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Abstract

Summarizing the status of drugs in the market and examining the trend of drug research and development is important in
drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by
the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target–target and
drug–drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential,
as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational
strategies for drug research and development in the future.
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Introduction

Despite the considerable progress in the high-throughput

screening method, the rational drug design, and the massive

drug-development efforts, the number of successful drugs did not

significantly increase during the past decade [1]. The strategy for

screening single-target and highly specific agents was widely

researched for some time [2,3]. However, this effort has not been

very successful, and undeniably, the bottleneck lies in the area of

drug research and development [2]. Until now, there are still not

fully effective drugs for treating complex diseases, such as cancer,

metabolic diseases, cardiovascular diseases, and neurological

diseases. Thus, we believe that the strategy or models used for

new drug discovery have to be reconsidered.

Recent developments in biological systems and overall clinical

experience have revealed that the single-target drugs may not

always induce the desired effect to the entire biological system

even if they successfully inhibit or activate a specific target [1,2,4],

one reason is that organisms can affect effectiveness through

compensatory ways. The development of diseases, particularly the

complex ones, involves several aspects. Thus, scientists have

recently proposed the multi-target drug design concept [1,4,5].

This manuscript aims to determine the status of drug research and

development through network views and market sales in the past

decade and confirm whether multi-target drugs are the current

trend in drug research and development. We also propose rational

strategies for future drug research and development.

Results

Drug Targets
The total number of sampled new molecular entities (NMEs)

approved by the U.S. Food and Drug Administration (FDA) from

January 2000 to December 2009 has reached 223. The average

target number of sampled drugs is 2.5, which is higher than the 1.8

reported by Yildirim et al. using Drugbank data before March

2006 [6,7]. This increase may partly indicate the rising targets per

drug in the recent years.

Target–target Network
The target–target (Figure 1) and drug–drug (Figure 2) networks

were built as described in the Materials and Methods section to

make a realistic visualization of information and directly determine

the connections between targets and drugs, thereby providing

important information on the current status of drug discovery.

The targets of the anti-cancer drugs, anti-infection drugs and

anti-nervous-system-related -diseases agents, among others, have

been effectively separated to some extent (Figure 1). For example,

most of the targets for cancer therapy, such as different types of

tyrosine kinase, were clustered in the left panel, whereas most of

the nervous-system-related targets, such as dopamine receptors,

5-hydroxytryptamine receptor, adrenergic receptors, and hista-

mine receptors, among others, were clustered on the right. The

targets for cancer treatment were relatively more scattered than

those for other diseases, indicating the complex mechanism

involved in cancer development and the diverse methods for

cancer chemotherapy.

Most of the targets have connections with the others (at least with

one drug) through target–target network visualization, which

further confirms the importance of multi-target drugs. Although

some drugs were developed based on the single-target strategy,

researchers later discovered the diversity of their targets. Their lines

were thicker than the others, indicating that more drugs affect these

targets. A typical aggregation is that of tyrosin kinases. In fact,

several anti-cancer drugs target MCSF1R (macrophage colony-

stimulating factor 1 receptor), MSCGFR (mast/stem cell growth

factor receptor), POTPKABL1 (proto-oncogene tyrosine-protein
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kinase ABL1) and VEGFR2 (vascular endothelial growth factor

receptor 2), among others. This development exhibits the recent

trend of anti-cancer drug discovery. Another remarkable aggrega-

tion includes 5H1BR (5-hydroxytryptamine 1B receptor), 5H1DR

(5-hydroxytryptamine 1D receptor), 5H2AR (5-hydroxytryptamine

2A receptor), D2DR [D(2) dopamine receptor], D3DR [D(3)

dopamine receptor], D4DR [D(4) dopamine receptor], HH1R

(histamine H1 receptor), and so on. These receptors are the targets

for the treatment of nervous system diseases. These observations

also indicate the market demand in the recent years.

We also conducted a centrality analysis and found that

ABCSGM2 (ATP-binding cassette sub-family G member 2),

Figure 1. Target–target network. The circles indicate the targets and the size of circles represents nodal degree. The links between the targets
represent the number of drugs simultaneously focused by two neighboring targets. Thicker ties mean stronger interactions, whereas thinner links
represent weaker relationships.
doi:10.1371/journal.pone.0040262.g001
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NOSE (nitric-oxide synthase, endothelial), P4H (phenylalanine-4-

hydroxylase), MRP1 (multi-drug resistance protein 1), A1AAR

(Alpha-1A adrenergic receptor), B1AR (Beta-1 adrenergic

receptor), among others, present relative high betweenness centrality

in the target–target network (Table 1), indicating their importance in

this network and the potential of development of new drugs.

Figure 2. Drug–drug network. The circles indicate the drugs and the size of circles represents nodal degree. The circles of nodes without any line
will disappear in the networks because their nodal degree is equal to zero. The links between the drugs represent the number of targets
simultaneously focused by the two neighboring drugs. Thicker ties mean stronger interactions, whereas thinner links represent weaker relationships.
Red, alimentary tract and metabolism; Yellow, nervous system; Blue, general anti-infectives systemic; Green, antineoplastic and immunomodulating
agents; Purple, genito-urinary system and sex hormones; Grey, respiratory system; Black, cardiovascular system; White, others.
doi:10.1371/journal.pone.0040262.g002
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Drug–drug Network
Drugs used in treating the similar disease do not significantly

accumulate (Figure 2), and only drugs that target dopamine

receptors, 5-hydroxytryptamine receptor, adrenergic receptors,

and histamine receptors for the treatment of neurological diseases

etc. cluster relatively closer compared with the others (Figure 2).

This phenomenon may be attributed to a variety of targets for the

same disease and is significantly evident in anti-cancer drugs. For

example, DNA, DNA synthesis-related enzymes, different types of

tyrosine kinases, histone deacetylase inhibitors, and proteasome

inhibitors, among others, are all anti-cancer targets, which lead to

the development of anti-drugs in different clusters. In particular,

ARRANON, DACOGEN, ELOXATIN, and VIDAZA target

DNA; TARCEVA, TYKEERB, and IRESSA target EGFR

(epidermal growth factor receptor); NEXAVAR, SUTENT,

GLEEVEC, and SPRYCEL target other tyrosine kinases;

ZOLINZA targets histone deacetylases; and VELCADE targets

proteasome. Therefore, the aforementioned drugs are not

clustered together although all of them are used in treating cancer.

Interestingly, TRISENOX is linked to other tyrosine kinase

inhibitors, indicating its tyrosine kinase inhibitory activity.

Moreover, no drug that simultaneously inhibits EGFR and other

tyrosine kinases has been discovered, hence the need for further

studies. Several drugs, such as FUZEON, JANUVIA, and

XIFAXAN, among others, are not correlated with any other

drugs, indicating that they have no common targets with other

drugs or the correlation between these targets and the known ones

is not yet clear.

Product Sales
Some preliminary associations between pharmaceutical targets

and sales have been identified in our past research [7]. For

example, pharmaceutical sales is positively correlated to the

number of drug targets, while the average number of targets of

blockbuster drugs seems to be higher than one of common drugs

[7]. These results do not, however, indicate the essential cor-

relation between pharmaceutical targets and business value in view

of the complex interactive relationship between drugs and targets.

A new indicator popularly used in network analysis, betweenness

centrality, is further employed in this research. The betweenness

centrality of the sampled drug in the drug–drug network and its

product sales (Pearson’s correlation coefficient = 0.371, P,0.001)

have significant correlation, which further revealing the associa-

tion between the targets’ bridging effect on drugs and economic

value. A drug with high betweenness centrality is often a multi-

target drug representing an important mediator in the interaction

among different targeted therapeutic drugs. This kind of drugs

highly shares and controls certain important targeted conduction

pathways for the disease therapies of other drugs and thus has a

high probability of becoming a best-selling drug.

Discussion

In this paper, two networks, namely, the target–target and

drug–drug networks (Figure 1 and Figure 2), were visualized using

network analysis tools. The drug discovery status and trend were

analyzed based on the new NMEs approved by the U.S. FDA

from January 2000 to December 2009.

The average target number of sampled drugs from January

2000 to December 2009 is slightly higher than that of the drugs

collected by Drugbank before May 2006 [6,7]. Moreover, the

average target number of blockbuster drugs is also higher than that

of all our collected samples [7]. These observations indicate that

multi-target drug discovery is indeed a status over the past decade

and a possible trend in the future, although many single-target

drugs are still used today. This development is primarily due to the

Table 1. Top 20 betweenness centrality in the target–target network.

Rank Targets Abbreviation Targets Full Name Betweenness Centrality

1 ABCSGM2 ATP-binding cassette sub-family G member 2 0.0395048

2 NOSE Nitric-oxide synthase, endothelial 0.0390933

3 P4H Phenylalanine-4-hydroxylase 0.0379617

4 MRP1 Multi-drug resistance protein 1 0.0255478

5 A1AAR Alpha-1A adrenergic receptor 0.0247959

6 B1AR Beta-1 adrenergic receptor 0.0131237

7 BPDGFR Beta platelet-derived growth factor receptor 0.0089909

8 MSCGFR Beta platelet-derived growth factor receptor 0.0089909

9 5H1AR 5-hydroxytryptamine 1A receptor 0.0047314

10 5H1DR 5-hydroxytryptamine 1D receptor 0.0047314

11 H1P HIV-1 protease 0.0045266

12 POTPKABL1 Proto-oncogene tyrosine-protein kinase ABL1 0.0041608

13 5H7R 5-hydroxytryptamine 7 receptor 0.0026662

14 APDGFR Alpha platelet-derived growth factor receptor 0.0021861

15 MCSF1R Macrophage colony-stimulating factor 1 receptor 0.0021861

16 D4DR D(4) dopamine receptor 0.0021604

17 D3DR D(3) dopamine receptor 0.0021604

18 D2DR D(2) dopamine receptor 0.0021604

19 SDDT Sodium-dependent dopamine transporter 0.0021565

20 SDST Sodium-dependent serotonin transporter 0.0006687

doi:10.1371/journal.pone.0040262.t001
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recent changes in people’s lifestyles, leading to morbidity and

alteration in the market share of therapeutic areas. The sales of

drugs for nervous and cardiovascular system diseases and anti-

neoplastic agents exceed the average sales of all drugs [7]. In fact,

cancer and those nervous and cardiovascular system diseases are

complicated, thereby promoting the multi-targeted therapies as a

better pathway to achieve the desired treatment. For example, the

therapeutic targets for cancer include tubulin, topoisomerases,

various types of tyrosine kinases, mammalian target of rapamycin,

phosphatidylinositol 3-kinase, histone deacetylases, focal adhesion

kinase, AMP-activated protein kinase (AMPK), 26S proteasome

complex, and cyclooxygenase, among others [8,9,10,11,12,13,14,

15,16,17,18]; the therapeutic targets for Alzheimer’s disease

include acetylcholinesterase, secretase, monoamine oxidase B,

and t protein, among others [19,20,21,22,23]; the therapeutic

targets for atherosclerosis include acylcoenzyme A-cholesterol

acyltransferase, high density lipoprotein, lectin like oxidized low

density lipoprotein receptor, AMPK, and peroxisome proliferator-

activated receptor (PPAR), among others [18,24,25,26,27]. It

seems that using single-targeted agents to cure these complex

diseases is almost impossible. The multiple tyrosine kinase

inhibitor imatinib induces better anti-cancer effects compared

with that of gefitinib, which involves a single target [28], further

indicating that drugs with multiple targets may exhibit a better

chance of affecting the complex equilibrium of whole cellular

networks than drugs that act on a single target. Actually, there are

several molecular targets, such as dopamine receptors, 5-

hydroxytryptamine receptor, adrenergic receptors, cyclooxygen-

ase, monoamine oxidase B, AMPK, PPAR, etc. (Fig. 1 and

[12,18,26,29,30,31]), are common to the complex human diseases,

indicts that these targets may play vital roles in the development of

complex disease and also suggests that drugs target these targets

may have the potential for the secondary development.

Then, how do we develop multi-targeted drugs successfully?

Although a number of marketed drugs are thought to derive their

therapeutic benefit by interacting with multiple targets, majority of

these were discovered accidentally. Therefore, the rational

discovery of multi-target drugs is an emerging area. For instance,

tyrosine kinases are good targets for the treatment of cancer, and

several drugs have already been approved by the U.S. FDA. As

targeting several tyrosine kinase receptors at once may dramat-

ically affect the progression of cancer and decrease resistance,

some multi-target tyrosine kinase inhibitors have been developed

in the recent years [14,15,32]. Though there are some studies for

multi-target drug design in the recent years [19,20,33], it is still a

long way to rationally design promising multi-target agents based

on current knowledge. The most important thing is that we still

not clear which targets should be combined to design better drugs

for the specific complex diseases. As natural products are a rich

reservoir for drug discovery because of their diversity and

complexity structures [34,35] and most of the natural products

are multi-target, we propose that screening the new compounds

from natural products based on high content screening is an

effective strategy. It is also worthy to re-screening and re-

evaluating the dirty compounds such as curcumin [36,37,38,

39,40], berberine [37,38,41], and baicalein [42], among others. Of

course it is worth noting that there are also several disadvantages

of natural products, such as low bioavailability, weak effects, and

complex molecular mechanism of actions, among others [34].

Thus, structure modification using medicinal chemistry and

pharmaceutical technologies and mechanisms identification using

advanced modern technologies are necessary [35].

Combinatorial therapy is another kind of multi-target drug. The

treatment of cancer in clinical is almost combination therapy and

it is also increasingly used in the prevention and treatment of

AIDS, cerebral ischemia, Parkinson’s disease, and Alzheimer’s

disease, among others [43,44,45,46]. What will happen if all

known targets for one complex disease were simultaneously

affected using one compound or drug combination? Identifying

such compound or combination is actually impossible, and toxicity

is another problem that will be raised. Thus, one better way is to

combine the targets selectively according to the developing

knowledge and screen the compounds for rational drug discovery.

Therefore, the mechanisms causing a particular disease must be

clarified. The rapid development of technologies in biological

systems such as genomics, proteomics, metabonomics and so on,

may enhance our understanding of the nature of the disease,

effectively find possible therapeutic targets, and generate computer

models that will identify the correct multi-fitting and further make

this novel drug design paradigm successful.

In summary, we applied network analysis tools and successfully

visualized the information. The approach may still have more or

less biases. For example, some targets information may be changed

due to the growth of knowledge. Nevertheless, we have confirmed

the status of drug discovery in the recent years and put forward the

possible future trend.

Materials and Methods

Data Sources
All NMEs approved by the U.S. FDA from January 2000 to

December 2009 were taken from the Drugs@FDA database. The

targets of all sample drugs were individually collected from the

Drugbank database in 2011, while the drug–target pairs were

constructed accordingly. Furthermore, the therapeutic classifica-

tion and sales information of the sample drugs were collected from

the IMS Health database, a leading pharmaceutical market

database in the world, using all NMEs’ brand names as retrieval

keywords.

Network Construction
The drug–target pairs were visualized based on the interaction

between the drugs and targets using network analysis tools (Pajek and

NetDraw). The original two-mode drug–target network was further

constructed, wherein two types of nodes, namely, drugs and targets,

and edges represent the strength of interaction between drugs and

targets, which is measured by the frequency of their interactions.

Thicker ties mean stronger interactions, whereas thinner links

represent weaker relationships. Moreover, the two-mode drug–target

network was converted into one-mode drug–drug and target–target

networks based on the network neighborhood. The drug–drug

network only includes drugs as network members, whereas the ties

between drugs represent the number of targets simultaneously focused

by two neighboring drugs. On the contrary, a target–target network is

composed of only target members, their links stand represent the

number of drugs that focus on the two neighboring targets.

Centrality Analysis
Centrality measures the location of network nodes. Betweenness

centrality indicates the interval between one node and the other

nodes, demonstrating the medium degree of a certain node within

the network

Cb~
X

jvk

gjk(ni)=gjk

where gjk denotes the geodesic number between node j and node k

and gjk(ni) indicates the geodesic number involving node ni between

The Trend of Drug R&D
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two nodes. Thus, the betweenness of node ni is the sum of gjk(ni)/gjk.

The betweenness centrality ranges from 0 to 1:0 means that the

node cannot control any other nodes in the network, whereas 1

indicates that the node seizing the central position in the network

can entirely control all other nodes. Herein, the betweenness

centrality of nodes in drug and target networks was measured

accordingly, and the importance and role of specific drugs and

targets in the networks were observed.
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