of these two studies could also be due

to the different samples (current smokers versus ever smokers) and

different smoking measures (cotinine level versus smoking quan-

tity) used.

In our study, we focused on the multiple-mediator model shown

in Figure 1, which allows for the causal association of one mediator

to another mediator (i.e., smoking to COPD). In our real data

analysis, the causal association of smoking to COPD was known

from previous studies. However, in reality, the assumed causal

direction might not be known in advance and has to be obtained

using theoretical justification or intuition about the area of

investigation [57]. The alternative is to consider both mediators

to co-vary in the model, as in a parallel multiple-mediator model

[30]. Our approach can be applied to such models as well to

correct the potential bias in the estimations of the indirect effects

when case-control study data are employed.

The measure of percent mediated used in our study is usually

applicable when the signs of the indirect and direct effects are the

same [58]. However, in the multiple-mediation model, it is

possible that the indirect effects, as well as the direct effect, will

have different signs. In this situation, the total effect assessed by the

summation of the indirect effects and the direct effect could be

arbitrary, and therefore, the percent mediated by each mediator

could be greater than 1 (i.e., the total effect is less than the indirect

effect), negative (i.e., the total effect and the indirect effect have

opposite signs), or undefined (i.e., the total effect approaches zero)

[59]. One possible solution is to assess the percentages mediated

using the absolute values for all indirect and direct effects [60].

Alternatively, one may use other measures, such as the measure

referencing the indirect effect relative to the direct effect and the

proportion of the variance in outcome variable explained by the

indirect effect [61]. However, these measures might have the same
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issues, such as producing a negative value. In this study, we

assumed there were no confounding factors mitigating associations

among the SNP, smoking behavior, COPD, and lung cancer risk

[7].

It should be noted that, when we refer to the direct effect, we

mean the effect of the SNP on lung cancer risk directly or through

pathways other than smoking and COPD.

In summary, we investigated the multiple-mediator model,

which involves a three-way mediating effect from one mediator to

another in a case-control study. We proposed an approach to

correct the biased estimations of the indirect effects in such models

due to case-control study design. The proposed approach can

provide accurate estimations for indirect effects and percent

mediated. It is also robust to the case-control study being

frequency matched on one of the mediators. The application of

the proposed multiple-mediation approach to the study of the

association between SNP rs1051730 and lung cancer risk suggests

that the SNP has an indirect association with lung cancer risk

mainly through its effect on both smoking behavior and COPD, as

well as a relatively weaker direct association with lung cancer risk.

Currently, several studies are ongoing to identify genetic variants

associated with smoking behaviors and COPD using existing

GWA study data collected for lung cancer using simplistic

regression analyses. Such studies should use more sophisticated

statistical models that take into account the complex interplay of

smoking, COPD, and lung cancer. Finally, additional studies that

include metabolomics markers, and biochemical assays of lung

carcinogens as suggested by Spitz et al. [28], and spirometry

assessment among smokers as suggested by Young et al. [23], as

well as together with CT scans would be needed to more

accurately tease out the direct and indirect effects of the genetic

variants on lung cancer risk.
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