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Abstract

The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD)
activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein
matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme
active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O2 and NO to the
distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates
opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed
mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the
NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have
similar O2/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations
substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the
migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long
tunnel branch in the oxygenated protein, and hence the NOD function of HbN.
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Introduction

Mycobacterium tuberculosis (Mtb) poses a serious threat to the public

health worldwide, infecting nearly one third of the global

population. The remarkable adaptability of tubercle bacillus to

cope with hazardous level of reactive nitrogen/oxygen species

within the intracellular environment contributes to its pathoge-

nicity. An enhanced level of nitric oxide (NO) and reactive

nitrogen species produced within activated macrophages during

infection act as a vital part of host defense, limit the intracellular

survival of Mtb, and contributes in restricting the bacteria to

latency. Nevertheless, Mtb has evolved efficient resistance mech-

anisms by which toxic effects of NO and nitrosative stress can be

evaded. One of the unique defense mechanisms by which Mtb

protects itself from the toxicity of NO relies on the oxygenated

form of truncated hemoglobin N (HbN), which catalyzes the rapid

oxidation of NO to harmless nitrate [1–3]. Compared to horse

heart myoglobin, the nitric oxide dioxygenase (NOD) reaction

catalyzed by Mtb HbN is ,15-fold faster, suggesting that it may be

crucial in relieving nitrosative stress [4].

Despite having single domain architecture, the NO-scavenging

ability of Mtb HbN is comparable to flavoHbs that are integrated

with a reductase domain and known to have a high NOD activity.

It is thus important to understand what structural and dynamical

features contribute to the efficiency of its enhanced NO-

scavenging function, and therefore ensure survival of the bacillus

under nitrosative stress. X-ray crystallographic studies revealed

that Mtb HbN hosts a protein matrix tunnel composed by two

orthogonal branches [5,6]. In addition, computational simulations

performed by some of the authors suggested that Mtb HbN has

evolved a novel dual-path mechanism to drive migration of O2

and NO to the distal heme cavity [7,8]. According to such a

mechanism (Fig. 1), access of O2 to the heme cavity primarily

involves migration through the tunnel short branch (,10 Å long,

shaped by residues in helices G and H). Binding to the heme then

regulates opening of the tunnel long branch (,20 Å long, mainly

defined by helices B and E) through a ligand-induced conforma-

tional change of PheE15 residue, which would act as a gate. It has

been recently shown that the opening of PheE15 in the oxygenated

protein is also affected by the N-terminal Pre-A motif [9].
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Since the NOD function of HbN depends on the diffusion of

NO to the O2-bound heme through the long tunnel branch, the

PheE15 gate emerges as a fundamental residue in determining the

overall efficiency of the NO scavenging. Accordingly, the NOD

function of HbN must result from a balanced tuning of the

opening/closing events of the gate. Moreover, the functional

implication of PheE15 in assisting the NOD activity is supported

by the preservation of this residue in mycobacterial HbNs, while it

is replaced by other residues in truncated hemoglobins O and P

[10,11]. However, to the best of our knowledge, no experimental

data have yet been reported to examine the gating role of PheE15

and its influence on the NOD activity conducted by Mtb HbN. In

this context, this study has been undertaken to probe the role of

PheE15 in protein function. To this end, several PheE15 gate

mutants have been tested experimentally for their NOD function.

In addition, molecular dynamics (MD) simulations have been

performed to analyze the structural changes in the topology of

long tunnel and the alterations in the protein dynamics, paying

attention to the ligand migration properties through the tunnel.

Our results confirm the critical role played by E15 in ligand

migration along the long channel.

Materials and Methods

Strains, Plasmids and Culture Conditions
Escherichia coli strains, JM109 and BL21DE3 were used for the

cloning and expression of recombinant genes. Bacterial cultures

were grown in Luria-Bertani (LB) or Terrific Broth (containing

24 g of Yeast Extract, 12 g of Bacto-Tryptone, 12.54 g of

K2HPO4, 2.31 g of KH2PO4) medium at 37uC at 180 r.p.m.

When required, ampicillin and kanamycin (Sigma) were added

at a concentration of 100 and 30 mg/ml, respectively. Plasmids,

pBluescript (Stratagene) and pET28C (Novagen) were used for

cloning and expression of recombinant genes as described

earlier [3,12]. The oligonucleotides were custom synthesized by

Integrated DNA Technologies Inc. NO (98.5%) was obtained

from Sigma Aldrich and saturated NO was prepared as

mentioned previously [13]. Heme content of the cell was

measured as noted in previous studies [13].

Site-directed Mutagenesis and Construction of PheE15
Gate Mutants of HbN

Recombinant plasmid pPRN [3] was used as a source of HbN

gene for the site directed mutagenesis. PheE15 mutants to Ala,

Tyr, Ile or Trp were generated using a PCR approach. PCR

amplified genes were cloned at NdeI-BamHI site of pET28c and

expressed under T7 promoter as described previously [3].

Recombinant HbN and its mutant proteins were purified from

the cell lysate of E. coli using metal affinity chromatography

following standard procedures. Authenticity of mutants was

confirmed after nucleotide sequencing.

Figure 1. Representation of the long and short branches of the tunnel system. The graphical display is based on the X-ray crystallographic
structure of Mtb HbN (PDB entry 1IDR), and the access routes of O2 and NO in the dual-path ligand-modulated mechanism proposed for this protein
are indicated. The gating residue PheE15 (residue 62) is shown in the two conformations found in the X-ray structure as sticks.
doi:10.1371/journal.pone.0049291.g001

Role of PheE15 on NOD Activity of HbN
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Measurements of Heme Content and NOD Activity
Total heme content was determined following the procedure

described earlier [14]. Heme concentration was calculated from

the absorption difference at 556 and 539 nm for the sodium

dithionite-reduced and ferricyanide-oxidized sample. NOD activ-

ity of cells or purified protein was monitored polarographically as

described previously [3,15]. NO consumption buffer assay

contained 60 mM K2HPO4, 33 mM KH2PO4, 7.6 mM

(NH4)2SO4, 1.7 mM sodium citrate, 10 mM glucose and

200 mg/ml chloramphenicol. NO uptake rate of O2-bound HbN

and its mutants was measured from the slope of curving traces

recorded in the presence of specified concentration of NO

following established protocols [3,15].

Measurement of Ligand Binding
O2 and CO binding was checked from the absorption spectra of

O2- and CO-bound species [9]. CO difference spectra were

recorded between 350 to 600 nm after bubbling CO into the

protein sample cuvette and recording the difference spectra

against sodium-dithionite reduced protein. Oxygen equilibrium

curves of HbN mutants were checked following the published

procedure [16] to check their p50 value. The association rate for

CO binding to HbN mutants was determined by flash photolysis.

A concentrated stock solution of deoxyHbN was diluted anaero-

bically (,100 mM) into a cuvette (1 mm path length) containing

CO (1 mM). The fully liganded sample of ferrous HbN was

photodissociated by 0.3 ms excitation pulse from a dye laser. The

bimolecular rebinding time courses were collected as described

elsewhere [17]. A minimum of five traces were collected and

averaged for each experiment.

NO-oxidation by an Oxygenated Adduct of HbN and its
Mutants

Wild type and mutant proteins were fully oxygenated by

exposing the deoxygenated protein samples to air and checking

their absorption spectra, which gave a specific Soret peak at 415

and two peaks, a and b, at 570 and 540 nm, very similar to oxy

form of hemoglobin. With a gas tight Hamilton syringe, NO

(5 mM) was sequentially added to the oxygenated protein (40 mM),

and absorption spectra were recorded after each addition to follow

the conversion into the oxidized form. The NO-induced oxidation

of mutants was compared with the profile determined for the wild

type protein.

Molecular dynamics simulations
The dynamical behaviour of the oxygenated form of HbN

mutants was examined by means of extended MD simulations and

compared to the results reported in previous studies for the wild

type protein [7,8]. The X-ray structure of wild type Mtb HbN

(PDB entry 1IDR, chain A, solved at 1.9 Å resolution) was used as

Figure 2. Spectral properties of PheE15Ala mutant of HbN. (A)
Optical absorption spectra of oxygenated (solid line) and sodium
dithionite reduced species of mutant HbN, recorded in 50 mM Tris.Cl
(pH 7.5). (B) CO-difference spectrum of PheE15Ala mutant of HbN.
Spectral profile of other PheE15 gate mutants (PheE15Tyr, PheE15Trp
and PheE15Trp) appeared similar and matched with the wild type
spectrum reported earlier [1].
doi:10.1371/journal.pone.0049291.g002

Table 1. Oxygen binding and CO association kinetics of
PheE15 gate mutants of HbN of M. tuberculosis.

Protein p50(O2)a kon (CO)b

Wild type 0.019 2.56107

PheE15Ala 0.021 3.06107

PheE15Ile 0.016 2.36107

PheE15Tyr 0.013 2.06107

PheE15Trp 0.023 1.86107

aIn units of mm Hg.
bM21s21. Values derived from three independent measurements, each
consisting of multiple shots (.50) and averaged out by the program to give the
final value. The standard deviation is in the range 0.3–0.5 (6107).
doi:10.1371/journal.pone.0049291.t001

Table 2. NO-dioxygenase activity of PheE15 gate mutants of
HbN.

Protein NOD activitya % NOD activity

Wild type 27.861.3 100

PheE15Ala 15.961.4 51.1

PheE15Ile 12.660.6 45.3

PheE15Tyr 9.960.6 34.5

PheE15Trp 8.660.4 30.2

The NOD activity of HbN mutants were determined at fixed concentration of
NO (1.8 micromole).
aThe activity is expressed as nmole NO/heme/s21.
doi:10.1371/journal.pone.0049291.t002
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starting point for simulations. Mutants were generated by

replacing PheE15 by Ala, Ile and Tyr in the X-ray structure of

the wild type protein. In all cases simulations were performed

using the same protocol adopted in our previous studies [7,8].

Briefly, the enzyme was immersed in a pre-equilibrated octahedral

box of TIP3P [18] water molecules. The final systems contained

the protein and around 8600 water molecules (ca. 28,270 atoms).

The system was simulated in the NPT (1 atm.; 298 K) ensemble

using SHAKE [19] to keep bonds involving hydrogen atoms at

their equilibrium length, periodic boundary conditions, Ewald

sums for treating long range electrostatic interactions [20], and a

1 fs time step for the integration of Newton’s equations. All

simulations were performed with the parmm99SB force field [21]

and employing heme parameters developed in previous works

[7,8].

MD simulations were performed with the PMEMD module of

the AMBER10 program [22]. The geometry of the models was

relaxed by energy minimization carried out in three steps where

hydrogen atoms, water molecules and finally the whole system

were minimized. Equilibration was performed in successive 50 ps

Figure 3. NO oxidation profile of PheE15 gate mutants of HbN. Titration of oxygenated HbN protein (20 mM) was done by adding 15 mM NO
sequentially and recording spectra after each addition. Wild type HbN displayed fully oxidized spectra after 12 additions (A), whereas mutants
PheE15Tyr (B), PheE15Ile (C), PheE15Trp (D) and PheE15Ala (E) displayed very slow oxidation of the protein and could not be fully oxidized even after
20 additions of NO. The first and last additions are labeled as 1 and 2, respectively.
doi:10.1371/journal.pone.0049291.g003

Role of PheE15 on NOD Activity of HbN
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runs where the temperature was gradually increased from 100 K

to 298 K in four steps at constant volume, followed by an

additional step run at constant pressure for 100 ps. Then, a series

of 100–150 ns MD simulations (at 298 K and 1 atm) were run.

The analysis of the trajectories was performed using frames

collected every 1 ps during the production runs. Furthermore,

75 MD simulations (25 per mutant) were run to explore the

pathways for ligand access (free NO in solution) to the heme cavity

Figure 4. Representation of rmsd and rmsf profiles for PheE15 gate mutants of HbN. (Left) Rmsd (Å) of the protein backbone determined
using the X-ray structure (1IDR; subunit A) as reference. The rmsd of the whole protein is shown in green, whereas the rmsd of the residues in the
protein core (excluding those in the pre-A segment; residues 1–15) is shown in blue. (Right) Representation of the rmsf (Å) of residues side chains in
the protein. The plots correspond to the mutants (A) PheE15Ala, (B) PheE15Ile and (C) PheE15Tyr. The location of the mutated residue Phe(62)E15 is
indicated in the plots by an arrow (helix E encompass residues 51–66).
doi:10.1371/journal.pone.0049291.g004
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in PheE15Tyr, PheE15 Ile and PheE15Ala. To this end, five

structures of the protein were taken from the last 25 ns of the

trajectories run for the oxygenated mutants. These snapshots were

used as starting points for unrestrained simulations run in presence

of NO, which was placed at random positions around the protein

(5 distinct random positions per protein snapshot). The systems

were thermalized following the protocol mentioned above, and

MD simulations were run up to 20 ns using the same simulation

conditions.

Essential Dynamics
The dynamical behavior of HbN and its mutants was explored

by means of essential dynamics [23,24]. Residues 1–15 were

excluded as this region is very flexible and would mask the

Table 3. Global similarity index determined by comparison of
the motions of the protein backbone in the oxygenated form
of wild type HbN and the PheE15 mutants.

jAB Wild type PheE15Ala PheE15Ile PheE15Tyr

Wild type 0.68 0.65 0.60 0.62

PheE15Ala 0.67 0.63 0.60

PheE15Ile 0.74 0.64

PheE15Tyr 0.78

The comparison is made considering the 10 most relevant essential motions,
which encompass 60–75% of the structural variance along the trajectory.
doi:10.1371/journal.pone.0049291.t003

Figure 5. Representation of the accesible volume in wt HbN and its mutants. The accessible volume determined from MDpocket analysis is
achieved for a density isocontour of 6.7 in the case of wt protein (A). The use of the same isocontour shows discontinuities in the accessible volume
of the tunnel long branch for the different mutants. The disruption is located around the position of the gate in the case of PheE15Ile (C) and
PheE15Tyr (D) mutants. For the PheE15Ala species (B) the major disruption involves the region close to the channel entry. Continuous progression of
the accessible volume is achieved when the isocontour value is reduced to 5.4 for PheE15Ile and PheE15Tyr, and to 3.4 for PheE15Ala. In the plots the
protein backbone corresponds to the energy-minimized structure obtained by averaging the snapshots sampled in the last 0.1 ns for each trajectory.
doi:10.1371/journal.pone.0049291.g005
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essential motions of the protein core. The backbone atoms were

used to superpose the structures sampled in order to derive the

essential motions. To this end, for each trajectory the positional

covariance matrix of the backbone atoms was built up and

diagonalized. The eigenvectors define the type of essential motions

of the backbone, and the eigenvalues determine how much of the

positional variance in the trajectory is explained by each

eigenvector.

Ligand Migration Profiles
The effect of PheE15 mutation on the migration of ligands was

examined using two techniques. The preferred docking sites and

migration pathways were identified using MDpocket [25]. Then,

the migration free energy profiles were obtained using Multiple

Steered Molecular Dynamics (MSMD) [26].

MDpocket is a pocket detection program that uses a fast

geometrical algorithm based on a Voronoi tessellation centered on

the atoms and the associated alpha spheres, which are clustered

and filtered giving origin to pockets and channels [27]. These

pockets are then used to identify docking sites and migration paths

along the protein matrix. Analyses were performed using 10000

snapshots taken equally spread over the last 50 ns of the

trajectories. The minimum and maximum alpha sphere radius

was 2.8 Å and 5.5 Å, respectively. The identified cavities were

superposed in time and space and a density map was generated

from this superposition. Stable cavities are identified as high-

density 3D isocontours, while low-density isocontours denote

transient or nearly non-existent cavities in the MD simulation.

MSMD simulations were run to evaluate the free energy profiles

of ligand migration through the tunnels using Jarzynski’s equality

[26], which estimates the free energy from an ensemble of

irreversible works along the same reaction coordinate. A steering

potential forces the motion of the probe with constant velocity

along the reaction coordinate. The reaction coordinate was the

iron-ligand distance, the force constant was 200 kcal mol21 Å21

and the pulling velocity 0.025 Å ps21. The free energy profile of

Figure 6. Free energy profile determined for NO migration
along the long tunnel branch. MSMD calculations were performed
to determine the energetics of ligand migration through the tunnel
long branch for Phe15Ile (green) and PheE15Tyr (blue). The profiles are
compared with those determined for ligand migration in both open
(solid line) and closed (dashed line) states of oxygenated wt HbN. The
free energy is given in kcal/mol, and the distance of the ligand from the
heme iron is given in angstroms. For the sake of clarity, error bars are
not displayed.
doi:10.1371/journal.pone.0049291.g006
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ligand migration along a tunnel was obtained following the

computational scheme reported in previous studies [8]. At least

twenty SMD simulations were run pushing the ligand through the

tunnel from the solvent towards the iron. The starting snapshot for

each SMD was taken from the final structure of an equilibrated

MD simulation with the ligand placed at a fixed distance from the

iron. Typically those distances are chosen from the preferred

docking sites found in MDpocket analysis in conjunction with

short MD simulations run to examine the motion of the free

diatomic ligand along the tunnel.

Results and Discussion

Four gate mutants, where PheE15 in wild type (wt) HbN was

replaced by Ala (PheE15Ala), Ile (PheE15Ile), Tyr (PheE15Tyr)

and Trp (PheE15Trp), were created by site-directed mutagenesis.

Mutations were chosen to span a wide range of sizes, varying from

the small methyl group in Ala to the large indole ring in Trp, the

replacement of the planar benzene by the branched chain of Ile,

and the conservative mutation of PheE15 by Tyr. It was expected

that the distinct chemical nature of the side chains would translate

into differences in the ligand migration through the long tunnel,

which in turn should lead to differences in the NOD activity

measured for the mutants. Thus, in the absence of relevant

structural alterations in the tunnel due to the mutations at position

E15, which might be relevant for the bulky Trp, it was expected

that replacement of PheE15 to Ala should open permanently the

long tunnel, whereas mutation to Trp should occlude the access of

ligands. Likewise, the branched side chain of Ile was expected to

limit the accessibility of diatomic ligands through the tunnel.

Finally, the conservative PheE15Tyr mutation was a priori

expected to have little effect on the migration properties.

Effect of Mutations at PheE15 Gate of HbN on O2/CO
Binding

Absorption spectra of O2 and CO bound forms of mutants were

indistinguishable from that of wt HbN (Fig. 2), suggesting that all

these mutants bind O2. The ability to bind O2 was further assessed

by measuring the p50 values (Table 1). For the wt protein, the p50

value was 0.019 (mm Hg), which compares well with previous data

[1]. When the PheE15 gate mutants were compared with wt HbN,

no significant difference in their p50 profile was observed

suggesting that the O2 binding properties of mutants are not

impaired. To substantiate these results, the rate of CO association

was also determined to characterize the kinetics of ligand

association (Table 1). The kon value determined for the wt protein

(2.56107 M21 s21) is slightly larger than the value reported by

Couture et al. (0.6576107 M21 s21) [1]. Nevertheless, all the

mutants displayed CO association rates comparable to that of wt

HbN, indicating that mutation at PheE15 residue does not affect

the O2/CO binding properties of HbN.

Mutations at PheE15 Gate of HbN Alter its NOD Activity
Even though mutants exhibit very similar O2 binding proper-

ties, relevant differences were observed in their NO metabolizing

activities (Table 2). The NOD activity of PheE15Ile was reduced

to around 55% of the activity measured for the wt enzyme,

whereas a larger reduction (around 70%) in NOD activity was

observed for the PheE15Trp mutant. Unexpectedly, mutation of

PheE15 to Tyr also yielded a significant reduction (around 65%) in

the NOD activity, suggesting that the apparently conservative

replacement of benzene by phenol has a drastic influence on the

ligand migration properties of the mutant. Finally, the PheE15Ala

mutant also exhibited a significant reduction (around 49%) in the

NOD activity.

Oxidation of NO by Oxygen Adduct of PheE15 Gate
Mutants of HbN

The NO oxidation profile of wt HbN and its mutants was

determined by titrating the oxy forms of protein with NO in a time

course manner (Fig. 3). The addition of NO (5 mM) resulted in the

appearance of a partially oxidized spectrum of HbN and repeated

addition of NO solution to this sample resulted in a fully oxidized

spectrum shifting Soret peak of oxyHbN from 415 to 405 nm. In

contrast, similar additions of NO to the oxygenated form of

mutants PheE15Trp, PheE15Ile and PheE15Tyr did not change

the spectra to the oxidized form immediately and changed slowly

after 30–35 min of exposure, indicating very slow NO oxidation.

Finally, NO oxidation by PheE15Ala mutant displayed a spectral

profile similar to PheE15Ile and PheE15Tyr, which is intermediate

between those observed for the wt protein and the PheE15Trp

mutant.

MD Simulations
The preceding data indicate that the different PheE15

mutations do not affect the binding of O2 to the heme. However,

since the mutants exhibit a distinctive reduction in the NOD

activity, the PheE15 residue has to play a key role in mediating the

access of NO to the oxygenated protein. On the basis of these

findings, MD simulations were run with a twofold purpose: to

examine the structural integrity of the overall protein fold, and to

identify local changes in the long branch tunnel that might affect

the ligand migration. To this end, a series of 100–150 ns MD

simulations were run for the heme-bound O2 forms of PheE15Ala,

PheE15Ile and PheE15Tyr mutants, and the results were

Figure 7. Representative trajectories followed by free NO
ligand through the protein matrix. MD simulation of free NO
located at random positions from the protein were followed to
investigate the pathways leading to the heme cavity for oxygenated
forms of (A) PheE15Ala, (B) PheE15Ie and (C) PheE15Tyr. The distinct
pathways are indicating by showing the position of NO (represented as
sticks) along the trajectory using different colors: long branch (blue),
short branch (brown), EH (green), and other (yellow). Note that helix G is
displayed as highly transparent cartoon for the sake of clarity.
doi:10.1371/journal.pone.0049291.g007

Table 4. Analysis of the migration pathways followed by a
free NO in a simulation box containing the solvated proteins
PheE15Ala, PheE15Ile and PheE15Tyr.

Mutant
Effective
patha

Long
branchb

Short
branchc EHd Other

PheE15Ala 18 (72.4%) 5 3 7 3

PheE15Ile 21 (85.7%) 15 0 6 0

PheE15Tyr 17 (70.0%) 12 0 5 0

25 independent MD simulations were examined for each mutant in order to
determine the migration route followed by NO to reach the heme cavity.
aFraction of trajectories where the ligand was able to reach the heme cavity in
the simulation time. The distinct pathways are displayed in Figure 7 using
different colors: long branch (blue), short branch (brown), EH (green), and other
(yellow).
bDefined primarily by helices B and E.
cDefined primarily by helices G and H.
dThis pathway is defined by residues located in helices E and H.
doi:10.1371/journal.pone.0049291.t004
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compared with those obtained for the wt protein. This simulation

time has been shown suitable to describe the conformational

transitions of PheE15 in our previous studies for the wt HbN [7–

9]. Choice of the simulation time, however, was also dictated by

consistency in the analysis of the structural and dynamical

properties of the simulated systems, either related to the overall

features of the protein backbone or to the ligand migration

through the protein matrix. Such a convengence was achieved for

all the simulated systems but for the PheE15Trp mutant (see

below).

For the particular case of the PheE15Tyr mutant, two MD

simulations differing in the starting orientation of TyrE15 were

run. Thus, on the basis of the conformational preferences found

for PheE15 in both the X-ray structure [5] and previous MD

studies [7,8], the phenol ring was oriented in the closed or open

conformations, which prevent or facilitate ligand migration

through the tunnel, respectively. When TyrE15 was in the closed

orientation, the side chain remained stable, and no transitions

between open and closed states were found along the whole

trajectory (Fig. S1). There was only a conformational change

leading to the transient formation of a hydrogen bond between the

hydroxyl group of TyrE15 and the carbonyl group of Ile115.

When the MD simulation started from the open conformation, the

side chain of TyrE15 suddenly changed to the closed conformation

after the first 12 ns and then remained stable until the end of the

trajectory (Fig. S1), even though few attempts to form transient

hydrogen-bond interactions with Ile115 can be observed. Since

the two simulations exhibited the same behavior, hereafter

discussion of PheE15Tyr mutant will be limited to the trajectory

starting from the closed conformation.

Finally, the MD simulation run for the PheE15RTrp mutant

was extended up to 200 ns. However, the results will not be

presented here as the analysis of the trajectory points out that the

structural changes induced by the mutation both in the tunnel and

in the global protein structure are still not fully converged. It seems

that a proper description of the structural rearrangements

triggered by this mutation would require longer simulations,

making it necessary to be cautious for not overinterpreting the

structural changes due to the PheE15RTrp mutation, which

cannot be easily accommodated in the tunnel (see Fig. S2 for

details).

Structural Analysis
For all the simulations, inspection of both the time evolution of

the potential energy (Fig. S3) and the rmsd (Fig. 4; see also Fig. S4)

determined for the backbone atoms of the protein core (excluding

the first 15 residues) supports the integrity of the simulated

proteins. Thus, the rmsd of the protein core (ranging from 1.2 to

2.1 Å for the different mutants) remains very stable after the first

few nanoseconds. In contrast, a much larger rmsd profile showing

notable fluctuations along the trajectory is obtained when the

whole protein backbone is included in the analysis. This finding

indicates that the pre-A segment is very flexible in all the mutants

and can adopt a large number of conformational states, as noted in

the formation of distinct structural arrangements for residues 1–15

(data not shown). Therefore, the mutation does not alter the large

conformational flexibility found for the pre-A segment in the wt

HbN [9,28].

The geometrical arrangement of residues TyrB10 and

GlnE11 in the distal cavity is a structural feature of particular

relevance, as it has been proposed that opening of the gate is

modulated by the oxygen-sensing properties of the TyrB10-

GlnE11 pair [8,29]. In the oxygenated wt HbN these residues

form a network of hydrogen bonds, where the hydroxyl group

of TyrB10 is hydrogen-bonded to the heme-bound O2, and also

accepts a hydrogen bond from the side chain of GlnE11. Due

to these interactions, the GlnE11 side chain lies closer to the

benzene ring of PheE15 than in the deoxygenated protein, and

the enhanced steric clash favors opening of the PheE15 gate

upon O2 binding. Accordingly, it might be argued that

disruption of the hydrogen bonds formed by TyrB10 and

GlnE11 could explain the reduction in NOD activity of the

mutants. However, the analysis of the trajectories completely

rules out this possibility (Fig. S5). Thus, in all the mutants the

hydroxyl group of TyrB10 is hydrogen-bonded to the heme-

bound O2 (average distances about 2.85 Å), and the side chain

amide nitrogen of GlnE11 is hydrogen-bonded to the TyrB10

hydroxyl group (average distances about 3.0 Å). These interac-

tions reproduce the hydrogen bonds found in the X-ray

structure, as the corresponding distances (averaged for subunits

A and B) are 3.15 and 2.95 Å. Therefore, the hydrogen-bond

network found in wt HbN is not affected by the PheE15

mutations, and hence one should expect that the steric pressure

exerted by GlnE11 is retained in the mutated proteins.

Dynamical Analysis of the Protein Backbone
Binding of O2 to the heme also changes the dynamical motion

of the protein backbone [7,8]. Thus, essential dynamics analysis of

oxygenated HbN reveals that the major motions in the deoxy-

genated protein affect helices C, G and H, while the largest

contribution to protein flexibility comes from helices B and E in

the oxygenated protein. Since helices B and E define the walls of

the tunnel long branch, the increased motion of these helices

should facilitate the transition between open and closed states of

the gate, thus influencing the ligand migration through the tunnel.

This dynamical alteration agrees with the large scale conforma-

tional change observed experimentally upon binding of NO to the

ferric form of wt HbN [30], and with the occurrence of distinct

conformational relaxation processes found in the kinetics of CO

recombination to the protein encapsulated in gels [31].

In order to investigate whether mutation of the PheE15 gate

influences the dynamics of the protein backbone and eventually

affects the migration of NO in the oxygenated protein, we

determined the essential dynamics of the mutants and compared

them with the wt protein. Diagonalization of the positional

covariance matrix for the backbone atoms points out that few

motions account for a significant fraction of the protein dynamics.

Nearly 50% and 70% of the backbone conformational flexibility is

accounted for by the first 4 and 10 principal components (Table

S1). The two first essential motions, which mainly involves motions

of helices B, E and H, loop F and the hinge region around helix C,

account for 22–37% of the structural variance in the backbone of

the mutants, in agreement with the value (36%) determined for wt

HbN.

The similarity between the structural fluctuations of the protein

backbone in wt HbN and its mutants was measured by means of

the similarity index jAB (see Text S1), which takes into account the

nature of the essential motions and their contribution to the

structural variance of the protein [32]. When the 10 most relevant

motions are considered, the similarity index varies in the range

0.60–0.65, which is slightly lower than the self-similarities obtained

for wt HbN and mutants (Table 3). These results point out that

mutations preserve to at large extent the dynamical behavior of the

protein. For the sake of comparison, the similarity indexes

determined for the 10 most essential motions between wt HbN

and the mutants TyrB10Phe and GlnE11Ala only amount to 0.47

and 0.38, respectively [27], indicating that the hydrogen-bond
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network formed by the TyrB10-GlnE11 pair has a larger impact

on the protein dynamics than mutation of PheE15.

Ligand Migration
Since the preceding results did not reveal significant changes

neither in the hydrogen-bond network of TyrB10-GlnE11 pair nor

in the dynamical behavior of the protein skeleton, the reduction in

NOD activity determined for PheE15 mutants might reflect a

reduced accessibility of ligands for migrating through the long

tunnel. To corroborate this hypothesis, we determined the shape

of internal tunnels by using MDpocket, which provides a grid that

encloses the protein, where each grid point is assigned an

occupancy value that denotes the accessibility of the volume

associated to that point [23].

For the wt HbN the tunnel long branch appears as a continuous

cavity leading from the protein surface to the heme cavity, as

noted by the continuous progression of the accessible volume

isocontour shown in Fig. 5. In contrast, the representation of the

same isocontour for the mutants reveals a discontinuous channel,

even in the case of the mutation to Ala.

For mutants PheE15Ile and PheE15Tyr, such a disruption

affects the region that surrounds the mutated residue, suggesting

that ligand migration through the tunnel long branch is impeded

by the steric hindrance imposed by the side chains of the mutated

residues (Fig. 5C,D). This is confirmed by the free energy profiles

determined by MSMD calculations for these mutants, where the

limiting step for ligand migration is associated to surpassing the

gate (Fig. 6). In fact, the free energy profiles are intermediate

between those obtained for the wt HbN with the PheE15 gate in

either closed or open conformational states. Compared to the wt

protein in the open state, mutation of the gate slightly destabilizes

the minimum located at around 11 Å (i.e., the docking site before

the gate), and increases the barrier required to pass above the side

chain of the mutated residue in order to access the heme cavity.

Therefore, a small diatomic ligand such as NO is expected to be

trapped effectively at the highly hydrophobic entrance of the long

branch, thus enhancing the local concentration, but access to the

heme cavity is mainly limited by the hindrance due to the side

chain of the mutated gate.

In contrast with the preceding findings, the isocontour is

continuous around the mutated gate in the PheE15Ala mutant, as

expected from the small side chain of Ala. However, compared to

the wt protein (Fig. 5A), there is a significant occlusion at the

entrance of the channel (Fig. 5B), which stems from a slight

readjustment of helices B and G that reduces the width of the

channel entry by 0.4–0.6 Å (as measured from distances between

Ca atoms of residues located at the helical ends). Accordingly, the

probability of the ligand to be trapped at the entrance of the tunnel

long branch is lower compared to wt HbN. In turn, this finding

raises the question about the existence of alternative pathways that

can justify the remaining NOD activity (around 51% compared to

wt protein) retained by PheE15Ala mutant. To this end, we

examined the trajectory followed by a free NO in a water box

containing the PheE15Ala mutant and determined the routes

leading to the heme cavity in 25 independent MD simulations.

The results (see Table 4) showed that 18 out of 25 trajectories were

successful in allowing the ligand (NO) to achieve the heme cavity

within the simulation time. Nevertheless, only 5 trajectories

showed that NO migrates via the tunnel long branch, and in 7

simulations the entry pathway involved the EH tunnel (defined by

residues in helices E and H) reported by Daigle et al. [33].

Remarkably, in 3 trajectories NO was able to reach the heme

cavity through the short branch, and in other 3 trajectories NO

accessed the heme cavity via a distinct channel (see Fig. 7A). Thus,

even though the reduction in NOD activity can be related to the

occlusion of ligand access at the beginning of the tunnel long

branch, this effect is counterbalanced by the existence of three

alternative entry pathways, which arise from slight structural

alterations in the protein skeleton. This finding reveals the delicate

structural balance imposed by the PheE15 gate, which not only

regulates ligand migration, but also contributes to avoid the

collapse of helices B and E, thus preserving the structural integrity

and ligand accessibility along the tunnel long branch.

For the sake of completeness, this analysis was also performed

for PheE15Ile and PheE15Tyr mutants. For these mutants the

access routes leading to the heme cavity were significantly

different. Thus, the trajectories primarily involved migration

through the tunnel long branch (Table 4), which should be

considered the main pathway for ligand migration in the

oxygenated protein. In this pathway, the ligand remained docked

in a region before the gate for significant periods of time (as noted

in the high density of NO molecules located before the mutated

gate residue; see Fig. 7B,C) until it was able to surpass the barrier

due to the side chain of Ile/Tyr and access the heme cavity. There

were some attemtps to get the heme cavity through the short

tunnel, but they were unsuccessful. Finally, only in very few cases

the ligand entered the protein through the tunnel EH, leading to

the docking site located before the mutated gate residue.

Therefore, these findings are in contrast with previous modeling

studies where the short tunnel was reported to be the main route

for NO diffusion [34]. Furthermore, present results indicate that

the main route in PheE15Ile and PheE15Tyr is the tunnel long

branch, which supports the role of the tunnel long branch in the

dual-path migration mechanism [7,8] and particularly the

functional relevance of the PheE15 gate.

Conclusion
The experimental data collected for the mutants indicate that

the PheE15 mutation does not affect the binding of O2 to the

heme, as noted in the similar absorption spectra of O2 and CO

bound forms, as well as in the similar p50 and kon values determined

for both wt and mutated proteins. These findings suggest that the

PheE15 mutation has little impact on the tunnel short branch,

which is proposed to be the main pathway for migration of O2 to

the heme cavity. However, since the mutants exhibit a distinctive

reduction in the NOD activity, PheE15 residue has to play a key

role in mediating the access of NO to the oxygenated protein. In

agreement with the dual-path migration mechanism [7,8], the

main pathway for NO migration is the tunnel long branch. This

finding points out the delicate structural balance imposed by the

PheE15 gate, which not only regulates ligand migration, but also

contributes to avoid the collapse of helices B and E, thus

preserving the ligand accessibility along the tunnel long branch.

Overall, the results presented herein demonstrate the pivotal role

of PheE15 in modulating the NOD function of Mtb HbN, thus

confirming the suggestion by Milani and coworkers [5] about the

gating role of PheE15 in HbN.

Supporting Information

Figure S1 Representation of the conformational orien-
tation of the TyrE15 side chain in the two trajectories
run for the PheE15Tyr mutant. Time (ns) evolution of the

dihedral angle H-Ca-Cb-Cd (degrees) of TyrE15 in the simulation

started by placing the phenol ring in (top) open and (bottom)

closed conformations, following the two main orientations found

for the side chain of PheE15 gate in wild type HbN [7,8].

(TIF)
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Figure S2 Representation of structural changes for the
PheE15Trp mutant. (Top) Superposition of the backbone of the

snapshots sampled at 40 (green) and 180 (orange) ns along the

trajectory run for the PheE15Trp mutant. The plot shows the

drastic change in the orientation of the Trp side chain, the

displacement of the heme, and the structural rearrangement of

several helices. For the sake of clarity, helix G is hown as ribbon.

(Bottom) Time (ns) evolution of the dihedral angle (degrees) that

determines the orientation of the indole ring of Trp.

(TIF)

Figure S3 Representation of the potential energy for
simulated systems. Time (ns) evolution of the potential energy

(x 103; kcal/mol) for the simulations of the oxygenated PheE15

mutants. Top: (left) PheE15Ala; (right) PheE15Ile. Bottom:

PheE15Tyr in the simulation started by placing the Tyr side

chain in (left) closed and (right) open conformations.

(TIF)

Figure S4 Representation of rmsd and rmsf profiles for
PheE15Tyr gate mutant of HbN (trajectory started from
open conformation). (Left) Rmsd (Å) of the protein backbone

determined using the X-ray structure (1IDR; subunit A) as

reference. The rmsd of the whole protein is shown in green, and

the rmsd of the residues in the protein core (excluding the pre-A

segment; residues 1–15) is shown in blue. (Right) Representation of

the rmsf (Å) of residues in the protein. The plots correspond to the

trajectory run started by placing the side chain of TyrE15 in the

open conformation.

(TIF)

Figure S5 Representation of hydrogen-bond distances
for the TyrB10-GlnE11. Time (ns) evolution of distances (Å)

from the TyrB10 hydroxyl oxygen to the heme-bound O2 and

from the GlnE11 side chain amide nitrogen to the TyrB10

hydroxyl oxygen are shown in blue and green, respectively. Top:

(left) PheE15Ala; (right) PheE15Ile. Bottom: PheE15Tyr in the

simulation started by placing the Tyr side chain in (left) closed and

(right) open conformations.

(TIF)

Table S1 Structural variance (%) of the protein backbone. The

contribution of the first essential motions to the structural variance

is gindicated for the mutated forms of HbN. The cumulative value

is given in parenthesis.

(DOCX)

Text S1 Global similarity between two sets of essential

eigenvectors.

(DOCX)
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