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Abstract

Diabetes mellitus is a major risk factor for chronic periodontitis. We investigated the effects of type 2 diabetes on the
subgingival plaque bacterial composition by applying culture-independent 16S rDNA sequencing to periodontal bacteria
isolated from four groups of volunteers: non-diabetic subjects without periodontitis, non-diabetic subjects with
periodontitis, type 2 diabetic patients without periodontitis, and type 2 diabetic patients with periodontitis. A total of
71,373 high-quality sequences were produced from the V1-V3 region of 16S rDNA genes by 454 pyrosequencing. Those 16S
rDNA sequences were classified into 16 phyla, 27 classes, 48 orders, 85 families, 126 genera, and 1141 species-level OTUs.
Comparing periodontally healthy samples with periodontitis samples identified 20 health-associated and 15 periodontitis-
associated OTUs. In the subjects with healthy periodontium, the abundances of three genera (Prevotella, Pseudomonas, and
Tannerella) and nine OTUs were significantly different between diabetic patients and their non-diabetic counterparts. In the
subjects carrying periodontitis, the abundances of three phyla (Actinobacteria, Proteobacteria, and Bacteriodetes), two genera
(Actinomyces and Aggregatibacter), and six OTUs were also significantly different between diabetics and non-diabetics. Our
results show that type 2 diabetes mellitus could alter the bacterial composition in the subgingival plaque.
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Introduction

Periodontitis is an inflammatory disorder, in which dental

plaque bacteria induce exacerbated host immune response that

destroys the gingival epithelium and alveolar bone, eventually

leading to loss of teeth [1]. It is well established that the bacterial

composition in periodontitis is different than that associated with

healthy periodontium ([2], [3]). For example, periodontitis

bacterial communities are more diverse than those in healthy

tissue [4], and the disease microbiome harbors significantly

enriched metabolic pathways adapted for oxygen-poor environ-

ments as well as lipid degradation pathways associated with known

virulence-related activities [5].

Chronic periodontitis is often associated with diabetic patients

with poor glycemic control ([6], [7], [8], [9], [10]). Diabetes

mellitus significantly contributes to the severity, prevalence, and

progression of periodontal disease ([11], [12], [13], [14]). Elevated

oxidative stress responses, inflammatory cytokines, and receptor

for advanced glycation end products (RAGE)-mediated damages

have been observed under diabetic conditions in response to

periodontal pathogens ([15], [16], [17], [18], [19], [20], [21] [22],

[23], [24]), illustrating that diabetes mellitus significantly increases

the host hyper-inflammatory response to periodontitis [14].

Besides affecting host immune response, diabetes mellitus also

changes the oral environment, which may result in a different

periodontal bacteria community than that in non-diabetic

conditions. For example, increased gingival crevicular fluid glucose

levels in diabetic patients [25] could provide an altered source of

nutrition affecting the growth of certain bacterial species [26].

However, the extent of such effects on the subgingival microbiota

composition still remains unclear ([14], [26]). Previous studies

were mainly based on traditional methods such as checkerboard

DNA-DNA hybridization and PCR to investigate the differences

of the selected subgingival bacteria in diabetics compared with

non-diabetics (e.g., [27], [28], [29], [30], [31], [32], [33], [34],

[35]). Instead of surveying the entire bacterial community, such

traditional methods mainly suffered from limited detection of a

small number of selected species [3]. For example, Field et al. [35]

recently compared subgingival plaque microbiota in different

backgrounds of periodontitis and diabetes mellitus, but their study
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was limited by the scope of quantitative PCR. They were only able

to evaluate three bacterial species (Aggregatibacter actinomycetemcomi-

tans, Fusobacterium nucleatum, and Porphyromonas gingivalis) in subgin-

gival plaque and found no significant differences of these bacteria

between type 2 diabetes mellitus patients and non-diabetic

controls.

The aim of the present study was to examine whether diabetes

mellitus might affect subgingival bacterial composition by high-

throughput 16S rDNA sequencing with the 454 pyrosequencing

technology [36], which has been widely adopted by numerous

human microbiome projects including several studies character-

izing the oral microbiome (e.g., [37], [38], [39], [40], [41], [42],

[43]). Our study design included non-diabetic subjects without

periodontitis (P2D2), non-diabetic subjects with periodontitis

(P+D2), type 2 diabetic patients without periodontitis (P2D+),

and type 2 diabetic patients with periodontitis (P+D+). The

comparisons of the P2D2 vs. P+D2 and P2D+ vs. P+D+ groups

were critical for discovering health-associated and periodontitis-

associated bacteria in both diabetes-negative and diabetes-positive

backgrounds, which were essential for understanding the interac-

tions between periodontitis and diabetes mellitus. Based on our

knowledge, our study is the first to apply 454 pyrosequencing to

the above four groups of subjects.

While this manuscript was being prepared, Casarin et al. [44]

reported a survey on the subgingival biodiversity in type 2 diabetic

subjects by 16S rDNA sequencing using the traditional cloning-

based Sanger sequencing method. Three important differences

exist between our study and that of Casarin et al. [44]. First,

Casarin et al. only included P+D+ and P+D2 in their study.

Second, Casarin et al. used paper points to collect subgingival

biofilm, whereas we used a curette as the sample collection

instrument. Paper points are generally limited to sampling the

flowing or loosely adherent plaque, while a curette can also collect

the more tightly-attached tooth or epithelium plaque ([45], [46]).

Third, we were able to achieve much deeper sequencing depth

with 454 pyrosequencing than that of the traditional Sanger

sequencing used by Casarin et al. Overall, our study presents a

distinct examination of the effects of diabetes mellitus on the

subgingival bacterial community.

Materials and Methods

Ethics statement
Human subjects participated in the study after they signed the

written informed consent in accordance with the study protocol

approved by the Ethics Committee of the Faculty of Medicine for

Human Studies, School & Hospital of Stomatology, Wuhan

University (protocol number 2011029).

Sample collection
Thirty-one Chinese subjects satisfied the inclusion criteria,

which required no usage of antibiotics or non-steroidal anti-

inflammatory drugs and no smoking in the three months prior to

the sampling. Those selected participants, between 30 and 65

years old, had at least 20 teeth without any clinical signs of oral

mucosal disease or root caries. None of them were either pregnant

or HIV positive. They had also not been previously treated with

any periodontal therapy or surgery. Table S1 shows all the clinical

parameters of the 31 participating subjects. Fisher’s exact test (p-

value = 0.88) and ANOVA test (p-value = 0.11) confirmed that no

gender or age bias, respectively, existed among the four subject

groups in this study. The sampling procedure was similar to what

was used in Paster et al. [47], as briefly described below. Subjects

with type 2 diabetes had been diagnosed for at least one year with

HbA1c $6.5%, fasting plasma glucose test $7.0 mmol/L, or

OGTT 2 hour glucose test $11.1 mmol/L. Periodontitis was

defined by the following criteria: at least 30% of sites with probing

depth and attachment loss, and more than four with probing depth

$4 mm and clinical attachment loss $2 mm. Subgingival plaque

samples were extracted from the four deepest sites of the molars in

the participants using sterile Gracey curettes and transferred into

200 mL of phosphate-buffered saline (PBS) buffer for immediate

freezing at 270uC.

DNA extraction and sequencing
Total DNA was isolated with a Qiagen DNA MiniAmp kit

(Qiagen, Valencia, CA, USA) following the manufacturer’s

instruction on the tissue protocol. The universal primers targeting

the 16S rDNA V1–V3 hypervariable region were used for PCR

amplification: forward primer (8F, 59-AGAGTTT-

GATCCTGGCTCAG-39) and reverse primer (533R, 59-

TTACCGCGGCTGCTGGCAC-39). The V1–V3 region was

chosen because it could provide good detection of the oral

microbiome [48]. The PCR primers were also tagged by unique

barcodes for multiplex sequencing. PCR amplification was

performed in the 20 mL reactions with 2.5 mM dNTPs, 5 mM

forward and reverse primers, 20–50 ng template DNA, 16
polymerase buffer, and Platinum Taq DNA Polymerase High-

Fidelity enzyme 0.4 U (Life Technologies, USA). After initial

denaturation at 95uC for 4 minutes, 25 cycles of PCR were

performed (denaturation at 95uC for 30 s, annealing at 55uC for

30 s, and extension at 72uC for 30 s). PCR amplicons were

purified using AxyPrep DNA Gel Extraction kit (Axygen

Biosciences, USA) according to the manufacturer’s protocol,and

visualized by electrophoresis in 1% agarose gels. Purified DNA

samples were diluted in 30 uL 16 TE; an equal volume 26
PicoGreen working solution was added for a total reaction volume

of 60 mL in a minicell cuvette. Fluorescence was measured on a

Turner Biosystems TBS-380 Fluorometer using the 465–485/

515–575-nm excitation/emission filter pair. Following quantifica-

tion, purified amplicons were combined in equimolar ratios into a

single tube. After preparing amplicons using the emPCR Kit II

(according to the manufacturer’s protocol), pyrosequencing was

carried out on a 454 Life Sciences Genome Sequencer FLX

Titanium instrument (Roche, USA). All of the sequences and

associated metadata were deposited to the NCBI Sequence Read

Archive [49] under the accession number SRA062091.

Sequence analysis
The Mothur software (version 1.23.0, [50]) was applied to

process the sequence reads as previously described [51]. Briefly,

sequence reads were deconvoluted into individual samples based

on perfect match to the barcode sequences. Primers and barcodes

were trimmed from each read and the trimmed sequences shorter

than 200 bp were discarded. Low-quality and chimeric sequences

were removed with default Mothur parameters. The remaining

high-quality sequences were binned into species-level operational

taxonomic units (OTUs), which is commonly defined by the level

of 16S rDNA sequence similarity (i.e., $97% for a ‘species’-level

phylotype, [52]) based on the average neighbor algorithm in the

Mothur package. As reported previously, the resulting number of

OTUs may represent an inflated number of true species ([53],

[54]). Therefore, during our manual process of species-level

classification, we also merged some OTUs of interest that matched

to the same reference database sequences with high confidence

(e.g., $97% identity), which is similar to other published species-

level classification methods (e.g., [55]). To avoid bias caused by the

different sequencing depths of samples, we followed the normal-
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ization procedure previously published in Hawlena et al [51].

Briefly, 1000 sequences were randomly selected without replace-

ment from each sample. This step of random sampling was

repeated 1000 times and averaged to get the mean size of each

OTU per normalized sample for statistical comparison. Taxo-

nomic classification (from phylum to genus level) of the sequence

reads was performed by the RDP Classifier (version 2.4, [56]) with

the default 0.8 confidence threshold. Classification of the selected

OTUs to the species level was achieved by BLASTing the OTU

sequences against the NCBI 16S rDNA collection [57], SILVA

database version 114 [58], and HOMD database version 12 [59]

with manual inspection of the alignment results (minimum

percentage of identity and coverage in the alignments as 97%

and 95%, respectively). UniFrac analysis and non-metric multidi-

mensional scaling (NMDS) were performed using the R packages

phyloseq [60] and vegan [61], respectively. Both Wilcoxon rank-sum

test and Fisher’s exact test were performed with customized scripts

that were implemented with the freely available R software

environment (http://www.r-project.org). Relative abundance of

each OTU was used in the statistical tests. In order to exclude rare

OTUs that might be associated with large random sampling

errors, only the OTUs with at least 0.5% relative abundance in

one or more of the sample groups (i.e., P2D2, P2D+, P+D2,

and P+D+) were tested for their differential abundance or

prevalence by the Wilcoxon rank-sum test and Fisher’s exact test,

respectively.

Results and Discussion

Taxonomic classification of 16S rDNA sequences
From 31 participating subjects, 71,393 high-quality 16S rDNA

sequences were obtained after filtering out low-quality, chimeric,

and non-bacterial sequences. The sequencing depth was similar

among different sample groups although a slightly smaller amount

of sequences were generated from the P+D2 group (25046357 in

P2D+, 26116216 in P2D2, 23616470 in P+D+, and

16626323 in P+D2). Compared to the 16S study by Casarin et

al. [44] in which 87.4 sequences per subject were generated using

Sanger sequencing, we achieved a much deeper sequencing depth

with the 454 pyrosequencing technology (i.e., 2,302 sequences per

subject on average). Of those high-quality sequences, 87.22%

could be classified into 126 genera, which belong to 16 phyla, 27

classes, 48 orders, and 85 families. The average percentage of

classified sequences at the genus level is 91.01%63.07% for

P2D+, 91.68%65.47% for P2D2, 87.32%67.31% for P+D+,

and 87.52%67.72% for P+D2. No obvious bias in the proportion

of unclassifiable sequences among different sample groups was

observed (p = 0.40 based on the ANOVA test). All the sequences

were clustered into 1,141 species-level OTUs based on their

shared sequence similarity.

Effects of periodontitis on subgingival plaque microbiota
compositions

The bacterial compositions at the community level in the

different periodontitis groups were compared by unweighted

UniFrac distance, which is commonly used in microbial ecology

for quantitatively measuring compositional differences among

microbial communities by calculating the length proportion of

unique branches to each sample-specific taxon in a phylogenetic

tree constructed from 16S rDNA sequences [62]. Figure 1 shows

that the samples in the periodontitis-positive groups (i.e., P+D2 or

P+D+) are well separated from those in the periodontitis-negative

groups (i.e., P2D2 or P2D+) based on the unweighted UniFrac

distances measured at the OTU level (Figures 1A and 1B),

reflecting that the bacterial compositions in periodontitis and

healthy samples were distinct. The significantly different bacterial

communities between the periodontitis-negative and periodontitis-

positive groups could also be confirmed by PERMANOVA test

(p,0.01). Similar to our results, several other high-throughput 16S

rDNA surveys also showed different subgingival bacterial compo-

sitions in non-diabetic subjects with periodontitis and healthy

controls ([4], [5], [47], [63], [64]). Additionally, our results further

show that compositional shifts in the subgingival plaque bacterial

community associated with periodontitis also exist in diabetic

patients.

Standard statistical methods (i.e., Wilcoxon rank-sum test for

relative abundance and Fisher’s exact test for prevalence) were

applied to pinpoint signature bacteria that were significantly

different between the periodontitis-positive and periodontitis-

negative samples. If the prevalence or relative abundances of the

signature OTUs were significantly higher in the periodontitis-

positive groups, the bacteria were designated as periodontitis-

associated. Otherwise, the bacteria were designated as health-

associated if they were significantly more abundant in periodon-

titis-negative groups. In total, 20 and 15 signature OTUs were

designated as health-associated and periodontitis-associated bac-

teria, respectively (Tables 1 and S2). Many of our designations

were consistent with previous studies ([47], [63], [64],[65], [66],

[67], [68], [69], [70], [71], [72]), such as periodontitis-associated

OTU0001 (Porphyromonas gingivalis), OTU0004 (genus of Leptotrich-

ia), OTU0010 (Tannerella forsythia), OTU0011 (Treponema denticola),

OTU2003 (Treponema medium), and OTU2006 (Prevotella intermedia),

as well as heath-associated OTU0003 (Corynebacterium matruchotii),

OTU0019 (Neisseria elongate), OTU0052 (Streptococcus infantis), and

OTU0161 (Capnocytophaga sputigena) ([47], [63], [69], [70], [71],

[73]). The reported roles of some other bacteria in periodontitis

are often unclear. In addition, 13 signature OTUs were not

classifiable at species or higher taxonomic levels (Table 1);

therefore we were unable to validate their designated associations

based on literature search. Such unclassified species might

represent novel bacteria previously unknown to be involved in

periodontitis.

From the diabetes-negative group, 20 species-level OTUs were

identified as signature bacteria differentiating the P+D2 from the

P2D2 samples. Similarly from the diabetes-positive group, 21

OTUs were identified as signature bacteria differentiating the

P+D+ from the P2D+ samples (Tables 1 and S2). Out of all the

signature OTUs, only six OTUs were shared in the above

diabetes-positive and diabetes-negative groups, 14 OTUs were

unique to the diabetes-negative group, and 15 OTUs were unique

to the diabetes-positive group. The six shared OTUs were

OTU0011 (Treponema denticola), OTU0052 (Streptococcus infantis),

OTU0343 (family of Prevotellaceae), OTU2002 (Streptococcus gordonii),

OTU2005 (Actinomyces naeslundii), and OTU2006 (Prevotella inter-

media). Except for OTU0343, all the shared OTUs were reported

previously as being associated with either periodontitis or healthy

periodontium ([5], [47], [63], [64], [65], [66], [67]). For example,

T. denticola is part of the ‘‘red complex’’ associated with

periodontitis ([64], [67]). OTU0343 could only be classified as

Prevotellaceae at the family level with high confidence. This OTU

was designated as periodontitis-associated bacteria since its relative

abundance was 3.15% in P+D2 compared to 0.069% in P2D2

samples (p-value = 0.028), and 0.99% in P+D+ compared to 0% in

P2D+ samples (p-value = 0.025). The six shared OTUs may

represent the core periodontal bacterial community that is

commonly involved in pathogenesis or prevention of periodontitis

regardless of diabetes status. The other 29 OTUs were identified

as health- or periodontitis-associated bacteria only in either the

Periodontitis Microbiome in Type 2 Diabetics
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Figure 1. Subgingival plaque bacterial community composition comparison. The figure shows the results of non-metric multidimensional
scaling (NMDS) applied to the unweighted UniFrac distances between different subsets of samples. The X- and Y-axes represent the first and second
NMDS dimensions, respectively. The label next to each data point indicates the sample name. (A) Among diabetes-negative samples, a PERMANOVA
test indicates significant (p,0.01) differences in the UniFrac distances according to the presence or absence of periodontitis. (B) A similar comparison
among diabetes-positive samples is also significant (p,0.01). (C) Among periodontitis-negative samples, there is no clear separation based on
diabetes status (p = 0.06). (D) In periodontitis-positive samples, however, significant differences do exist based on diabetes status (p,0.01).
doi:10.1371/journal.pone.0061516.g001

Table 1. Health-associated and periodontitis-associated OTUs.

Health-associated bacteria OTUs Periodontitis-associated bacteria OTUs

Significance uniquely identified in the
diabetes-negative background

OTU0003 Corynebacterium matruchotii OTU0016 family of
Propionibacteriaceae OTU0020 Prevotella loescheii OTU0025
genus of Aggregatibacter OTU0026 Selenomonas noxia
OTU0088 Cardiobacterium hominis OTU0094 Neisseria
flavescens OTU0096 Cardiobacterium valvarum OTU0102
family of Leptotrichiaceae OTU0127 genus of Leptotrichia
OTU0161 Capnocytophaga sputigena OTU2004
Porphyromonas sp.

OTU2001 Selenomonas sputigena OTU0507 family of
Prevotellaceae

Significance identified in the
both diabetes-positive and
diabetes-negative backgrounds

OTU0052 Streptococcus infantis OTU2002
Streptococcus gordonii OTU2005 Actinomyces naeslundii

OTU0011 Treponema denticola OTU2006 Prevotella
intermedia OTU0343 family of Prevotellaceae

Significance uniquely identified
in the diabetes-positive background

OTU0019 Neisseria elongate OTU0028 Rothia
dentocariosa OTU0194 genus of Veillonella
OTU0214 Haemophilus parainfluenzae
OTU0280 genus of Neisseria

OTU0001 Porphyromonas gingivalis OTU0004 genus
of Leptotrichia OTU2003 Treponema medium
OTU0009 order of Bacteroidales OTU0010 Tannerella
forsythia OTU0017 family of Synergistaceae
OTU0044 Porphyromonas endodontalis OTU0056
unclassified OTU0058 Filifactor alocis OTU0101
genus of Leptotrichia

All OTUs listed had significantly different abundances or prevalence between the healthy and periodontitis samples within the diabetes-negative group, diabetes-
positive group, or in both groups, as indicated by the three rows. The two columns indicate whether each OTU was more abundant or prevalent in periodontitis-
negative or periodontitis-positive samples.
doi:10.1371/journal.pone.0061516.t001
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diabetes-negative or the diabetes-positive group based on their

small p-values in the statistical tests. However, 24 of those 29

OTUs displayed consistently higher (or lower) prevalence or

abundance in periodontitis-negative samples compared to peri-

odontitis-positive samples in both diabetes-positive and diabetes-

negative groups, despite non-significant p-values in one of the

groups. If larger sample sizes were obtained, statistically significant

p-values could have potentially been achieved for those ‘‘unique’’

OTUs, leading to more observations of ‘‘shared’’ signature OTUs.

For example, OTU2003 (Treponema medium) was only identified as

periodontitis-associated in the diabetes-positive background. In the

diabetes-negative background, the p-value of this species was not

significant in the two-tailed Wilcoxon rank-sum test, but its relative

abundance was clearly higher in the P+D2 samples (3.21%) than

in the P2D2 samples (0.92%), indicating its association with

periodontitis (one-tailed test does show significance, p = 0.04). On

the contrary, five of those 29 signature OTUs did not follow the

same trend, prompting the possibility that ‘‘health-associated’’ or

‘‘periodontitis-associated’’ bacteria might need to be defined in the

context of diabetes. For example, the relative abundance of

OTU0020 (Prevotella loescheii) in P+D2 and P2D2 samples was

0.33% and 5.05%, respectively, highly enriched in the healthy

periodontium samples in the diabetes-negative background

(p = 0.004). However, its relative abundance in P+D+ and

P2D+ samples was 1.16% and 0.33%, respectively, displaying a

trend of enrichment in the periodontitis samples in the diabetes-

positive background.

Effects of diabetes mellitus on subgingival plaque
microbiota compositions

We also compared P2D2 with P2D+ as well as P+D2 with

P+D+ to investigate the effects of diabetes mellitus on the

subgingival plaque microbiota in subjects with or without

periodontitis. Although the P2D2 samples could not be easily

separated from the P2D+ samples based on unweighted UniFrac

distances (Figure 1C; PERMANOVA test, p = 0.06), three genera

and nine OTUs had significantly different abundance between the

P2D2 and P2D+ samples (Tables 2 and S2). At the genus level,

Prevotella (p = 0.019) and Tannerella (p = 0.042) were enriched in the

P2D2 samples while Pseudomonas (p = 0.045) was more associated

with the P2D+ samples. At the OTU level, we were not able to

designate OTU0125 (the order of Actinomycetales, unclassifiable at

family level or below) or OTU0193 (the genus of Prevotella,

unclassifiable at species level) as either health-associated or

periodontitis-associated bacteria. All of the remaining seven

OTUs could be considered as putative health-associated bacteria

based on the above comparisons of their relative abundances in

periodontitis-positive and periodontitis-negative groups. Only one

of those seven health-associated OTUs, OTU0280 (genus of

Neisseria), was enriched in the P2D+ samples. The other six health-

associated OTUs significantly decreased their abundances in the

P2D+ samples (p,0.05): OTU0003 (Corynebacterium matruchotii),

OTU0020 (Prevotella loescheii), OTU0094 (Neisseria flavescens),

OTU0096 (Cardiobacterium valvarum), OTU0102 (family of Lepto-

trichiaceae, unclassifiable at the genus level or below), and

OTU0187 (Capnocytophaga ochracea; although the relative abun-

dance of this OTU was not significantly different in the

comparison of the periodontitis-negative and the periodontitis-

positive groups, its association with healthy periodontitium has

been reported in previous studies (e.g., [73])). The tendency of

reduced abundance of health-associated bacteria in the P2D+
samples might predispose the diabetic patients to greater risk of

periodontitis.

In the periodontitis-positive group, the P+D+ samples could be

separated from the P+D2 samples based on unweighted UniFrac

distances (Figure 1D; PERMANOVA test, p,0.01). At the

phylum level, both Actinobacteria (p = 0.0013) and Proteobacteria

(p = 0.041) had significantly higher abundance in P+D+, while

Bacteroidetes was more abundant in P+D2 (p = 0.018). Casarin et al.

[44] also detected the same trend for the above three phyla in

diabetic subjects. At the genus level, Actinomyces (p = 0.0057) and

Aggregatibacter (p = 0.00037) were more abundant or prevalent in

the P+D+ samples. Both Actinomyces and Aggregatibacter were also

observed by Casarin et al. [44] to be more associated with their

P+D+ subjects. At the OTU level, six significantly different OTUs

were detected between the P+D+ and P+D2 samples in our study

(Tables 2 and S2): OTU0015 (classified as Burkholderiales at the

order level), OTU0046 (P. tannerae), OTU0016 (classified as

Propionibacteriaceae at the family level), OTU0161 (Capnocytophaga

sputigena), OTU0010 (T. forsythia) and OTU0343 (classified as

Prevotellaceae at the family level). OTU0161 (C. sputigena) was

designated as putative health-associated bacteria in our data set,

which is also consistent with its reported association with healthy

periodontal sites ([69], [70]). We observed that this species was

more abundant in the P+D+ than in the P+D2 samples. The

increase of Capnocytophaga species in P+D+ subjects was also

reported by Casarin et al. [44]. C. sputigena is a known glucose-

fermenting species ([74], [73], [70]), which might explain its higher

abundance in diabetic patients. Besides the species of C. sputigena,

the relative abundance of OTU0016 (classified as Propionibacter-

iaceae at the family level) was also higher in the P+D+ samples.

OTU0016 was designated as health-associated bacteria based on

the above comparisons of its relative abundances in periodontitis-

positive and periodontitis-negative groups, although it is difficult to

verify the role of the unclassified species of Propionibacteriaceae in the

literature. The physiological impacts of the higher abundance of

such health-associated subgingival bacteria on periodontitis in

diabetic patients are unclear.

In our data set, OTU0010 (Tannerella forsythia) was more likely to

be detected in the P+D+ samples than in the P+D2 samples. This

OTU was detected in all 12 samples in the P+D+ group, while it

was present in only three out of six total P+D2 samples (Fisher’s

exact test, p = 0.025). Contradictory to our observations, the PCR

results by Sardi et al. [34] and Campus et al. [75] (both using a

curette) and 16S rDNA sequencing by Casarin et al. (using paper

points) [44] indicated that T. forsythia is more prevalent in P+D2

subjects. On the other hand, Li et al. (using paper points) [76] also

detected higher prevalence and abundance of T. forsythia by PCR

in P+D+ subjects, which is in agreement with our results. T.

forsythia is a major component of the ‘‘red complex’’ associated

with periodontitis ([64], [67]). Our result indicates that the higher

prevalence of this well-known periopathogen in diabetic patients

could contribute to their severity of periodontitis.

It is noteworthy to mention that we did not detect any

significant difference for the other two components of the ‘‘red

complex’’, P. gingivalis and T. denticola, when comparing the P+D+
samples with the P+D2 samples, although both species were

identified as periodontitis-associated bacteria in our data set. P.

gingivalis was the most abundant species in our periodontitis-

positive samples. Its average relative abundance in the P+D2 and

P+D+ samples was 17.85% and 12.48%, respectively (p.0.05 in

both Wilcoxon rank-sum test and Fisher’s exact test). Our

observation of P. gingivalis is supported by Yuan et al. [33], Sardi

et al. [34], Field et al. [35], and Li et al. [76] (all of their results were

based on PCR), although Campus et al. [75] and Casarin et al. [44]

reported higher prevalence or abundance of this species in their

P+D2 subjects. The average relative abundance of T. denticola in
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our P+D2 and P+D+ samples was 2.41% and 2.38%, respec-

tively. Consistent with our results, Hintao et al. [30] (based on

checkerboard DNA-DNA hybridization) and Yuan et al. [33]

(based on PCR) also did not detect any significant difference for

this species between their P+D2 and P+D+ subgingival samples.

In addition, we noticed that Casarin et al. [44] (based on 16S

rDNA Sanger sequencing) did not find T. denticola to be

significantly different in their study either, although Li et al. [76]

observed a higher abundance and prevalence of this species in

their P+D+ subjects. The source of such discrepancies in results is

unclear, although it has been reported that subgingival microbiota

could differ by geographic location, possibly due to lifestyle

differences ([77], [78]).

Potential limitation
Our relatively small sample size is largely due to our rigorous

criteria for subject recruitment in China. We excluded cigarette

smokers and subjects with other systemic illness. We also excluded

subjects with root caries since it is well known that the pathogenic

bacteria of caries are highly different from those associated with

periodontitis ([79], [80]). Despite our relatively small sample size,

we could still detect differences among subject groups at both the

bacterial community level and the individual bacteria level.

However, small sample size inevitably limits the statistical power.

We might have missed some bacteria that exist at different

abundances in the different sample groups.

Another limitation is the relatively short read length (i.e.,

around 500 bp) associated with the 454 pyrosequencing technol-

ogy. The BLAST-based species-level classification of short reads

can be very challenging because multiple reference sequences in

the database may match equally well to the query sequence. In our

study, we manually examined the BLAST alignments and

classified OTUs at species level only if the annotated top hit

matched better than the other database hits. Nevertheless, manual

assignment is subjective by nature as in many other aspects of

bioinformatics inferences where it is difficult to deploy any

automatic cutoff. We have decided to provide all the OTU

sequences (File S1) for other researchers to verify our species

classification of their OTUs of interest and compare with the latest

database records in the future.

Conclusions

We have conducted the first high-throughput 16S rDNA

pryosequencing to compare the subgingival plaque microbiota in

non-diabetic subjects without periodontitis, non-diabetic subjects

with periodontitis, type 2 diabetic patients without periodontitis,

and type 2 diabetic patients with periodontitis. Based on the

comparisons, a number of health-associated and periodontitis-

associated bacteria were detected in both diabetic and non-

diabetic backgrounds. In both periodontitis-negative and peri-

odontitis-positive groups, we also detected that diabetic and non-

diabetic subjects harbored bacteria at several taxonomic levels

with significantly different prevalence or abundance.

Supporting Information

Figure S1 Distribution of all signature OTUs among
four subject groups. The bar-plot shows the distribution of all

signature OTUs among the four subject groups. The bar heights

correspond to relative abundance percentage, and are log-scaled.

The error bar indicates one unit of standard error.

(TIF)

Table S1 Clinical parameters of the participant sub-
jects. Each subject was given an ID (column 1) and assigned a

group according to periodontitis and diabetes statuses. Gender and

age were recorded. Probing depth (PD) indicates the average

depth in millimeters of the four deepest periodontal pockets.

Attachment loss (AL) indicates the average tooth support tissue loss

in millimeters of the same four sites. For subjects with diabetes,

fasting blood sugar (FBS), two-hour postprandial blood sugar

(PBS), and glycosylated hemoglobin, the three-month average

glucose level (HbA1c), were recorded.

(XLSX)

Table S2 Classification of all signature OTUs. These

signature OTUs had significantly different abundances or

prevalence in at least one of the following sample group

comparisons: P2D2 vs. P+D2, P2D+ vs. P+D+, P2D2 vs.

P2D+, or P+D2 vs. P+D+ (see figure S1 for the distribution of the

signature OTUs). Any significant (p,0.05) Wilcoxon rank-sum

test or Fisher’s exact test p-values are stated in the corresponding

column. For the two comparisons of periodontal health, the

‘‘Association with periodontal health of subjects’’ column indicates

whether the OTU is enriched in the periodontitis-negative or

Table 2. Signature OTUs associated with diabetic and non-diabetic samples.

Health-associated OTUs
Periodontitis-associated
OTUs Other OTUs

Periodontitis negative q in Diabetes OTU0280 genus of Neisseria OTU0125 order of Actinomycetales

Q in Diabetes OTU0003 Corynebacterium matruchotii
OTU0020 Prevotella loescheii OTU0096
Cardiobacterium valvarum OTU0094 Neisseria
flavescens OTU0102 family of Leptotrichiaceae
OTU0187 Capnocytophaga ochracea

OTU0193 genus of Prevotella

Periodontitis positive q in Diabetes OTU0016 family of Propionibacteriaceae
OTU0161 Capnocytophaga sputigena

OTU0010 Tannerella
forsythia

OTU0015 order of Burkholderiales

Q in Diabetes OTU0343 family of
Prevotellaceae

OTU0046 Prevotella tannerae

Within the periodontitis-negative and periodontitis-positive sample groups, the listed OTUs were significantly either more or less abundant in diabetes-positive samples
than in diabetes-negative samples, as indicated by the rows. The three columns indicate whether each OTU was significantly enriched in periodontitis-negative samples,
periodontitis-positive samples, or neither, as found in the comparisons shown in Table 1.
doi:10.1371/journal.pone.0061516.t002
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periodontitis-positive samples of that comparison. Similarly for the

two comparisons of diabetes status, the ‘‘Association with diabetes

status of subjects’’ column indicates the sample group with the

higher abundances for that OTU.

(XLSX)

File S1 FASTA-format sequences for all the OTUs.
Sequences for each OTU are provided in a FASTA-format file.

(ZIP)
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