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Abstract

Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the
tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear
whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with
glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 ‘‘albumin-regulated genes’’
differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings
to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from
patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from
those of control subjects (n = 6) based solely upon the expression of these 231 ‘‘albumin-regulated genes.’’ The expression
of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish
biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric
diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls
(n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway
analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an
albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the
hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients
with glomerulonephritis.
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Introduction

Proteinuria is the clinical hallmark of glomerulonephritis, and

the most important predictor of outcome in both diabetes-related

and idiopathic glomerular-based kidney disease [1–8]. IgA

nephropathy (IgAN) is the most common form of primary kidney

disease world-wide [9,10]; up to 40% of patients with IgAN

progress to renal failure within 10 years of diagnosis [11]. Studies

have consistently shown that proteinuria is the most powerful

predictor of the rate of kidney function decline and kidney survival

in IgAN [12–17], and that in patients with IgAN, this relationship

is particularly strong even at low levels of proteinuria [18].

One of the pathologic features common to all forms of

progressive glomerular-based kidney disease is tubulo-interstitial

fibrosis, which shows consistent correlation with renal functional

impairment [19–21]. Tubulo-interstitial fibrosis may be triggered

by a variety of processes [22]; one proposed mechanism includes

exposure of tubular cells to protein. Experimental evidence

suggests that proteinuria is not only a marker of disease

progression, but is directly involved in the pathogenesis of

tubulo-interstitial fibrosis, and the progression of kidney injury

[23,24]. In patients with glomerular disease, proximal tubular

epithelial cells are exposed to pathologically high concentrations of

urinary proteins, including albumin. This induces a number of

potentially injurious biologic responses in tubular epithelial cells,

including inflammation, apoptosis, production of reactive oxygen

species, and transition to a myofibroblast phenotype, ultimately

contributing to tubulo-interstitial fibrosis [25–30]. These cellular
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responses may be dependent upon direct receptor-mediated

uptake of albumin by tubular epithelial cells and subsequent

stimulation of down-stream responses (such as NFkB-dependent

gene transcription) or endocytosis-independent activation of

signaling cascades by albumin [31]. While tubular cell exposure

to protein is not the only proposed mechanism by which

glomerular diseases result in tubulo-interstitial injury and progres-

sive loss of renal function [22,32], these observations may explain,

in part, the important relationship between proteinuria, tubulo-

interstitial injury, and long term outcome in glomerular-based

kidney disease [19–21,33].

Genome wide mRNA expression profiling tools, combined with

robust statistical approaches, provide an unbiased approach to

study the tubulo-interstitial transcriptional response initiated by

proteinuria [34]. Using this strategy, we have demonstrated in an

in vitro model of proteinuria that exposure of primary human renal

proximal tubular epithelial cells to albumin induces the differential

mRNA expression of a number of ‘‘albumin-regulated’’ genes,

including interleukin-8 (IL-8) and the epidermal growth factor

receptor (EGFR) [29]. Using this model system we demonstrated

that albumin exposure in vitro results in the enhanced expression of

IL-8 via activation of the mitogen-associated protein kinase ERK,

an effect that was dependent upon transactivation of the EGF

receptor and the generation of reactive oxygen species. While this

in vitro model is a highly simplified representation of the in vivo

disease process, in vitro findings using similar systems have been

confirmed in studies of human kidney disease [30,35].

To better understand the relationship between proteinuria and

tubular epithelial cell responses, we studied the expression of

‘‘albumin-regulated genes’’, defined in vitro, in the tubulo-

interstitium of human kidney biopsies from patients with

glomerulonephritis. First, primary human renal tubular epithelial

cells were exposed to albumin in vitro, and differential gene

expression was assessed using mRNA microarray analysis. A set of

231 differentially expressed ‘‘albumin-regulated’’ genes was

derived, and the expression of these genes was then measured in

the tubulo-interstitial compartment of kidney biopsy tissue from

patients with primary glomerulonephritis and healthy live kidney

donors. We first studied the expression of these transcripts in IgAN

biopsies, given that this is the most common type of primary

glomerulonephritis, and given the particularly close relationship

between proteinuria and kidney function in this disease [18]. We

then studied mRNA expression in the tubulo-interstitial compart-

ment of patients with other forms of idiopathic glomerulonephritis

to determine if there are shared mechanisms of tubulo-interstitial

injury.

Results

Differential gene expression in an in vitro model of
proteinuria

To determine the effect of albumin on gene expression in

cultured primary human renal tubular epithelial cells, mRNA

expression was measured using data from 8 microarrays (4 with

control conditions representing 8 experimental in vitro replicates,

and 4 BSA-treated conditions, representing 8 experimental

replicates). Using conservative thresholds for differential gene

expression, we identified 231 transcripts differentially expressed in

cells treated with 1% bovine serum albumin (BSA) versus control

conditions for 6 hours. A selection of the mRNA transcripts found

to be differentially expressed in this model, using stringent

statistical selection criteria, is provided in Table 1 (full list

Supplementary Data S1). Albumin-dependent mRNA regulation

was seen in genes involved in apoptosis, cell growth and

metabolism, cell-signaling, lipid metabolism, matrix turnover, cell

cycle, cell movement, lipid metabolism, and reactive oxygen

species scavenging.

Expression of ‘‘albumin-regulated genes’’ in human
kidney biopsy sample

Affymetrix microarray mRNA expression data were generated

from the tubulo-interstitial compartment of biopsies from 25

patients with IgAN and proteinuria and 6 control subjects enrolled

in the European Renal cDNA Bank Bank - Kröner-Fresenius

biopsy bank (ERCB-KFB). The clinical characteristics of subjects

are shown in Table 2; subjects with IgAN had a wide range in

proteinuria (trace to 10g/day) and renal function (normal to stage

4/5 CKD). Expression data for 231 unique ‘‘albumin-regulated’’

genes (derived above) were extracted from the human renal biopsy

microarray data.

To determine if the expression levels of these 231 genes were

associated with the kidney disease process, hierarchical cluster

analysis of the expression data was performed (Figure 1). Cluster

analysis distinguished between renal biopsies from control subjects

and the renal biopsies from patients with IgAN based upon the

expression of the 231 ‘‘albumin-regulated genes’’. The cluster

analysis findings were not reproduced using the expression data of

randomly selected gene sets of similar size. Of the 231 genes, 49

(21%) were differentially expressed in the IgAN samples compared

to the healthy control samples (FDR 5%, see Supplementary Data

S1) compared to 4% of the genes in the complete Affymetrix data

(x2 = 147, p,0.01), confirming the enrichment of regulated genes

in the in vitro defined gene set.

A gene expression signature of proteinuria in IgAN
Given the critical relationship between proteinuria and outcome

in IgAN, even at low levels of proteinuria [18], we specifically

examined genes differentially expressed in IgAN biopsies com-

pared with control biopsies. The 231 gene set was derived from an

in vitro model of proteinuria designed to be representative of the

biologic response of kidney tubular cells in to proteinuria, so we

studied the relationship between the expression levels of the

‘‘albumin-regulated’’ genes in the tubulo-interstitial compartment

from the renal biopsies of the patients with IgAN with the level of

proteinuria at the time of kidney biopsy, and selected the mRNAs

with expression levels significantly correlated with proteinuria.

We then utilized the following criteria to select a list of genes for

the validation studies: 1) genes differentially expressed by human

renal tubular cells after exposure to albumin, in vitro; 2) genes

differentially expressed in the tubulo-interstitial compartment of

patients with IgAN compared to control subjects (this compart-

ment includes tubular epithelial cells, interstitial tissue and cells

such as fibroblasts, and endothelial cells in vascular structures)

based upon the biopsy Affymetrix microarray data set; 3) genes

with expression levels related to level of proteinuria within IgAN.

This selection process yielded a set of 11 genes (see Table 3).

Albumin-regulated genes in primary GN
In order to determine if the relationship between the expression

of the albumin-regulated genes and the kidney disease process is

unique to IgAN, the Affymetrix microarray mRNA expression

data for these genes were derived from the tubulo-interstitial

compartment of biopsies from patients with primary focal

segmental glomerulosclerosis (FSGS, n = 10), membranous GN

(MGN, n = 18) and minimal change disease (MCD, n = 5) and

proteinuria and 21 control subjects (healthy kidney donors with

normal renal biopsies) enrolled in the ERCB-KFB. The clinical

Proteinuria Gene Signature
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Table 1. Genes differentially expressed in cells exposed to albumin.

Genes related to apoptosis: p = 0.02 Genes related to cell cycle: p = 0.02 CONT’D

BIN1 bridging integrator 1 INHBA inhibin, beta A (activin A, activin AB alpha polypeptide)

CDK2AP1 CDK2-associated protein 1 KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1)

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)

CFLAR CASP8 and FADD-like apoptosis regulator PTHLH parathyroid hormone-like hormone TFDP1 transcription factor Dp-1

CROP cisplatin resistance-associated overexpressed protein TFDP2 transcription factor Dp-2 (E2F dimerization partner 2)

DAPK1 death-associated protein kinase 1 TYMS thymidylate synthetase

DUSP5,6 dual specificity phosphatase 5,6

GLRX glutaredoxin (thioltransferase) Cellular movement: p = 0.02

HTRA2 HtrA serine peptidase 2 HMGB2 high-mobility group box 2

IER2 immediate early response 2 NR2F2 nuclear receptor subfamily 2, group F, member 2

IER3 immediate early response 3 RGS4 regulator of G-protein signaling 4

IGFBP3 insulin-like growth factor binding protein 3 S100A2 S100 calcium binding protein A2

MBD4 methyl-CpG binding domain protein 4 SPRY2 sprouty homolog 2 (Drosophila)

MCL1 myeloid cell leukemia sequence 1 (BCL2-related) SPRY4 sprouty homolog 4 (Drosophila)

NDRG1 N-myc downstream regulated gene 1

SFN stratifin Connective tissue development and metabolism: p = 0.02

THBD thrombomodulin COL1A1 collagen, type I, alpha 1

CYR61 cysteine-rich, angiogenic inducer, 61

Cell growth and proliferation: p = 0.03 KRT18 keratin 18

ADFP adipose differentiation-related protein PLAU plasminogen activator, urokinase

CCL20 chemokine (C-C motif) ligand 20 PLAUR plasminogen activator, urokinase receptor

DNAJC9 DnaJ (Hsp40) homolog, subfamily C, member 9 SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator
inhibitor type 1), member 1

HSPB8 heat shock 22kDa protein 8

IRF8 interferon regulatory factor 8 Lipid metabolism: p = 0.02

SEMA4D sema domain, immunoglobulin domain (Ig), transmembrane
domain (TM) and short cytoplasmic domain, (semaphorin) 4D

ACSL3 acyl-CoA synthetase long-chain family member 3

UPP1 uridine phosphorylase 1 FDFT1 farnesyl-diphosphate farnesyltransferase 1

HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase

Cell-to-cell signaling, interaction: p = 0.003 HMGCS1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)

EGFR epidermal growth factor receptor (erythroblastic leukemia viral
v-erb-b oncogene homolog, avian)

LDLR low density lipoprotein receptor (familial hypercholesterolemia)

EGR1 early growth response 1 LIPG lipase, endothelial

ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific)

IGFBP3 insulin-like growth factor binding protein 3 Free radical scavenging: p = 0.01

IL6 interleukin 6 (interferon, beta 2) TXNIP thioredoxin interacting protein

IL8 interleukin 8 XDH xanthine dehydrogenase

LIF leukemia inhibitory factor (cholinergic differentiation factor)

PBEF1 pre-B-cell colony enhancing factor 1 Other Genes of Interest

PHLDA2 pleckstrin homology-like domain, family A, member 2 BHLHB2 basic helix-loop-helid domain containing, class B,2

TNFSF10 tumor necrosis factor superfamily, member 10 CEBPD CCAT/enhancer binding protein, delta

KDELC1 KDEL (Lys-Asp-Glu-Leu) containing 1

Genes related to cell cycle: p = 0.02 MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)

CDC7 CDC7 cell division cycle 7 (S. cerevisiae) PSMD11 proteasome (prosome, macropain) 26S subunit, non-ATPase, 11

CDC27 cell division cycle 27 SAMD4 sterile alpha motif domain containing 4

CDK4 cyclin-dependent kinase 4 SLC19A2 solute carrier family 19 (thiamine transporter) member 2

G0S2 G0/G1switch 2 STEAP1 6 transmembrane epithelial antigen of prostate 1

HBEGF heparin-binding EGF-like growth factor TARS threonyl-tRNA synthetase

HK2 hexokinase 2 ZBED5 zinc finger BED-type containing 5

HMOX1 heme oxygenase (decycling) 1

doi:10.1371/journal.pone.0013451.t001
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characteristics of subjects are shown in Table 4. As reference

samples healthy living kidney donors known to have normal renal

function and no proteinuria were used.

We found that the expression of these 11 mRNAs differed in the

tubulo-interstitial compartment of all biopsies of subjects with

primary glomerular disease compared to controls. Hierarchical

cluster analysis confirmed that renal biopsies from healthy donors

can be distinguished from the renal biopsies of patients with all

forms of primary GN based solely upon the expression of the 11

mRNA gene signature (Figure 2). Cluster analysis using expression

data of randomly selected gene sets of similar size did not

distinguish kidney biopsies of control subjects from the biopsies of

subjects with GN.

Potential common regulatory pathways
To define the functional context of the proteinuria associated

genes, a transcriptional network was constructed using a co-

citation natural language processing (NLP) tools (Genomatix

Bibliosphere), considering all of the transcripts of the 11-gene

mRNA signature (Supplementary Data S1). EGR1 emerged as a

central node linking EGR1 to the remaining 10 mRNA

transcripts. To determine if common transcription factor promoter

elements could explain the functional relationship between these

11 albumin-regulated mRNA transcripts, promoter regions (500bp

up and 100bp downstream of the transcription start sites) was

performed (Genomatix Bibliosphere). In concordance with the

central role of the EGR node in the NLP analysis, most of the

genes encoding the 11-gene mRNA signature contain a proximal

EGR1 promoter regions, consistent with a putative common

transcriptional regulation (Figure 3).

Discussion

Proteinuria is an important determinant of outcome in primary

GN but the mechanisms responsible for this association have not

been fully elucidated. Although in vitro and experimental studies

suggest that proteinuria, and in particular albumin, elicits a

biological response in kidney tubule epithelial cells that contributes

to progressive tubulointerstitial injury [35], it is uncertain if

proteinuria has a direct effect on gene expression in human kidney

disease. Development of new unbiased molecular and statistical

tools for studying mRNA expression in renal tissue has greatly

advanced our ability to study renal disease, and to translate

findings from basic molecular and cell biology research to human

disease [34,36–44]. Accordingly, the aim of this study was to test

the hypothesis that there is a steady-state change in gene

expression in the renal tubulointerstitium of subjects with primary

GN that reflects a biological response of the tubule cells to

proteinuria.

In order to address this hypothesis we exposed primary human

renal proximal tubular epithelial cells to albumin, in vitro,

simulating the exposure of tubular cells to proteinuria in human

proteinuric glomerulonephritis. Our first major finding was the

identification of a distinct set of 231 mRNAs differentially

regulated in human renal tubular cells by albumin exposure in

vitro (Supplementary Data S1). Gene ontology (GO) analysis

identified several pathways that were statistically over-represented

in the in vitro expression data, and the proteins encoded by these

genes are involved in diverse biological processes including

apoptosis, cell cycling, pro-inflammatory cell signaling cytokines,

connective tissue development and fibrosis, and free radical

scavenging, and lipid metabolism (Table 1).

Although the genes regulated by albumin in vitro can be related

to injury pathways and outcomes like cell loss, inflammation, and

fibrosis, we sought to translate these findings to human kidney

disease by comparing the expression levels of these genes in the

kidneys of normal subjects and subject with primary GN. mRNA

levels were measured by microarray analysis in the microdissected

tubulointerstitial compartment of renal biopsy samples in order to

capture the kidney tubular cell transcriptome in vivo. We chose to

focus first on subjects with IgAN because new evidence has shown

that incremental increases in proteinuria are associated with

dramatic reductions in renal survival in IgAN [18], and that in

patients with IgAN, these changes occur at far lower levels of

proteinuria compared to patients with other forms of primary GN

[45]. Our second major finding was that we could distinguish

between the kidney biopsies of subjects with IgAN and healthy

living donors based solely upon the tubulo-interstitial expression

levels of the 231 ‘‘albumin-regulated genes’’ using hierarchical

cluster analysis.

In order to determine if this clustering phenomenon was a

chance event, we tested random sets of 231 genes generated from

the full Affymetrix expression dataset but cluster analysis of these

random gene sets failed to segregate IgAN from control biopsies.

In addition, we found significantly enriched differential expression

of the 231 ‘‘albumin-regulated genes’’ in the tubulo-interstitial

tissue of IgAN biopsies compared to control biopsies. Taken

together, these analyses support the hypothesis that the biological

response to albumin that we observed in vitro may also be present,

at least in part, in the kidneys of subjects with IgAN and

proteinuria.

In order to further explore the link between proteinuria and

gene expression in vivo, we then studied the relationship between

the expression levels of the 231 genes and the levels of proteinuria

at the time of biopsy within the group of subjects with IgAN. The

rationale for this analysis was twofold: first, proteinuria is known to

be the most powerful predictor of outcome in glomerular-based

diseases, including IgAN, and, second, the tubular response to

proteinuria (modeled by our in vitro experiment) may be a key

factor determining progressive tubulo-interstitial fibrosis and

nephron loss, important pathologic indicators of prognosis in

IgAN [11,18]. Our third major finding was that the tubulo-

interstitial expression levels of 11 mRNA transcripts (of the 231

albumin-regulated genes) correlated significantly with the level of

proteinuria at the time of biopsy, suggesting that there may be a

biological relationship between gene expression in the tubuloin-

terstitial compartment of the kidney and proteinuria. We labeled

this set of 11 genes the ‘‘proteinuria signature’’.

The 11 genes in the ‘‘proteinuria signature’’ encode some

proteins previously implicated in the tubular response to

proteinuria, as well as some proteins that have not been studied

Table 2. Patient characteristics – subjects with IgA
nephropathy.

Control IgA nephropathy

Number 6 25

Mean age
(range)

48.5
(32–62)

36
(19–84)

% male 50 71

Mean serum creatinine 6 SD (range)
mmol/L

,120 1316129 (40–643)

Mean 24h urine protein 6 SD (range)
g/24h

,0.20 2.3662.3 (0.28–10)

doi:10.1371/journal.pone.0013451.t002

Proteinuria Gene Signature
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in the context of kidney disease, and thus may be potential new

mediators of progressive kidney injury. For example, protein

members of the coagulation cascade have been implicated in

extracellular matrix protein turnover in the kidney, and we found

that Serpine1 (PAI-1) was a transcipt identified in the proteinuria

signature. Serpine1 is not normally produced in the kidneys,

however experimental evidence suggests that it is an important

promoter of renal fibrosis [46]. The mechanisms by which it

promotes fibrosis are not entirely elucidated, however in addition

to inhibiting protease activity in the extracellular compartment, it

may modulate inflammatory cell recruitment, and fibroblast

activation [47]. Work in experimental models of kidney disease

including protein overload injury, proliferative glomerulonephritis,

and obstructive kidney disease suggests that increased PAI-1

expression is associated with interstitial fibrosis, and reduction in

PAI-1 expression (via drug therapy or recombinant techniques) is

associated with attenuation of renal fibrotic injury [46–50].

Furthermore, de novo PAI-1 protein expression is documented

Figure 1. Cluster analysis. Clustering of microarrays according to disease status (horizontal axis) based upon expression of the 231 albumin-
regulated genes (vertical axis). Control = control group, IgAN = IgA nephropathy.
doi:10.1371/journal.pone.0013451.g001

Proteinuria Gene Signature
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in kidney biopsies of patients with glomerular based kidney disease

[51–53]. Our data support the hypothesis that proteinuria may

contribute to fibrosis by increasing PAI-1 expression by tubular

cells. In addition, the early growth response gene 1 (EGR-1) has

been implicated in the TGFb-mediated fibrosis [54] and in the

regulation of interstitial fibrosis in the experimental unilateral

ureteric obstruction model [55]. Finally, our discovery that the

gene for collagen I, alpha 1, was also in the ‘‘proteinuria

signature’’ also supports a link between proteinuria, gene

expression in the tubulointerstitium, and fibrosis.

In addition to interstitial fibrosis, apoptosis of tubular cells

contributes to progressive kidney injury in primary GN by

promoting cell loss [56,57]. In this regard, EGR-1 has also been

reported to regulate apoptosis in response to oxidative stress [58].

Two other apoptosis-related genes, immediate early response 3

(IER3) and myeloid cell leukemia sequence 1 (MCL1), were also in

the 11 gene ‘‘proteinuria signature’’. The MCL1 gene encodes a

member of the bcl2 family that may promote or inhibit apoptosis

depending on the tissue [59–61]. For example, MCL1 has been

found to support cell survival in Wilms’ Tumour cell lines [62].

Neither MCL1 nor IER3 have been studied in the context of

primary GN, and further studies will be necessary to better define

their role in kidney disease. Similarly, the role of the proteins

encoded by genes MAFF, TYMS, and SAMD4A in the

progression of GN is unknown.

The next goal of this study was to determine if these 11 genes

represented a generic response to proteinuria that was present in

other forms of primary GN because our in vitro experiments

identified a response of tubular cells to albumin that was

independent of glomerular injury. In order to address this

question, we studied the expression levels of the 11 genes in

kidney biopsy samples from subjects with three other common

forms of primary GN: focal segmental glomerulosclerosis (FSGS),

membranous nephropathy (MGN), and minimal change disease

(MCD). The biopsies of subjects with FSGS, MGN, and MCD

could be distinguished from control biopsies based solely upon the

expression of the 11-gene signature, supporting the conclusion that

this 11-gene set is part of a common pathway linking proteinuria

to gene expression in the kidney.

Finally, we subjected the 11 genes to a bioinformatics analysis in

order to explore relationships between the component genes in the

‘‘proteinuria signature’’. We first constructed a transcriptional

network (Supplemental Figure S1 in Supplementary Data S1)

utilizing Genomatix Bibliosphere. The network derived from this

analysis placed EGR1 in the central node. Based on this finding, we

then went on to perform a transcription factor analysis utilizing gene

promoter sequence data for the 11 genes, and we found that the

consensus sequence for EGR1 was present in 6 of the genes in the

‘‘proteinuria signature’’. This analysis suggests that EGR1 may play

a key role in a common pathway orchestrating the transcriptional

response kidney tubule cells to proteinuria in vivo. The transcription

factor analysis further suggests that the transcription factor ELF3

may also mediate this response, at least in part.

There are some important limitations in the current study. First,

stringent and conservative statistical thresholds were used in the

initial selection of differentially expressed genes in vitro at a single

time point of 6-hours of albumin exposure. This design may have

precluded identification of other important genes involved in the

tubular cell response to albumin exposure (Type II Error). In

addition, we used the in vitro data set for a targeted analysis of the

human subjects with GN, capturing a different gene set than that

identified by Rudnicki et al. [63] in studies of laser-microdissected

proximal tubular cells in GN.

Table 3. Validation gene set.

Gene Title Gene Symbol Biological Process Description

collagen, type I, alpha 1 COL1A1 skeletal development, epidermis development

early growth response 1 EGR1 regulation of transcription, T cell differentiation

E74-like factor 3 (ets domain transcription factor,epithelial-specific) ELF3 regulation of transcription, epidermis development,
morphogenesis

immediate early response 3 IER3 Anti-/apoptosis, morphogenesis

heparin-binding EGF-like growth factor HBEGF Signal transduction, EGFR signaling pathway, smooth muscle cell
proliferation

v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) MAFF transcription regulation, epidermal cell differentiation

myeloid cell leukemia sequence 1 (BCL2-related) MCL1 regulation of apoptosis, differentiation

sterile alpha motif domain containing 4A SAMD4A positive regulation of translation

serpin peptidase inhibitor (plasminogen activator inhibitor type 1)1 SERPINE1 blood coagulation, fibrinolysis, regulation of angiogenesis

six transmembrane epithelial antigen of the prostate 1 STEAP1 electron transport

Thymidylate synthetase TYMS nucleic acid metabolism/biosynthesis, DNA replication/repair,
phosphoinositide-mediated signaling

doi:10.1371/journal.pone.0013451.t003

Table 4. Patient characteristics – European Renal cDNA Bank
glomerular disease subjects.

FSGS MGN MCD

Number 10* 18 5**

Mean age (range) 50 (32–76) 53 (18–86) 45 (25–78)

% male 60 56 80

Mean serum creatinine
6 SD (range)
mmol/L

1566105
(53–355)

88.6635.5
(40–160)

101642.5
(53–134)**

Mean 24h urine protein
6 SD (range)
g/24h

4.9762.6
(1.9–8.4)

4.5863.2
(0.5–9.8)

2.9064.0
(0.1–5.7)

*10 patients age available for only 4 patients.
**5 patients; age and serum creatinine available for only 3 patients.
doi:10.1371/journal.pone.0013451.t004

Proteinuria Gene Signature
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Finally, while we derived our list of candidate genes from an in

vitro model of proteinuria, it is likely that the transcriptional

response of the genes measured in the tubulo-interstitium of the

kidney biopsies is not due entirely to exposure to albumin the

ultrafiltrate. We may also be capturing the tubular response to

other factors that play a role in progression. For example, it is

possible that the transcriptional response is related to exposure of

tubular cells to filtered growth factors [64], other proteins in the

ultrafiltrate, or modified albumin moieties [42,65–69]}. In this

regard, Kritz and coworkers have suggested that albumin uptake

by tubular cells is not an absolute prerequisite for tubulo-intertitial

injury in mice with glomerulonephritis [32]. Other contributors to

nephron loss in glomerular-based kidney disease include misdi-

rected filtrate and obstruction of the tubulo-glomerular junction

with subsequent tubular cell injury and ischemia [22,32]. The

importance of multifactorial contributions to tubulo-interstitial

fibrosis beyond tubular cell albumin exposure is highlighted by the

clinical observation that in IgAN, tubulo-interstitial injury and

functional decline occurs at far lower levels of proteinuria [45]. Of

interest, our mRNA signature was able to discriminate minimal

change nephropathy biopsies from control samples, despite the

fact that this entity is only more rarely associated with tubulo-

interstitial fibrosis and progressive functional loss [70]. However,

when proteinuria reduction is not achieved in patients with this

disease, sclerosis, fibrosis, and functional loss does occur [70].

It is also possible that the tissue mRNA signature is not entirely

derived from tubular cells. There are little morphometric data that

quantify the relative abundance of cells that comprise the cortical

Figure 2. Cluster analysis. Clustering of microarrays according to disease status (columns) based upon expression of the 11 albumin-regulated
genes (rows). Control = control group, FSGS = focal segmental glomerulosclerosis, MGN = membranous GN, MCD = minimal change disease.
doi:10.1371/journal.pone.0013451.g002
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interstitium in the disease state. In ‘‘normal’’ control biopsies, 87%

of the tubulo-interstitial compartment is comprised of the tubular

cell component; in biopsies of patients with type 1 diabetes with

early nephropathy, this reaches 91% [71]. The non-tubular cell

component comprises only 13% of the healthy cortex or less [72].

Of the non-tubular cell portion, only 14% (ie. ,2% total) is

composed of peritubular capillaries, in biopsies with moderate

interstitial expansion due to diabetic nephropathy [71,72]. Taken

together, these data suggest that the predominant resident cell

transcriptome signal is derived from tubular cell mRNA

expression. Emerging evidence also suggests that number of

dendritic cells in the cortical tubulo-interstitium of kidney biopsies

from patients with glomerulonephritis is increased in comparison

to control biopsies [73], and appear to contribute to progressive

kidney disease in animal models [74]. Interstitial macrophage

infiltration occurs in many forms of primary glomerulonephritis;

while data suggest that cellular infiltration correlates with renal

function at the time of biopsy, the relationship to proteinuria is not

as clear (reviewed in [75]). We cannot discount the possibility that

these cells are also contributing to the mRNA expression profile.

In summary, we have used an in vitro model of proteinuria to

identify a set of ‘‘albumin-regulated genes’’ in primary human

renal tubular cells. We have translated these findings to human

primary GN, and identified a subset of mRNA transcripts with

expression levels that correlate with the level of proteinuria, and

that distinguish biopsies of subjects with GN from biopsies of

control subjects. Further studies will be necessary to define the

biological role of these genes in proteinuric kidney disease and to

determine if measures of expression of these genes are predictive of

long-term clinical outcome.

Methods

Primary cell culture system
The cell system used was previously described [29]. Eight flasks

of primary human renal tubular epithelial cells (Cambrex,

Walkersville, MD) were exposed to medium alone and 8 flasks

of cells were exposed to medium containing 1% bovine serum

albumin for 6 h. The RNA extracted (Qiagen RNeasy kit,

Valencia, CA); RNA from cells grown in two flasks was pooled

to form one experimental sample, and each experiment was

performed in quadruplicate (total 16 flasks for eight microarrays—

four arrays from control cell RNA and four arrays from albumin-

treated cell RNA). RNA quality was verified using the Agilent

bioanalyzer (Agilent Technologies, Palo Alto, CA).

Synthesis of cDNA and array hybridization, washing, and

scanning were performed by the Affymetrix Gene Chip core

facility at The Centre for Applied Genomics at Toronto’s Hospital

for Sick Children (Ontario, Canada) according to Affymetrix-

recommended protocols (Santa Clara, CA) using the hgu 133A

Affymetrix Gene Chip and an Affymetrix Fluidics station.

RNA extraction and mRNA expression profiling of human
renal biopsy tissue

The study was performed as outlined previously in detail

[36,40]. Human renal biopsy specimens were procured in an

international multicenter study, the European Renal cDNA Bank-

Kröner-Fresenius biopsy bank (ERCB-KFB, see acknowledge-

ments for participating centers) [36]. Renal biopsies were obtained

after written consent and approval of the ethics committee and in

the frame of the ERCB-KFB approved by the specialized

subcommittee for internal medicine of the cantonal ethics

committee of Zurich. The characteristics of patients are shown

in Table 2. Control biopsy samples were obtained during the cold

ischemia period of living-related donor transplantation.

Total RNA was extracted from manually microdissected tubulo-

interstitial compartments obtained from living donors (n = 6) and

patients with IgA nephropathy (n = 25). After one round of

amplification of 300–800 ng of total RNA, RNA quality and

quantity was verified (Agilent Technologies, Waldbronn, Ger-

many). The fragmentation, hybridization, staining and imaging

was performed according the manufacturer’s guidelines (Affyme-

trix). For a detailed description of the protocol see reference [44].

All microarray data are MIAME compliant as detailed on the

MGED Society website http://www.mged.org/Workgroups/

MIAME/miame.html. The raw data will be GEO accessible

through GEO Series accession.

II. Data filtering strategy to determine renal response to
proteinuria

In order to rationally filter the large volume of data derived

from the microarray experiments, the following strategy was

employed to select the genes that are characteristic of the renal

response to proteinuria:

N 1 – Identification of genes differentially expressed in the in vitro

model of proteinuria by SAM and Limma analysis (described

below).

N 2 – Identification of genes differentially expressed in the

mRNA expression profiling data from tubulo-interstitial tissue

of patients with IgA nephropathy vs. control samples.

N 3 – Identification of genes correlating with and predictive of

proteinuria in vivo by linear models using Limma and lasso

regression procedure, respectively.

Figure 3. Transcription factor analysis. Green shade indicates the
presence of a transcription factor binding site sequence, upstream from
the gene of interest. Each row represents a gene of interest, and each
column represents a putative transcription factor.
doi:10.1371/journal.pone.0013451.g003
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Statistical tools employed for data analysis
The microarray data obtained from the in vitro model were

examined and visualized using Affymetrix Microarray Suite 5.0

software and Bioconductor [76,77]. The calculation of expression

values from probe intensities and normalization of arrays was

performed using the RMA method [78] using Bioconductor and

RMAexpress [79] (accessed 2006). Differential gene expression was

determined using Limma (Linear models for microarray data) and

SAM (Significance Analysis of Micoarrays) through Bioconductor

[80,81], with a highly conservative false-discovery rate set at 0.01,

and genes were not filtered based upon an arbitrarily-selected fold-

change in expression. Differential expression was assessed in the in

vivo tubulo-interstitial samples using SAM and dChip [82].

Cluster analysis was performed using Sammon mapping/multi-

dimensional scaling, as well as spectral clustering [83] for

experimental cell data, and hierarchical cluster analysis was

performed using dChip [82,84] in the renal biopsy dataset

(centroid-based, distance metric: 1-correlation).

In order to explore the ontology of genes differentially expressed

in vitro, genes were ranked by limma topTable function (by

adjusted p-value), and 600 up and down-regulated genes were

selected to study possible common ontology patterns. Enriched

expression of gene ontology (GO) terms was assessed with

Ingenuity Pathway Analysis Software 4.2 (Redwood City, CA)

and confirmed using the Bioconductor package GOstats. These

programs determine which gene ontology terms found in gene lists

are statistically over or under represented, compared with the GO

terms represented in the microarray as a whole [85,86]. A list of

enriched GO terms is produced, including the test statistic and

associated p value, suggesting functional mechanisms that may

underlie the biological response captured in the data set.

Clinical data were extracted for the patients who underwent

renal biopsy and inspection revealed that proteinuria values and

residuals were skewed, and should be normalized by log

transformation for regression analysis. To select transcripts with

mRNA expression most closely related to proteinuria in IgAN,

mRNA expression was correlated with proteinuria in vivo using

advanced regression analysis with linear models (with limma and

topTable function in Bioconductor) [81]. Partitioning methods

were also employed to use the biopsy gene expression data to

predict proteinuria. Lasso regression procedure was also used to

confirm genes that were most predictive of log proteinuria tuned

by a 10-fold cross-validation procedure [87].

Once this filtration strategy was applied, and the 11-mRNA

signature identified, the normalized mRNA expression data were

then extracted from the full datasets from MGN, FSGS, and MCD

biopsies. Hierarchical cluster analysis was performed on the human

renal biopsy data set using dChip [82] (centroid-based, distance

metric: 1-correlation). Tests of the correlation between proteinuria

and mRNA expression were performed by relating the normalized

mRNA expression values to proteinuria using Pearson correlation.

Supporting Information

Dataset S1 A molecular signature of proteinuria in

glomerulonephritis.

Found at: doi:10.1371/journal.pone.0013451.s001 (0.86 MB

DOC)
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