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Abstract

A Boolean network is a graphical model for representing and analyzing the behavior of gene regulatory networks (GRN). In
this context, the accurate and efficient reconstruction of a Boolean network is essential for understanding the gene
regulation mechanism and the complex relations that exist therein. In this paper we introduce an elegant and efficient
algorithm for the reverse engineering of Boolean networks from a time series of multivariate binary data corresponding to
gene expression data. We call our method ReBMM, i.e., reverse engineering based on Bernoulli mixture models. The time
complexity of most of the existing reverse engineering techniques is quite high and depends upon the indegree of a node
in the network. Due to the high complexity of these methods, they can only be applied to sparsely connected networks of
small sizes. ReBMM has a time complexity factor, which is independent of the indegree of a node and is quadratic in the
number of nodes in the network, a big improvement over other techniques and yet there is little or no compromise in
accuracy. We have tested ReBMM on a number of artificial datasets along with simulated data derived from a plant signaling
network. We also used this method to reconstruct a network from real experimental observations of microarray data of the
yeast cell cycle. Our method provides a natural framework for generating rules from a probabilistic model. It is simple,
intuitive and illustrates excellent empirical results.
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Introduction

Boolean networks were introduced by Kauffman in the sixties

and were one of the first methods to describe gene expression data

[1] and model a gene regulatory network (GRN). GRNs have been

the focus of research in the bioinformatics and genome sciences

community for more than a decade now. A GRN can be viewed as

a network composed of nodes and edges, where nodes represent

genes or proteins and edges symbolize various relationships, at the

molecular level, such as protein-protein or DNA-protein interac-

tions [2]. There are many existing techniques for modeling GRNs,

e.g., Bayesian networks [3], neural networks [4], support vector

machines [5], metabolic control analysis [6] etc. A review of

inference techniques of GRNs has been presented by Hecker et al.

[2]. The problems and methods related to GRNs have also been

outlined by Han et al. [7], where they discuss the various network

topologies and the reconstruction methods. One technique used to

model GRNs is based on Boolean network models.

Boolean networks are constructed by discretizing the expression

data to two states, zero indicating ‘off’ state and one indicating

‘on’. The state of any node at any time is determined by its parent

nodes and the updating scheme, i.e., synchronous or asynchro-

nous. This is a very strong simplification with respect to real GRNs

that may not be binary, but it has been shown that ‘‘meaningful

biological information’’ is still present in data even if it is quantized

to two possible states [8,9]. There are also effective methods to

discretized gene expression data to binary form (see e.g., [10]).

In this article we present a fast, efficient and accurate method

called ReBMM (reverse engineering of Boolean networks using

Bernoulli mixture models) for reverse engineering Boolean

Networks by making use of a probabilistic model called a

Bernoulli mixture model. We illustrate the reconstruction of a

Boolean network from state transition data that represents a time

series of gene expression data. Our method is based on learning

Bernoulli mixture models from raw data and these mixtures are

then used to determine the network structure and also the logical

rules governing each node in the network. Most of the existing

reverse engineering algorithms have a high time complexity,

normally a polynomial of a high degree or an exponential in some

cases [11–15]. Their application is therefore restricted to small

networks. In this work we show that ReBMM has significantly

reduced time complexity as compared to other methods and yet it

predicts a Boolean network with little or no compromise in

accuracy.

When reverse engineering Boolean networks, two problems

have to be addressed. One is to determine the network structure in

which the parents of each individual node have to be determined.

Secondly, the rules governing each node in the network have to be

inferred from the given data. A majority of the state of the art

reverse engineering algorithms generally involve a combinatorial

search through the space of all node combinations to reconstruct a

Boolean network, leading to a high time complexity. Normally

these techniques limit the indegree, l, of a node to a small number

like 3 or 4. Some examples of reconstruction algorithms include
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REVEAL, which is based on the information theoretic principle

and has a time complexity factor a multiple of O(22l

) [11];

predictor chooser method of Ideker et al. that uses minimum set

covering [13]; minimal sets algorithm and genetic algorithms by

Dimitrova et al. [16] Monte-Carlo type randomized algorithm of

Akutsu et al. [12], which has an exponential time complexity. Best

fit extension principle of Lähdesmäki et al. again involves a factor

of O
n

l

� �� �
[14], where n is the total number of nodes in the

network. Nam et al. devised an efficient search algorithm for

learning Boolean networks [15], with a complexity of

O(mn(lz1)=(log m)(l{1)), where m is the total number of time

steps (explained later). For all the afore mentioned methods, the

performance deteriorates considerably with an increase in the

indegree and the size of the network.

Recently Maucher et al. introduced a very elegant algorithm for

reconstructing Boolean networks by using correlations. The

method has a time complexity quadratic in the number of nodes

in the network [17]. Their approach is one of the first methods

which is independent of the indegree of a node. However, their

algorithm is only restricted to carrying out step 1 of the algorithm,

i.e., the structure of the network is determined but the set of rules

governing each node in the network is not determined. Their

method is also restricted to reverse engineering networks, which

have only Boolean monotone functions like the logical AND and

the logical OR and cannot deal with functions like the XOR.

In this paper, we introduce ReBMM, a method that infers a

Boolean network and has a complexity quadratic in terms of the

number of nodes in the network and does not depend upon the

indegree of a node. The method is simple and intuitive and based

on a probabilistic model, which is later converted to a rule based

system using a very simple conversion technique. We show how

Bernoulli mixture models can be used to determine the parents of

a node and how these mixtures lend themselves to a natural

representation of logical Boolean rules, an approach which has not

been explored before. Our method can also infer both monotone

and non-monotone functions.

ReBMM is an intuitive method that derives a rule based system

from a probabilistic model based on Bernoulli mixture models.

Finite mixture models of probability distributions represent a

convex combination of different parametric distributions, where

each distribution has its own set of parameters [18,19]. These

mixtures are used in situations where the actual shape of the

distribution is unknown, and a single distribution is not sufficient

to model the local variations in data. Previously, finite mixture

models have been widely used in cluster analysis, where the task is

to find entities of a similar nature and to group them together [20].

In this paper we extend the usage of mixture models to extract

rules and summaries from data.

ReBMM was devised as a model to explain the data derived

from a plant signaling network called the SIGNET dataset (see

http://www.causality.inf.ethz.ch/pot-luck.php), [21,22]. This was

launched as a part of the causality challenge, which consisted of

different tasks related to causal discovery [23]. We developed this

method to analyze and infer asynchronous Boolean networks. In

this paper we extend our work to synchronous networks and also

carry out a detailed analysis of the complexity of this method. We

have also devised a model selection scheme for this method and

tested it on synthetic and real life datasets. Finally we demonstrate

how this algorithm can be applied to bigger networks with varying

indegrees of individual nodes.

Methods

Boolean networks were developed by Stuart Kauffman in 1969,

as a model for the genetic regulatory network and as a network of

logical elements [1]. He showed that many biological systems can

be modeled by sparsely connected networks. A Boolean network

can be represented as a directed graph, where nodes can be the

genes or the external factors affecting the genes or even the states

of different proteins [24].

We picture a Boolean network as a directed graph G~(V ,E),
with n nodes/vertices and the value at each vertex/node is

denoted by xj . Each node can be in one of the two possible states,

i.e., ‘0’ or ‘1’. Every node is associated with a logical function given

by fj(s1,s2, . . . ,sl), where sj is one of the parents of node j and

sj[Pj , where Pj , is the set, of all parents of node j. The parent

nodes serve as input to the node j. DPj D~lj is also called the

indegree of node j. The state of the node at any time step can be

determined by the state of the input nodes sc,Vc~1 . . . l, and the

Boolean function governing the behavior of the node. It is assumed

that the Boolean function fj and the set of parents Pj of node j do

not change with time. A node may have no connection (0

indegree) or at the most n connections (n indegree). If a node is

connected to itself then we have a self loop. For our current work,

we do not consider self loops, however our current framework can

be easily extended to incorporate them. Also, in this paper we

focus on Boolean networks with a synchronous updating scheme.

Here, all the nodes are updated at once, and the state, xt
j , of node

xj at time t, is completely determined by the state of its parent

nodes at time t{1, i.e.,

xt
j~fj(s

(t{1)
1 ,s

(t{1)
2 , . . . ,s

(t{1)
l ) ð1Þ

It is also assumed that different nodes can have different indegrees.

An example of a Boolean network, and its associated truth table is

shown in Figure 1. Here the state of each node at time step t1 is

completely determined by its state at time step t0. Our goal is to

reverse engineer a Boolean network, given a sequence or time

series of observations.

Bernoulli Mixture Models
For real life problems, it is often the case, that a single

distribution is not enough to represent an entire dataset. In such

instances, a multi-modal distribution might be required and a non-

parametric density estimation method can be used to represent the

dataset. An alternate solution is to use a mixture of distributions.

Figure 1. An example Boolean network and associated truth
table.
doi:10.1371/journal.pone.0051006.g001
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In this case, we assume that there are multiple distribution sources,

which are generating the data. Each distribution has its own set of

parameters [19,25–27]. In the text that follows, we assume that we

have binary input data and we’ll use a distribution based on

Bernoulli mixtures to model it.

A Bernoulli mixture model is an extension of a simple Bernoulli

distribution. A Bernoulli distribution is used to model binary data,

where a random variable can have only two possible values, i.e.,

true or false. Suppose we have a dataset consisting of m vectors,

X~fxigm
i~1, where x[f0,1gn

. In the context of Boolean networks,

xij represents the state of node j in the ith data point. A single

univariate Bernoulli distribution has only one parameter, i.e., the

probability p that the value of the random variable is true. The

probability that the value of the variable is false is automatically

derived as 1{p. The maximum likelihood estimate of the

sufficient statistic, h is p, which is estimated using the mean value

of the samples of X . In case of multivariate data, the distribution

assumes that each feature is independent, and hence the form of

this distribution for a single n-dimensional random variable

x[f0,1gn
, given the parameters of the distribution is expressed

as [19]:

p(xDh)~ P
n

j~1
(pj)

xj (1{pj)
1{xj ð2Þ

The sufficient statistic for this distribution is the probability vector

p, which represents the probability of each feature assuming the

value true. p also represents the mean vector of the distribution,

i.e.,

E(x)~p ð3Þ

We can extend the concept of a multivariate Bernoulli distribution

to a mixture model composed of K Bernoulli distributions, each

mixture or component having its own set of parameters, i.e.,

hk~fpkg
K
k~1. Here, the probability of a single data point is given

by:

p(x)~
XK

k~1

pkp(xDhk)

where pk is the prior of the kth mixture. In this case we require K

n-dimensional probability vectors and K priors to fully describe a

Bernoulli mixture model, hence, the parameters involved in this

model are h~fpk; pkgK
k~1.

Interestingly, a single Bernoulli distribution assumes feature

independence, however, with multiple Bernoulli distributions, we

can capture the relationships that exist between the different

features. The covariance matrix of this distribution is no longer a

diagonal matrix, which enables us to analyze the correlations

between individual attributes. The mean of this distribution is

given by [19]:

E(x)~
XK

k~1

pkpk ð4Þ

and the covariance matrix is given by [19]:

cov(x)~
XK

k~1

pkfSkzpkpT
k g{E(x)E(x)T ð5Þ

where Sk~diagfpkj(1{pkj)g. The correlations between variables

can thus be computed from the covariance matrix.

Learning a Bernoulli mixture model from data
The Bernoulli mixtures representing the data are not unique

and the problem of identifying Bernoulli mixture model param-

eters is intractable [28]. However, we can use some optimization

criterion to iteratively estimate the mixture parameters. Here, we

will describe the well known optimization technique called

expectation maximization EM, introduced by Dempster et al.

[18] to learn the components of a mixture model. The objective

function maximized by EM is the log likelihood function given by:

L(HDX )~
Xm

i~1

log(
XK

k~1

pkp(xi Dhk)) ð6Þ

where m is the total number of data points. To optimize the above

objective function, EM associates a vector of hidden/latent

variables zi[f0,1gK
with each data point. zik is an indicator

variable with zik~1 if the kth mixture component generated the ith

example point and zero otherwise.

EM estimates the mixture parameters, iteratively, in two steps.

The first step is called the expectation step or E-step, which

estimates the expected value of the latent variables, keeping the

parameters, hk, of each distribution, fixed. The second step is

known as the maximization step or M-step, which re-estimates the

parameters hk, assuming that the values of the hidden variable, z,

are fixed.

The E-step for a Bernoulli mixture model is given by:

E½zik DX ,H�~ pkp(xi Dhk)

PK
k~1

pkp(xi Dhk)

ð7Þ

(Vi,1ƒiƒm,Vk,1ƒkƒK). Here, the expression for p(xi Dhk) is

given by (2).

The M-step updates the model parameters h~fpk,pkg
K
k~1 as:

pk~
1

m

Xm

i~1

zik ð8Þ

pk~

Pm
i~1 zikxiPm

i~1 zik

ð9Þ

We can use Laplacian priors to get smooth estimates for the

probabilities:

pk~
1z

Pm
i~1 zikxi

2z
Pm

i~1 zik

(Vk,1ƒkƒK) ð10Þ

We use the regularized version of M-Step given by [29]:

pk~

Pm
i~1 zik(1zc ln zik)xiPm

i~1 zik(1zc ln zik)
ð11Þ

where c is the regularization constant. To start the EM algorithm

we initialize the probabilities with random values and input a large

K value so that some mixtures/components are automatically

annihilated. Also, we use the Laplacian prior to smooth the

Reverse Engineering Boolean Networks
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probability estimates, hence, the probability values are calculated

as below:

pk~
1z

Pm
i~1 zik(1zc ln zik)xi

2z
Pm

i~1 zik(1zc ln zik)
ð12Þ

Although EM is a heuristic based method but due to this

regularization term for a particular value of K , we generally end

up with the same parameters of the Bernoulli mixture models even

if different initial values of probabilities are used. In addition to

using the regularized version of EM algorithm, we also used the

training set accuracy as a criterion for selecting the value of the

parameter K . This criterion is discussed later.

Extracting rules from data using a Bernoulli mixture
model

We now describe a general framework for converting a

probabilistic system based on Bernoulli mixtures into a rule based

system. We use this framework to extract Boolean rules from

Bernoulli mixtures, which model raw data. Such a method helps

us understand the inter-relations, which exist between the

individual nodes of a Boolean network. It is also a simple method

for detecting causal elements or parents of a given node in the

network. The main steps of our algorithm are outlined in

Algorithm 1.

Preprocessing Raw Input Data. The raw data available to

us for generating a Boolean network comes in the form of a time

series of Q simulations, each simulation consisting of a T|n
matrix of binary values. Each row represents the state of all nodes

of the network at time step t. We pre-process the data, by

considering each node as a target/output node and associating

with it a corresponding input matrix from the rest of the nodes.

Each row of the matrix corresponds to an input (at time step t{1)

to the value of the target node at time t. The maximum order of

the input matrix is thus, Q(T{1)|(n{1), however, we reduce

the size of this input matrix. As all simulations result in stable

values, we remove duplicate attractor points from our data. Also, it

should be noted that we used all stable and unstable values to

generate the Boolean rules from data. Our algorithm is limited to

removing point attractors and does not detect cycle attractors.

Once we pre-process the raw input data and extract the input

matrix, we have an input matrix associated with the output values

of a node j. Node j has two possible output/target values, i.e., 0 or

1. Each output has an input vector associated with it. We partition

the input rows into two parts, one set of rows associated with

output 0 and one set of rows associated with output 1.

Concept of Main Vectors and Rule Generation From

Bernoulli Mixtures. After pre-processing data for node j, we

have input data points associated with 0 and 1 output values of

node j. We generate Bernoulli mixtures from each of the two sets

of input vectors separately, so that we end up with mixtures M
0
j

and Mj for the corresponding 0 and 1 output values. Now we

illustrate how these mixtures can be used for generating Boolean

rules. Consider a single mixture/cluster, defined using the

probability vector p. Let us define the notion of a main vector

v[f0,1,wgn
, extracted from a probability vector p. Here, w is a

don’t care value. The values of probability higher than a certain

threshold a are set to binary true and the values below (1{a) are

set to false. Any other value around 0.5 is set to a don’t care value.

The components of main vector are given by:

vj~

1 if pjwa

0 if pjv1{a

w otherwise

8><
>: ð13Þ

If we make a~0:5, (and convert the v to ƒ) then we don’t have

any don’t care values in the main vector and v is purely a binary

vector, v[f0,1gn
. The main vectors represent areas of high data

density on the corners of an n{cube. A feature is a literal and an

individual corner can be viewed as a conjunction of literals.

Together the set, of corners, represents a set of logical rules

connected together by the logical ‘OR’ relation, hence, giving us

Algorithm 1: The ReBMM Algorithm

1. For each node/variable j in the dataset repeat the following:

(a) Preprocess raw input data: Build the training data by using variable j as the target/class and the values of the rest of variables as input data. Leave only one
point attractor and omit the rest of repeated point attractors

(b) Repeat for different values of k, the total number of mixtures

i. Partition the data into two matrices. One associated with 0 output value and the other associated with 1 output value

ii. Generate k mixtures M ’j and Mj for the corresponding 0 and 1 output values

iii. Generate the set of main vectors V’j and vj from both M ’j and Mj , respectively

iv. Select the parent nodes from the main vectors

v. Simplify a rule

vi. Generate two Boolean rules from 0 and 1 class labels

vii. Check the training accuracy for both classes and output the rule with maximum training accuracy

(c) Select the rule, which has maximum training accuracy, out of all the rules generated from different values of k

doi:10.1371/journal.pone.0051006.t001

Figure 2. Rule generation: an example with two mixtures [32].
p1 and p2 are probability vectors thresholded to main vectors v1 and v2,
which in turn are mapped onto the corners of a hypercube. A rule is
automatically derived from the main vectors and is shown in the box.
doi:10.1371/journal.pone.0051006.g002
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the disjunctive normal form of a rule showing the interrelation-

ships between different features. Hence, we can transform the

Bernoulli mixture model into main vectors, from which we can

generate a logical rule. From one mixture we can derive a rule

involving conjuncts of literals and the total number of mixtures

determines the total terms in the disjunctive normal form.

Figure 2 illustrates an example of rule mining using the notion

of main vectors in f0,1,wg3
. There are two mixtures/clusters and

hence two corresponding main vectors, which represent the

corners of high data density of a 3-cube. The corresponding

Boolean rules are also shown in the figure. Features having a don’t

care value don’t form part of a rule and it can be seen from the

figure that a don’t care value enables us to represent multiple

corners of the hypercube simultaneously, for example, (1,w,0)
represents both the corners (1,0,0) and (1,1,0)

Selecting the Parent Nodes. For one target node, we

consider all the possible nodes in the Boolean network (except

the target) as the input nodes. Here, we have to find the causal

elements of the target node and some strategy has to be adopted.

Some nodes automatically get discarded if they are assigned a

don’t care value in the main vector. We can further analyze to see

which other nodes can be eliminated, leaving only the true parents

of a node in the corresponding Boolean rule. If a feature value has

no variation in all the main vectors, associated with all the possible

output values of node j, then we can discard that feature from a

rule, as it does not contribute any discrimination power towards a

rule. As an example, let’s refer to Figure 3. Here, as the variance in

feature 2 values is zero, it has no discriminatory power to decide

between the two output values and hence, we can discard it when

generating the final set of rules.

Rule Simplification. After the unnecessary literals/parent

nodes are eliminated from a rule, we simplify the rule. As an

example consider the rule (A AND B) or A. This rule is equivalent

to A. Hence, we compare every conjunct in the disjunctive normal

form with every other conjunct and simplify the rule, wherever

applicable.

Computing Training Accuracy Rate. After learning Ber-

noulli mixtures from input data for one node, each mixture is

converted to its corresponding main vector. We learn mixtures for

each value ‘0’ and ‘1’ of the target output values separately. It

should be noted here that we generate a separate set of rules for

both target labels. Ideally, the rules generated for the zero class

should be a negation of the rules generated for the one class label.

However, for real datasets it is not the case as we are generating

the mixtures from positive and negative data points independently.

Here, some strategy is required for selecting the best set of rules

and it can be done by comparing a predicted rule’s accuracy

against the data comprising the training set. Suppose for one rule,

l’ represents the total parents in a predicted rule. Ideally, the

training set should have 2l’, set of input combination values with

corresponding output values. However, it is unlikely that all such

data points are present in the training set. Also, many combina-

tions are repeated several times. In this case, we compute the error

rate of a rule from the training set by counting the fraction of

incorrect predictions, for each unique combination of input data

values, present in the training dataset. The expression is given by:

etrainingSet~
1

unique x[f0,1gl’

X
x[f0,1gl’

f (x)+f ’(x)

mx
ð14Þ

Here, + represents the XOR operation, f (x) represents the actual

output value (from data) corresponding to input x, f ’(x) represents

the output of the predicted rule for a given input x and mx is the

total number of training points whose value is x. The rule with

minimum training error is then chosen as the predicted rule.

Selecting K, the Number of Mixtures to Use. As

mentioned earlier, one of the parameters of our model is K , the

total number of mixtures. We select the optimum value of K for a

Figure 3. Generation of rules and feature selection [32]. The first
arrow indicates the mapping of probability vectors to main vectors and
the second arrow shows the elimination of some features which have
zero variance. The boxes on the extreme right contain the derived rule.
The first rule is a negation as it is derived from target values equal to
zero.
doi:10.1371/journal.pone.0051006.g003

Table 2. Comparison of training error vs. actual error of a rule in model selection for different K values.

noise = 0 noise = 0.1 noise = 0.3 noise = 0.4

selected K~7 selected K~3 selected K~5 selected K~9

K etrainingSet eactual etrainingSet eactual etrainingSet eactual etrainingSet eactual

1 0.12 0.41 0.17 0.28 0.36 0.51 0.26 0.29

3 0.05 0.26 0.03 0.22 0.34 0.62 0.29 0.29

5 0.16 0.28 0.03 0.25 0.23 0.33 0.25 0.28

7 0.04 0.24 0.03 0.22 0.23 0.33 0.32 0.37

9 0.12 0.27 0.07 0.25 0.25 0.29 0.24 0.33

This table indicates the error of a rule as obtained from the training data and the corresponding actual state transition error for different noise levels and different values
of K , where K is the total mixtures in a Bernoulli mixture model. If lower training error also corresponds to lower actual rule error then training error can be taken as a
good measure to assess the error of a rule and hence it can be used as a criterion for selecting K . However, low training error corresponding to high rule error indicates
over fitting. The results are shown for the 10 nodes network, for node J with indegree 9. The value of K for which the training error is minimum is chosen as the final
value of this parameter. The lowest error is highlighted for each column. The strategy works quite well for low noise levels and reasonably well for higher noise levels.
The plot for noise levels 0 and 0.4 is also illustrated in Figure 4.
doi:10.1371/journal.pone.0051006.t002
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mixture model by starting with a very large value of K and letting

the regularized version of EM, converge to an optimum number of

mixtures. The regularization automatically eliminates some

mixtures from the model. The best value of K is the one for

which a rule has a minimum training set error (as given by 14).

For a single value of K we might end up with less than K

clusters as the regularized EM algorithm looks for mixtures with

an optimum cross entropy value and pushes the individual

probabilities in a mixture towards 1 and 0. If we repeat the

experiments with different K values, then each value might

generate a different rule from data. In this case we have found that

the training set error is a suitable measure for selecting the best

rule. In 14, instead of simply counting the number of misclassified

points by a rule, we count the number of unique points that are

misclassified and weight them according to their proportion in

data. This gives us a measure for generally assessing how good a

rule fits the data. In case of very noisy data, this measure can lead

to over-fitting of data, as the rule will also start fitting the noise and

spurious observations. However, the regularized version of EM

should be able to counter this by looking for probability vectors

that are closer to the corners of the hypercube, rather than at the

edges, i.e., more towards 0 and 1 rather than towards 0.5. Later in

the results section, we illustrate different values of training set error

for a given rule and the corresponding actual rule error for

different K values (see Table 2 and Figure 4). The observations

show that the training set error can be used as a good indicator of

how well a rule explains the data and hence it can be taken as a

criterion for model selection.

It should be noted here that this problem is a little different from

a a typical machine learning problem, where we divide the data

into training, validation and test sets. In our current scenario, we

are required to output a rule for a target node when given the

input data. The actual target rule is not used anywhere during the

rule generation phase.

Complexity of ReBMM. Here is an analysis of the

complexity of ReBMM algorithm.

N EM algorithm for one rule: O(InmK)

Here, we are assuming that we have n nodes in the network and

K Bernoulli mixtures, generated from m data points. I is the total

iterations of EM algorithm.

N Selection of parent nodes: O(Kn)

N Rule simplification: O(K2n)

The K2 term is involved as every conjunct in a rule is compared

with every other conjunct in the rule.

Figure 4. Model selection strategy adopted for choosing the best value of K using the training set error as a criterion for selection.
This figure is a plot of values shown in Table 2. Here the training error along with the state transition error for different K values is plotted for noise
levels 0 and 0.4. The rules were generated for node J (indegree 9) of the 10 node network. We can see that generally, a higher training set error
corresponds to a higher state transition error and vice versa.
doi:10.1371/journal.pone.0051006.g004

Figure 5. Network of 3 and 5 nodes.
doi:10.1371/journal.pone.0051006.g005
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N Training set accuracy rate: O(Knm).

N Generating a single rule: O(InmKzK2n)~O(InmK)

as generally Kvvm. The above expression is the sum of the

first 4 items.

N Reverse engineering an entire network of n nodes: O(In2mK)

N Overall complexity: O(In2mKt)

t is the number of times the simulations are repeated for model

selection (for parameter K ).

From this analysis we can see that time complexity of ReBMM

is quadratic in the total number of nodes of the network and linear

in the total number of input data points. Generally, we run EM for

200 iterations and normally the value of K is also very small, i.e.,

less than 20. The efficiency of the algorithm is, hence, mainly

affected by the total number of data points and the total number of

nodes in the network.

Evaluation of the Generated Boolean Network
In order to evaluate the performance of a method that reverse

engineers a Boolean network, an assessment criterion is required.

Researchers have suggested various measures, some based on the

correct detection of parents and some based on the correct

generation of truth tables. Popular measures include precision,

recall and state transition error. All of these error measures have

their strengths and weaknesses. We used all the three measures to

evaluate our generated network and we discuss them next. Here,

we are assuming that Pj is the set of parents/variables involved in

the actual rule for node j, and P0j are the parents found by the

reverse engineering method. Also, f (Pj) represents the actual rule

governing the behavior of node j and P 0j ) is the predicted rule

against node j.
State Transition Error. The state transition error e is

computed by generating truth tables of both the actual rule and

the predicted rule for a node in the network and then averaging it

over all nodes in the network. In the challenge launched on

causality, regarding the correct detection of a Boolean network,

the challenge organizers suggested the same error measure for

assessing different reverse engineering techniques. Formally, we

can define the state transition error for the jth node, whose actual

Boolean rule is given by f (:) and the predicted rule is f ’(:), as:

Figure 6. Evaluation of the network with varying indegrees using ReBMM. Figure A is the noise level vs. state transition error, Figure B is a
plot of noise level vs. recall and Figure C indicates the noise level vs. precision. Noise level is the standard deviation s of Gaussian distribution with
zero mean. In Figure D different evaluation measures are plotted for different indegrees for 30 simulations and noise level 0.1.
doi:10.1371/journal.pone.0051006.g006

Table 3. Network with 10 nodes, having varying indegrees.

RULES

A = B

B = not A

C = A OR not B

D = (A AND not B) OR (C)

E = (A AND B) OR (not C AND D)

F = (A AND not B) OR (C AND not D OR E)

G = (A AND not B) OR (C AND not D OR not E) OR F

H = (not A OR not B) AND (not C AND D AND not E) OR (F AND G)

I = (not A OR not B OR C) AND (not D AND not E) OR (F AND G OR H)

J = (not A OR not B OR C OR D) AND (E AND not F ) OR (G AND H OR I )

We used this network to generate data with different noise levels and
reconstructed a Boolean network from this synthesized data. Precision, recall
and state transition error for the generated network were measured using this
network as the reference system.
doi:10.1371/journal.pone.0051006.t003
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x[f0,1gd

f (x)+f ’(x) ð15Þ

Here, + denotes the XOR operator. Also, d~jPj|P
0
j j, the total

number of variables involved in both rules. At a first glance, the

state transition errors seems like an appropriate choice for

measuring the quality of an inferred network, e.g., consider two

rules:

Actual rule R1 : A~B

Predicted rule R
0

1 : A~(B AND C)OR(B)

The above two rules are equivalent, even though the predicted

rule involves a second variable C. A has the same truth tables for

both cases, leading to zero state transition error. However,

consider the following example:

Actual rule R2 : A~C OR D

Predicted rule R
0

2 : A~B AND(C OR D)

If B is a constant in the network, whose value is set to 1, then the

two rules are equivalent. However, the state transition error is 5/8.

Precision and Recall. Precision Cj and Recall Sj for the jth

node are defined as:

Cj~
jPj\P

0
j j

jP0j j
ð16Þ

Sj~
jPj\P

0
j j

jPj j
ð17Þ

Figure 7. Evaluation of the network with varying indegrees using REVEAL. Figure A is the noise level vs. state transition error, Figure B is a
plot of noise level vs. recall and Figure C indicates the noise level vs. precision. Noise level is the standard deviation s of Gaussian distribution with
zero mean. In Figure D different evaluation measures are plotted for different indegrees for noise level 0.1 and indegree l~4. All experiments were
carried out using 10 simulations.
doi:10.1371/journal.pone.0051006.g007

Table 5 Results for different methods on the SIGNET dataset.

Method Error Recall Precision Time

ReBMM 0.0210 0.9283 0.9283 1 hr, 16 m

REVEAL 0.0233 0.9442 0.9380 2 hr, 41 m

Search 0.0174 0.9132 0.9767 1 hr, 36 m

We ran three different methods, i.e., ReBMM, REVEAL and Akutsu’s search
method to reconstruct the SIGNET network. We can see that ReBMM takes the
least amount of running time as compared to other methods. The state
transition error is comparable for all three methods, however, precision is the
highest for the search method.
doi:10.1371/journal.pone.0051006.t005

Table 4. Results for different number of simulations of
SIGNET network.

No. Simulations Error Recall Precision

1. 50 .06 .79 .83

2. 100 .03 .90 .95

3. 300 .02 .93 .93

4. 500 .01 .94 .92

The table shows the state transition error, precision and recall for the generated
network using ReBMM. We can see that increasing the number of simulations
leads to a more accurate reconstruction of the network. The state transition
error reduces to only 1% for 500 simulations and precision and recall are above
90%.
doi:10.1371/journal.pone.0051006.t004
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Informally, precision computes the fraction of variables in an

inferred rule, which are also present in the original rule and recall

(also called sensitivity) measures the fraction of parents of node j
that are correctly detected by an algorithm. We can calculate the

average of precision and recall for all the nodes to compute an

overall accuracy measure for an inferred network. The two error

measures are appropriate for evaluating the network structure

identified by an algorithm. The limitation associated with these

accuracy measures can be seen from the two rules R1 and R’1.

Here, the two rules are equivalent, however, precision is 1/2 and

recall is 1.

Results

This section presents the results of simulation of ReBMM on

synthetic as well as real life datasets. The generated networks were

evaluated using state transition error, precision and recall

measures. The software used for these simulations was imple-

mented using Matlab and is available upon request. This software

generates the rules for individual nodes in the network and its state

transition error is computed using the code provided by the

organizer of causality challenge, Isabelle Guyon [23]. The code is

available at http://www.causality.inf.ethz.ch/pot-luck.php. We

also modified this code to compute precision and recall for the

networks.

Simulated network of 3 and 5 nodes
In order to evaluate the performance of ReBMM we

constructed a very simple network of three nodes (see Figure 5)

and generated synthetic data synchronously from this network by

choosing 3 initial unique states. Even though this network is

extremely simple, it covers 3 possible logical relations involving

logical AND, logical OR and XOR relationships. ReBMM allows

perfect reconstruction of this network, which shows that it can

extract linear (AND, OR) as well as non-linear relations (XOR).

After success with a 3 node network, we increased the number

of nodes in the network to 5. The network is shown in Figure 5.

Here, node B has an indegree of 4 and nodes D and E have

indegrees of 3. For this case also, ReBMM correctly identified the

given network with 0% error rate. All rules were correctly

identified, leading to zero state transition error and precision and

recall of the network being 100%.

Network with 10 nodes and varying indegrees
The effectiveness of ReBMM can be assessed by evaluating its

performance by varying the indegrees of different nodes in the

actual Boolean network. We took the network of nodes, generated

from the logical rules shown in Table 2. Here we have different

rules for each node and the indegree, of the nodes in the network,

varies from 1 to 9. From this network we generated time series

data by randomly taking different initial points. Experiments were

repeated for 5,10 and 30 simulations, each simulation having 15

time steps each, allowing the network to reach a stable cycle. In

order to simulate real life data we also added different noise levels

to this data by generating random values from a Gaussian

distribution with mean zero and varying standard deviations and

then thresholding to the nearest 0 or 1 value. The different

evaluation measures for different number of simulations are shown

in Figure 6. The displayed results are an average over 10 runs.

We can see that for low noise levels, as the number of

simulations is increased, the state transition error decreases and

Figure 8. Comparison of REVEAL and ReBMM using different measures. Figure A compares noise vs. state transition error, Figure B is a plot
of noise level vs. recall for the two methods and Figure C indicates the noise level vs. precision. Noise level is the standard deviation s of Gaussian
distribution with zero mean. The total simulations in all experiments is 5 and the indegree for REVEAL is 4.
doi:10.1371/journal.pone.0051006.g008
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the precision and recall increase, indicating more accurate

detection of parent nodes. With increase in noise levels, the

precision of 30 simulations deteriorates significantly as compared

to 5 and 10 simulations. More noise means more inaccuracies in

data, leading to poor performance. Figure 6 (panel D) shows the

performance of individual nodes in the network for 30 simulations

and noise level 0.1. For lower indegrees, the state transition error is

low and as expected, it is a little higher for higher indegrees. It

does not vary much for indegrees other than 6, for which it is quite

low. On the other hand, precision and recall exhibit a different

behavior. The precision and recall for indegree 6, i.e., node G, are

quite low because of the nature of this node’s corresponding rule.

When the truth table for this rule is formed the output column has

a majority of 86% ones. Depending upon the initial state of a

simulation, our method predicts the rule ‘G~1’ in many cases,

leading to zero recall and zero precision. On the other hand the

state transition error of this node is low, indicating that it fits the

data quite well.

Figure 7 shows the performance of REVEAL on the same

network. REVEAL seems to exhibit the same type of behavior as

ReBMM, with precision deteriorating significantly for l~4, at

high noise levels. Figure 8 compares REBMM and REVEAL

(l = 4) for different noise levels. We can see that the performance of

REVEAL is significantly better in terms of state transition error,

even for higher noise levels. However, the recall for ReBMM is

higher for high noise levels and precision is almost the same. This

shows that a method like REVEAL that conducts a brute force

search over the space of all possible rules is a better choice when

the data is clean and the indegrees of nodes in the network are

small. However, an optimization technique like ReBMM performs

better in case of noisy data in terms of accurate detection of parent

nodes.

In Table 2, we illustrate our model selection strategy for

choosing K for the network of 10 nodes. As mentioned earlier, we

need a scheme for selecting an optimum value of K , the number of

mixtures to use, when generating a rule. We generate rules for

different K values and assess them using training set error as given

by 14. The value of K for which the training set error is minimum

is chosen for rule extraction. In case two values of K correspond to

the same training error, we pick the smaller of the two. Table 2

shows the training set error of different rules, along with their

corresponding actual state transition error (given by 15) for various

noise levels and different K values. The experiments of this table

were performed on the node with the highest indegree, i.e., node J

with indegree 9. The best error value in a column has also been

highlighted. We can see that generally, a low value of training set

error is a good indicator of a more accurate rule for clean data

(noise = 0) and also when some noise is present in the data (noise

ƒ0:3). For a higher distortion of data (noise w0:4), a rule starts to

overfit the data but this measure still works reasonably well. The

results of Table 2 are also plotted in Figure 4 for noise levels 0 and

0.4. The plot clearly indicates a positive correlation between

training set error and actual error for different K values,

confirming that our model selection strategy is sound.

Simulations for SIGNET Dataset
The SIGNET dataset was launched in conjunction with the

causality challenge [21,22] and is part of the workbench’s dataset.

The data describes interactions between 43 Boolean variables in a

plant signaling network. It consists of pseudo dynamic simulations

of 43 Boolean rules. The initial vector for each simulation was

generated randomly and the rest of the vectors in the time series

were derived using an asynchronous update scheme. Each

simulation is represented by a 10|43 matrix. The goal is to

recover the original set of rules, which generated this dataset.

Table 4 shows the results on the SIGNET dataset for different

number of simulations. As the number of simulations increases, the

state transition error decreases and the precision and recall

increase. Again this result is expected as our underlying

probabilistic model becomes more and more accurate, with more

incoming data.

Comparison of Results
In order to compare the performance of ReBMM with other

methods, we ran our simulations on SIGNET dataset using two

other algorithms, i.e., REVEAL and brute force search method as

proposed by Akutsu et al. [30]. The results are summarized in

Table 5. All experiments were carried out on a DELL 520 laptop

with intel core 2 duo 1.66 Ghz processor, and 1.5 GB RAM. We

can see that the state transition error is below 0.02 and precision

and recall are above 90% for all methods, however, there is a big

difference in time to accomplish this. For REVEAL, we restricted

the parameter, l, the number of parents of each node to 3. It

should be noted here that 58% nodes in this network have an

indegree of 1. REVEAL easily infers the rules correctly as we have

restricted the indegree to a maximum of 3. However, for nodes

with larger actual indegrees, REVEAL will not be able to generate

the rules correctly. The last row of Table 5 illustrates the result of

running Akutsu et al.’s brute force search to determine Boolean

rules, governing an underlying Boolean network. We searched for

rules connected together by simple gates ‘AND’, ‘OR’ and ‘NOT’,

and again restricted the indegree of all nodes to a maximum of 3.

In case of Akutsu’s brute force search, it takes almost one minute

to run it for l = 2. However, increasing the value of l to 3, increases

the time to around 1.5 hrs, as the complexity of this method also

involves a factor of O(22l

). We cannot run this algorithm for

network of nodes with higher indegrees in real time. On the other

hand, in case of ReBMM, the method has no requirement for the

assumption of indegree of a node, and hence can work for

networks with higher connections also.

Reconstruction of a Boolean Network from Yeast Cell
Microarray Dataset

Our last set of experiments were carried out on the cell cycle

transcriptional network of budding yeast as suggested by Orlando

et al. [31]. We reconstructed a Boolean network from the

microarray data from alpha, cdc15 and cdc28 experiments

conducted by Spellman et al. and Cho et al. [32,33]. The data

was binarized using the same method as Muacher et al., via our

own implementation of k-means algorithm, with the total centers

being set to 2 [17]. Similar to their experiments we also added 16

randomly selected genes, along with the 16 actual genes of the

biological network and ran ReBMM to determine the interactions

of the Boolean network. We also repeated the experiments 25

times to assess our method, every time taking a different set of

randomly selected genes. To compute precision and recall we used

as reference, the published network of 16 genes as given by

Orlando et al. and Pramila et al. [31,34] and it is shown in Figure 9.

Figures 10, 11 and 12 show the average accuracy of the results

of reconstructing the network by using different values of the

threshold a, over 25 different runs of the experiment. We restricted

the indegree of each node to a maximum value and repeated the

experiments for different values of a. For all the simulations, the

reconstructed network has low precision but reasonably good

recall. This observation is similar to that of Maucher et al., who

also report low precision values on the same network using
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correlation. For real life data, values of aw0:8 reconstruct a

network with low recall and precision and a set to 0.5 or 0.6 give

better results. As the indegree increases, the recall also increases.

The precision on the other hand does not vary much.

To compare ReBMM’s performance, we also reconstructed the

same network using REVEAL and the correlation method. Figure

C of Figures 10, 11 and 12 shows the performance of REVEAL,

correlation method and ReBMM. The indegree of REVEAL was

varied from 1 to 6. We can see that all methods,i.e., ReBMM,

correlation and REVEAL have higher recall as compared to

precision. This is of course under the assumption that our

reference network represents the true biological situation. Inter-

estingly, all three methods point to the presence of more network

connections, as compared to the true network. The comparsion

results show that the overall performance of ReBMM is better

than correlation measure for alpha and cdc15 experiments. For

cdc28 experiments, correlation method outperforms the other two

methods. Clearly, REVEAL has higher precision as compared to

both correlation and ReBMM but the recall is very low. However,

we found it unpractical to run REVEAL for indegrees higher than

6.

In Figure 9, we have drawn the interactions detected from one

sample run of ReBMM with alpha set to 0.6. Here we can see that

some of the dependencies, e.g., YOX1, FKH1, e.t.c. are correctly

Figure 10. Reconstruction of network for the cdc15 experiments of the yeast cell cycle microarray data. Figure A shows the recall
against maximum indegree for ReBMM for different threshold values, a. Figure B illustrates the plot for precision. The comparison of ReBMM,
correlation and REVEAL is displayed in Figure C. Clearly the performance of ReBMM is better than the other two methods in terms of precision.
REVEAL has the highest precision but the recall is very low.
doi:10.1371/journal.pone.0051006.g010

Figure 9. Transcription factor network of the yeast cell cycle
inferred by Orlando et al. and Pramila et al. Solid lines indicate
activating interactions and dashed lines indicate inhibitory interactions. The
transcription factors of the cell cycle time line are indicated by the gray blobs
(G1?S?G2/M). The interactions shown in red were correctly identified by
ReBMM and the interactions shown in blue were not identified.
doi:10.1371/journal.pone.0051006.g009
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identified. However, the parents for MBP1 and MCM1 could not

be detected correctly. ReBMM also infers interactions that are not

actually present in the reference network. Here our assumption is

that the reference network reflects the true biological situation,

which may not necessarily be true.

Comparison of Running Time
Figure 13 shows a comparison of running times of REVEAL

and ReBMM for a network of 32 nodes, where the rules for 16

genes were determined. The time taken for ReBMM is

independent of the assumed indegree of a node. On the other

hand REVEAL has to make
n

l

� �
subsets to determine the cross

entropies between variables. Similarly, all possible rule combina-

tions have to be tried out in order to determine the correct rule

that fits the given data. Hence, the running time of REVEAL

increases significantly with the increase in l. It should be noted

here that we have not stressed on optimizing the written code for

the implementation of the two methods. The time graph, hence,

does not depict the best running times of an efficient implemen-

tation of the reconstruction algorithms. It is only intended to

illustrate that there is a marked increase in running time of

REVEAL with the increase in the assumed indegree of nodes in

the network.

Discussion and Conclusions

In this paper we have introduced a novel, simple and intuitive

technique for reverse engineering a Boolean network from a

probabilistic model comprising Bernoulli mixtures. The salient

features of our method are:

1. We do not have to make an assumption about the number of

parents of a node, and hence the complexity of ReBMM is not

affected by varying the indegree of a node.

2. Changing the parameter K , the total number of mixtures, does

not reflect upon the number of parent nodes but determines

the number of conjuncts in a rule.

3. Unlike other methods, we do not have to try all combination of

Boolean functions to determine the logical rule. Here, the main

vector, derived from a Bernoulli mixture, determines the

Boolean rule in a natural and intuitive fashion.

4. The accuracy of ReBMM is comparable to that of other

conventional methods

5. The complexity of many conventional reverse engineering

techniques has an exponential term or a high degree

polynomial, involving the assumed number of parents, whereas

ReBMM involves a quadratic term, of the total number of

nodes in the network.

Figure 11. Reconstruction of network for the alpha experiments of the yeast cell cycle microarray data. Figure A shows the recall
against maximum indegree for ReBMM for different a values. Figure B illustrates the plot for precision. Figure C illustrates the comparison of ReBMM,
correlation and REVEAL. Clearly the performance of ReBMM is better than the other two methods in terms of recall.
doi:10.1371/journal.pone.0051006.g011
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The performance of ReBMM was evaluated using synthetic

datasets generated from an artificial set of rules and an actual plant

signaling network. In another set of experiments, real microarray

data from the yeast cell cycle experiments was also used. We found

that ReBMM is efficient and gives comparable results to other

traditional approaches like REVEAL and a later approach like the

correlation based method. ReBMM can easily reconstruct Boolean

networks with indegrees higher than 5. On the other hand,

REVEAL conducts a brute force search of all possible input node

combinations and all possible functions, which makes it imprac-

tical to be used in scenarios where the network size is large and the

indegree of a node is high. Apart from the computational

complexity, a major problem with REVEAL for higher indegree

nodes is that a large amount of data is required to estimate the

cross entropies between pairs of variables. With limited data, these

entropies cannot be computed reliably and can lead to the

incorrect detection of dependencies between the various nodes in

the network. In light of our experience we recommend using

REVEAL for only very small networks with limited indegrees and

where the data is clean and noise free. On the other hand

ReBMM can be used when we have larger networks with higher

indegrees.

In case of real life microarray data, the existing methods such as

ReBMM, correlation and REVEAL can act as a supplementary or

complementary methods to microarray analysis. These methods

Figure 12. Reconstruction of network for the cdc28 experiments of the yeast cell cycle microarray data. Figure A shows the recall
against maximum indegree for ReBMM for different a values. Figure B illustrates the plot for precision. The comparison of ReBMM, correlation and
REVEAL is displayed in Figure C. Here the performance of correlation is better than the rest of the methods.
doi:10.1371/journal.pone.0051006.g012

Figure 13. Comparison of running time of REVEAL and ReBMM.
ReBMM’s running time is independent of the maximum indegree of
nodes in the network. REVEAL’s running time increases markedly with
the increase in the assumed indegree.
doi:10.1371/journal.pone.0051006.g013
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may not have very high precision and recall values but still have

the potential to pin point some of the important gene interactions

from the data. It has also been pointed out by Lähdesmäki et al.

that if there are two genes, X and Y with similar expression

profiles and if gene X has peaks and troughs just before that of

gene Y , then all the afore mentioned methods would conclude

that gene X controls gene Y , which might not be true in the real

scenario. In such cases we need further data such as location data

and functional studies.

In this work we also found that the correlation method of

Maucher et al. is an efficient and effective method for computing

dependencies between nodes in the network. However, it is not

possible to find the exact rule governing a network using this

method. Also, the correlation method is restricted to detecting

parents of node whose rules are linear monotone functions. A

method like ReBMM can be used in conjunction with this method

to derive a complete Boolean network model.

As an extension to our work, we are looking at combining

ReBMM with correlation and entropy based methods for the

detection of parent nodes in the network and using Bernoulli

mixtures for determining the rules governing the target node. For

real experimental data like the yeast cell cycle microarray data,

there is still need for developing more robust mathematical

measures that can reliably detect the parent nodes when only a

limited number of observations of the time series are available.

Even though, Boolean networks are highly simplified models, they

can still capture many important details of an actual biological

network. We are also looking at extending this model to

probabilistic Boolean networks. ReBMM’s framework can lend

itself naturally to modeling probabilistic Boolean networks using

Bernoulli mixtures.
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