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Abstract

Potato virus Y (PVY) is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated
with differing degrees of pathogenicity, of which the most common and economically important are known to be
recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but
putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available
phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or
incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has
been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and
recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In
so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary
scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known
strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show
that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination
between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic
PVYNTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with
disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small
recombinant genomes involved (e.g. HIV/influenza A). In the case of PVY, increased transport of diseased material is likely to
blame for uniting the parents of recombinant pathogenic strains: this process needs to be minimised to prevent further
such occurrences.
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Introduction

Potato virus Y (PVY) afflicts potato producers worldwide [1–3],

causing loss of yield ranging from 10% to complete crop failure.

The extent of yield reduction depends on a range of factors

(including the viral load, the time of infection, temperature during

growth and tuber storage and the cultivar of potato that is infected

[4,5]), but the strain of PVY involved is particularly important:

some are considerably more pathogenic than others [5,6].

Whilst potatoes have been in cultivation outside the New World

since the mid 16th Century, PVY was first discovered and has

developed into a major crop disease only within the last 80 years.

All PVY infections reduce yield, but under warmer growing

conditions (such as in the potato growing regions of southern

Europe and South Africa) the most detrimental strains can entirely

compromise the economic viability of a crop by inducing Potato

Tuber Necrotic Ringspot Disease (PTNRD). In this respect, the

earliest known strains were relatively innocuous, with symptoms

largely restricted to mosaic patterns or stipple streaks on leaves

(PVYC [7]; PVYO [8]), and/or venal leaf necrosis and only rarely

PTNRD (PVYN [9,10]).

More recently, genetic recombinants between PVYO and PVYN

that induce PTNRD much more frequently have been identified.

Recombination is prevalent in viruses [11–15] and its impact on

the virulence of disease may be considerable. Foremost amongst

the recently identified strains are PVYNTN (N-tuber necrotic) [16]

and PVYN-W (N-Wilga) [17], described in 1984 and 1991

respectively [18]. Both PVYNTN and PVYN-W have spread

rapidly, causing severe reductions in yields worldwide [19,20]. In

order to both limit the impact of existing strains on their hosts and,

if possible, avoid creating the conditions that drive further

escalation of pathogenicity, we need to understand the circum-

stances under which pathogenic recombinant virus strains such as

these evolve.

However, evolutionary scenarios involving recombination are

challenging to reconstruct. Individual ‘gene trees’ (phylogenies of

non-recombinant regions of genomes) deviate from one another

and from the underlying ‘species tree’ (representing the historical

sequence of speciation events) due to differing underlying processes

that are notoriously difficult to discern. Besides the various

potential sources of analytical error (such as incorrect assessment

of homology; model misspecification etc.), these include biologi-

cally meaningful processes such as reticulation (recombination

between the branches of the species tree; i.e. between different

species) and coalescent stochasticity (resulting from recombination

within those branches, i.e. between individuals of the same
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species). It is important to distinguish reticulation from coalescent

stochasticity in order to correctly infer species trees under the

current methods that assume exclusively the latter process (e.g.

[21]). The problem is compounded in viruses because despite

generally high evolutionary rates [22] that might favour the

availability of the necessary informative sequence variation, their

diminutive genomes (e.g. PVY, 9.7 kb in length; HIV, 9.8 kb [11];

influenza A, 16.6 kb and polio, 7.4 kb [22]) represent a limited

total source of data. Currently available phylogenetic hypotheses

for PVY are either restricted to non-recombinant strains [23,24]

(i.e. excluding the most pertinent pathogenic ones), represent only

parts of the PVY genome [25,26], and/or incorrectly assume a

strictly bifurcating phylogenetic tree [25,27–29]. Despite attempts

to date potyviruses in general [30], no attempt has been made to

date the origins of pathogenic PVY.

In this study we reconstruct and date the phylogeny of PVY by

means of a phylogenetic approach to analysing DNA sequence

data in the presence of reticulation [31,32] that we extend to

address multiple recombination events between whole genomes.

Unlike existing approaches, ours neither assumes a bifurcating

species tree nor assumes prior knowledge of processes underlying

deviations between individual gene trees. We use the resulting

robust, time calibrated phylogeny to place patterns of divergence

and recombination in PVY in the historical context of human

cultivation of potatoes. In particular, we test whether diversifica-

tion of the major strains of PVY and recombination between them

occurred within the time frame of potato domestication and/or

modern cultivation.

Materials and Methods

Sampling
We sampled PVY isolates from Africa, Asia, Europe, and both

North and South America, covering all known recombinant strains

for which whole genome sequences were available (Table S1).

Fifteen new genome sequences were generated following direct

amplification RT-PCR protocols described in [33–35], and 29

further sequences [24,26,28,36–46] were obtained from GenBank.

Outgroups were Pepper Mottle Virus (PMV) and two isolates of

Sunflower Chlorotic Mottle Virus (SCMV); the latter more closely

related to PVY than those included in previous analyses (cf. [24]).

Sequences were aligned using BioEdit 7.0.5.2 [47]. Short regions

of uncertain homology between outgroup and ingroup sequences

were treated as insertions and excluded from analyses (Dataset S1).

Recombination Detection and Matrix Construction
Our analytical approach is illustrated in Fig. 1. We used

multiple recombination detection methods as implemented in

RDP3 [48] and SimPlot [12] to identify breakpoints followed by

testing those breakpoints using phylogenetic analyses under

parsimony and ML (as below) of non-recombinant regions to

confirm the changing phylogenetic signal observed when pro-

gressing from the 59 to the 39 end of the linear PVY genome.

Using RDP3, five methods were applied: RDP [48,49], GENE-

CONV [50,51], MaxChi [52,53], BootScan [54,55] and SiScan

[56]. Sequences were treated as linear. The threshold P-Value was

set at 0.05, using Bonferroni correction. Following the RDP3

manual this should give few false positives but will still allow

Figure 1. Summary of the analytical approach. The aligned sequence matrix was analysed with recombination detection software (a); the
resulting breakpoints were tested with standard phylogenetic analyses of the putatively non-recombinant genome regions (b), resulting in a
sequence of ‘gene trees’ (labelled A–D), and the process repeated (c), until all topological differences between gene trees could be explained by
specific recombination events and vice versa. A supermatrix was then constructed following the taxon duplication approach (d; see Fig. 2); and
analysed under standard phylogenetic and (relaxed) clock models (e). Phylogenetic networks were summarised from both the separate gene trees (f)
and multi-labelled ‘genome tree’ (g).
doi:10.1371/journal.pone.0050631.g001
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detection of most recombination events. The SEQGEN paramet-

ric simulations and phylogenetic evidence options were selected.

For method-specific settings we followed the RDP3 manual. The

results of the subsequent phylogenetic analyses of putatively non-

recombinant regions were assessed for topological conflict subject

to bootstrap support (BS) $70% under both parsimony and ML.

The process was then repeated with breakpoints that did

correspond to such conflict tentatively assumed to be correct until

all topological differences between the ‘gene trees’ could be

explained by specific recombination events and vice versa. The

phylogenetic analyses represent a conservative test of the (not

necessarily unanimous) results of the recombination detection

methods. It will tend to reject recombination both when it has

been incorrectly inferred and where it is real but involves little

sequence variation (generally corresponding to very short regions

and/or very recent events). We regard the latter as effectively

impossible to address using phylogenetic approaches and assume

that it will be of low impact on the subsequent analyses.

A supermatrix was subsequently constructed in which recom-

binant sequences were split into multiple taxa using the ‘taxon

duplication’ approach [31,32]; equivalent to the ‘compatibility

matrix’ output format implemented in RDP3 [48] (Dataset S2).

Following this approach, taxa that exhibit conflicting phylogenetic

positions according to different gene regions are duplicated in the

matrix and the (different) conflicting gene regions re-coded as

missing data for each duplicate. The resulting supermatrix can be

analyzed using standard phylogenetic techniques to produce a

single ‘multi-labelled’ tree in which conflicting taxa – e.g. putative

hybrids or recombinants – are represented more than once. This

approach has previously been applied to phylogenetic analyses of

conflicting gene trees in various groups of flowering plants [57–

59], including an extension in a coalescence framework ([60]

under the assumption that reticulation could be discerned from

coalescent stochasticity). To our knowledge, the approach has not

previously been applied to multiple recombinants or whole

genomes of viruses. In order to determine which non-contiguous

genome regions should be combined as single taxa in the

supermatrix we first identified homologous recombination pat-

terns, on the basis of common breakpoints and/or (given the

possibility for nested recombinants) monophyly in gene trees; and

then identified shared phylogenetic signal across non-contiguous

genome regions (i.e. those interrupted by recombinant regions) on

Figure 2. The taxon duplication approach and multiple recombinants. Recombinant genomes encode a mosaic of differing phylogenetic
relationships. Depending on the pattern and sequence of recombination events, separate regions of a given genome may share a common history of
inheritance whilst those immediately adjacent are more distantly related. Under the ‘taxon duplication’ approach, these distinct ‘phylogenetic signals’
are segregated into separate taxa in the data matrix. Precisely which genome regions should be combined and which should be analysed
independently can be inferred from the logical sequence of recombination events. a) In the case of PVYNW and PVYNTN, single, double and triple
recombinants are apparent from shared derived recombination patterns (indicated here by black and white bars) and confirmed by exclusive
ancestry (monophyly; indicated here by dotted boxes) of the pertinent genome regions. These are treated as two, three and four taxa respectively, as
indicated, with the rest of the alignment re-coded as missing data. b) In the case of isolate Fr, lower recombinants are not known and phylogenetic
signal is not sufficiently strong to discern congruence from conflict across the genome, thus the data could logically be combined in a number of
different ways. In this case, the shorter of the non-contiguous regions are excluded from further analyses.
doi:10.1371/journal.pone.0050631.g002
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the basis of gene tree topological congruence and the logical

sequence of homologous recombination events (Fig. 2). Where the

evidence for combining non-contiguous genome regions was

equivocal, we excluded from the analyses the shorter regions from

the taxa in question, recoding them as unknown in the matrix

(Fig. 2).

Phylogenetic Analyses
Phylogenetic analyses were performed under parsimony using

PAUP* 4.0b10 [61] and under likelihood using RAxML [62].

Under parsimony, the following heuristic search options were

employed: 500 random addition sequences (RAS) with tree

bisection and reconnection (TBR) branch swapping saving a

maximum of 25 trees of minimal length in each replicate. Clade

support was estimated using 10,000 replicates of non-parametric

bootstrapping each comprising a single RAS and TBR, saving a

single tree in each replicate. RAxML analyses were performed

using the CIPRES Science Gateway (http://www.phylo.org/

portal2/) [63,64], assuming a gamma model of rate heteroge-

neity. The supermatrix was analysed as above both with and

without monophyly constraints on eight clades descendent from

specific recombination events. This topological constraint

represents the strong phylogenetic evidence of genome-scale

processes that is further demonstrated by the monophyly of the

clades in the separate analyses of non-recombinant gene regions.

It may be important in preventing arbitrary groupings of closely

related recombinant (duplicated) taxa that in the supermatrix do

not share overlapping sequences. Under the tentative assump-

tion of a reticulation scenario, phylogenetic networks were

summarised using SplitsTree 4.12 [65] and Dendroscope 3 [66],

1) from the trees resulting from individual analyses of non-

recombining regions and 2) from the single multi-labelled tree

(in which recombinant taxa are represented more than once)

resulting from analysis of the supermatrix. In both cases, nodes

subject to ,70% BS were first collapsed to form polytomies.

Using Splitstree, consensus splits of trees were computed using

the Consensus Network method [67] and splits were trans-

formed into a reticulate network using the RECOMB2007

method [68]; cluster-based rooted networks were computed

using Dendroscope.

Molecular Dating
Path-o-gen 1.3 [21] was used to investigate the ‘clocklikeness’

of the PVY phylogeny with an ML tree obtained using RAxML

and asynchronous tip ages (as below). The supermatrix was

analysed with the above topological constraint plus a mono-

phyly constraint for the ingroup (to root the phylogeny) using

BEAST 1.7.2 [21] on the CIPRES Science Gateway [64]. We

applied fixed age constraints to tips to calibrate the rate of

molecular evolution [69,70]. For sequences not produced for

this study this information was obtained from the authors of the

original studies; where this was not possible the isolates were

Figure 3. ‘Gene’ trees. Twelve 70% BS consensus trees summarised from parsimony and maximum likelihood phylogenetic analyses of individual
non-recombinant regions (presented on two pages; A and B). Differences in topologies with respect to the positions of recombinant taxa are
highlighted and the corresponding recombination events indicated. The trees are presented with the major groupings (PVYC/NONPOT, PVYO and PVYN-

North America, and PVYN-Europe), between which the recombinants switch, ordered consistently from top to bottom; these are also indicated by red,
yellow, light blue and dark blue bars respectively. Where resolution of particular trees is too limited to retrieve these clades their membership – give
or take recombinants – is assumed to be consistent with previous or subsequent trees.
doi:10.1371/journal.pone.0050631.g003
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omitted from the analyses (Table S1). Age estimates are more

precise when the range of tip age constraints spans a higher

proportion of the total age of the group [70]. The total age

range of the tips in these analyses spans the years 1982 to 2010

(i.e. 28 years), which is 35% of the 80 year putative timeframe

for the observation of the disease in crops, but is likely to

represent a much smaller proportion of the total age of PVY

root node (which is unknown). Using the taxon duplication

approach, the ages of recombinant isolates contribute to

calibration in multiple branches of the tree (similar to the

calibration of multiple homeologues in polyploids in [71]). We

applied the general time reversible (GTR) substitution model

with gamma distributed rates and a proportion of invariable

sites. We applied strict clock (SC) and relaxed clock models, the

latter assuming lognormal (LN) and exponential distributions

(EX) of rates across the phylogeny, in order to assess the

sensitivity of age estimates to assumptions regarding patterns of

molecular rate variation, particularly given the potential

(though, to our knowledge, as yet untested) impact of missing

data. Under SC two MCMC runs of 10 million generations

each were performed, each sampling trees every 1,000

generations. Under LN and EX three runs of 50 or 100

million generations each were performed, sampling trees every

10,000 generations. Shorter runs excluding the recombinant

sequences were performed as a joint sensitivity test for the

impact of calibrations and missing data. Removing taxa from

the matrix might be expected to reduce the precision of age

estimates due to the directly associated loss of information

regarding rate calibration (i.e. both tip ages and molecular

variation). However, should the wider confidence intervals of

such age estimates not contain those inferred in the presence of

significant proportions of missing data this might provide

evidence for some form of bias. Likelihood and topological

convergence and adequate sampling of the runs were confirmed

using AWTY [72] and Tracer [73]. Randomisations of tip ages

as a further test of the validity of rate estimates [74] were not

feasible given the lengths of runs necessary to reach conver-

gence. We note however that datasets shown to fail such tests

are generally characterised by low levels of sequence variation

and/or only produce precise age estimates when constrained by

informative priors, e.g. on demographic parameters or on the

age of the root [74]. Neither is the case here.

Figure 4. Recombination map of PVY genomes. Patterns of recombination between PVY strains PVYO (white), PVYN-North America (dark grey),
PVYN-Europe (black) and PVYNONPOT (light grey) are illustrated.
doi:10.1371/journal.pone.0050631.g004
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Results

Recombination Breakpoints and Homologous
Recombination Patterns

We analysed 44 PVY genomes with recombination detection

software in order to identify recombinant isolates and locate the

recombinant regions of their genomes. Just 19 of these isolates can

be regarded as non-recombinant. Five are single recombinants and

20 show two or more recombination events. We located 17

breakpoints and inferred phylogenetic trees for the corresponding

sequence of non-recombining regions under parsimony and

Maximum Likelihood (ML) to confirm topological differences

Figure 5. Supermatrix analysis. Parsimony strict consensus trees with bootstrap support above (parsimony) and below (ML) the branches are
presented; a) without; and b) with the backbone monophyly constraint. Constrained nodes are indicated by red dots on the corresponding branches.
doi:10.1371/journal.pone.0050631.g005
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between trees (Fig. 3). We then identified homologous recombi-

nation patterns on the basis of common breakpoints and/or (given

the possibility for nested recombinants) monophyly in gene trees.

Both were evident for PVYNTN (18 isolates) and PVYN-W B-type

(four isolates) separately and for PVYN-W A- and B-types plus

PVYNTN together (Figs. 2 and 3). A further 10 recombination

events (of 13 in total) were represented by single isolates (Table

S2). Recombinant regions, the strains/isolates that exhibit them

and the genome type (PVYNONPOT: a strain found in various

plants other than potatoes; PVYO or PVYN) involved are

illustrated in Fig. 4.

Supermatrix Construction
In order to simultaneously infer the phylogenetic relationships

of both non-recombinant and recombinant whole genomes we

identified shared phylogenetic signal across non-contiguous

genome regions (i.e. those interrupted by recombinant regions)

on the basis of gene tree topological congruence and the logical

sequence of homologous recombination events (Figs. 2 and 3). On

this basis, the whole genome sequences of single recombinants

were subdivided between two taxa each in the matrix, double

recombinants PVYN-W B-type and PVYNTN between three, and

triple recombinant PVYNTN1 between four; each taxon repre-

senting a subset of the alignment with distinct phylogenetic signal

with the rest of the alignment coded as missing data (Fig. 2). In the

case of double recombinants Fr and NNP, the phylogenetic signals

were not sufficiently strong to discern congruence and conflict, and

ancestral-type single recombinants are unknown. Recombinant

regions 9052–10654 and 10172–10654 of Fr and NNP respec-

tively were therefore excluded from further analyses by means of

recoding as missing data (Fig. 2).

Phylogenetic Inference
Phylogenetic analyses were performed on the resulting super-

matrix under parsimony and ML. Of 9,723 characters included in

the analyses (reduced from an alignment of 10,685 with out-

groups), 5,683 were variable and 4,267 parsimony informative. In

order to avoid potential loss of phylogenetic resolution between

taxa with entirely non-overlapping sequences a topological

constraint was designed to enforce the monophyly of each clade

of homologous recombinants. This corresponded to eight nodes of

a total of 89 given a 90 taxa bifurcating tree (Fig. 5). The results

Figure 6. A reticulate phylogenetic hypothesis for PVY genomes. A rooted phylogenetic network, assuming that recombination (blue
branches) represents reticulation events. The nodes representing the most recent common ancestors of PVY strains and recombinant clades are
indicated with red circles and labels.
doi:10.1371/journal.pone.0050631.g006
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were entirely congruent irrespective of whether this topological

constraint was applied or not, but the constrained analysis resulted

in considerably higher resolution both within and between

constrained clades without leading to an increase in shortest tree

length (Fig. 5). Networks summarised from the individual gene

trees (non-recombinant regions separately; Fig. S1 A) and the

multi-labelled tree (resulting from analysis of the supermatrix;

Fig. 6, Fig. S1 B) were broadly comparable, but the former

considerably more complex. In both cases network structure was

revealed within monophyletic PVYNTN and PVYN-W B clades.

Molecular Dating
Path-o-gen was used to calculate a regression of root-to-tip

distances against dates of sampling. The slope of the regression

(representing the rate) was 0.00237; with correlation coefficient

(variation in rate) 0.1885; R squared 0.0355; and residual mean

squared 0.0073; indicating deviation from a strict molecular clock.

In order to infer simultaneously phylogenetic relationships and the

ages of clades and recombination events we analysed the

supermatrix under Bayesian inference with both strict and relaxed

clock models, including only the 28 (of 44) PVY isolates for which

we could obtain accurate asynchronous sampling dates. Tree

samples from independent Bayesian runs of the supermatrix under

each model showed consistent and stable posterior probability (PP)

clade support and effective sampling sizes for model parameters

.200. The maximum clade credibility tree of the LN analysis is

illustrated in Fig. 7; nodes subject to $0.95 PP were consistent

with those $70% BS inferred under parsimony and ML (data not

shown). In general, strict clock (SC) based estimates for deeper

nodes are older than those based on either lognormal (LN) or

exponential (EX) models, but the discrepancy is smaller for more

recent nodes. The 95% highest posterior density interval (95%

HPD) for the clock/mean rate were 0.0001–0.0003 (SC); 0.0003–

0.0012 (LN); and 0.0005–0.0015 (EX). The 95% HPD for the

standard deviation of the LN relaxed clock was 0.6128–1.0086,

which as it does not include zero further indicates the rejection of

the strict molecular clock. The 95% HPD for the crown node of

PVY dates to 619-161 (LN)/436-123 (EX)/970-525 (SC) years

ago. Crown nodes ages of PVYO, PVYN and PVYNONPOT are

similar according to the different methods, falling between around

150 and 30 years (although PVYNONPOT is older under the SC

model: 365-201 years; Table 1). Excluding the recombinant

isolates (leaving just 13 of 66 taxa in the supermatrix) resulted in

much broader but overlapping age ranges, e.g. for the PVY crown

node: 4,738-84 (LN); 3,498-58 (EX); and 133,080-801 (SC). Hence

the confidence intervals extended considerably further back in

time (there was no prior constraint for the age of the root node in

any of the analyses), but with the exception of the SC model also

increased towards the present (which is by definition constrained

by the ages assigned to the tips). In the relaxed clock results based

on full taxon sampling with missing data there was thus no obvious

bias towards either older or more recent age estimates. The range

of crown and stem node age estimates for recombinant clades (i.e.

PVYN-W/PVYNTN, PVYNTN and PVYN-W B) place the corre-

sponding recombination events between 48 and 20; 47 and 19;

and 47 and 6 years ago, respectively (Table 2). Recombination

events represented by single isolates have stem ages in years as

follows: PVYNTN1: 35-17; NN300_60: 44-32; and Fr: 112-93.

Discussion

The most serious consequences of PVY infection are yield

reduction and PTNRD. Specific genes are currently under

investigation for their potential to cause pathologies [1,5,6,16]

but the symptoms are generally worse in the recombinant strains

PVYNTN and PVYNW and recombination has also been directly

implicated as a cause of pathogenicity [36]. Our results show that

recombination is widespread amongst both highly pathogenic and

less pathogenic PVY strains. We recovered essentially the same

breakpoints identified for individual isolates in previous work

(suggesting that our recombination detection approach was not

overly conservative), as well as identifying a novel recombination

pattern in NN300_60, a South African isolate similar to the

previously described NE-11 [28]. The resulting phylogeny shows

the major groupings of PVY strains [24,26–29] and qualifies the

phylogenetic affinities of the isolate Chile3 (apparently not the

sister group to PVY, contra [24]), whilst simultaneously identifying

the multiple phylogenetic relationships of the recombinants.

Our results confirm the single origins of recombinant PVYNTN

and PVYNW strains, whilst at the same time providing evidence for

recombination events within those strains. Both the original

recombination events and some of those occurring subsequently

must be associated with more or less identical breakpoints. This

phenomenon has been reported for other viruses, such as

begomoviruses, which have been shown to recombine at non-

random breakpoints [13], due at least in part to selection [75]. The

extreme consequence of such a process would be where structural

genes in viruses represent ‘functionally interchangeable modules

with effectively independent evolution’ [14]. Our results never-

theless imply tractable sequences of recombination events within

an otherwise effectively tree-like underlying phylogeny. With the

supermatrix approach, the phylogenetic affinities of even relatively

short (non-recombinant) genome regions can be assessed within

the strong phylogenetic ‘scaffold’ provided by the other data

[31,76]. The improved overall resolution that we obtained for the

Figure 7. The recent, recombinant origins of Potato Virus Y genomes. The maximum clade credibility tree from the BEAST LN relaxed clock
analysis is shown with error bars representing the 95% HPD of node ages according to LN (blue), EX (red) and SC (yellow) models. Recombinant
strains such as pathogenic PVYNTN and PVYNW-B are represented as multiple taxa, each representing a subset of the alignment (as indicated) with
distinct phylogenetic signal. Topology constrained nodes are indicated with red dots. Inset: a potato leaf showing mosaic patterns and tuber with
potato tuber necrotic ring disease resulting from PVY infection.
doi:10.1371/journal.pone.0050631.g007

Table 1. The ages of major strains of PVY.

Clade LN EX SC

PVY 619-161 436-123 970-525

N 133-39 137-33 152-79

N-Europe 47-24 48-23 98-51

N-N America 55-15 47-12 55-31

(Chile3, O, C, NONPOT)403-116 294-91 778-419

(O, C, NONPOT) 267-88 205-71 525-287

(C, NONPOT) 199-67 153-57 445-244

O 106-36 93-30 144-69

NONPOT 133-51 107-45 365-201

Age estimates (95% HPD; years before present) under relaxed clock lognormal
(LN) and exponential (EX), and strict clock (SC), models using the taxon
duplication supermatrix approach.
doi:10.1371/journal.pone.0050631.t001
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PVY phylogeny using the taxon duplication-based supermatrix

compared to the separate analyses of non-recombinant genome

regions is reflected in a simpler network with far fewer alternative

connections between recombinants and non-recombinants (Fig.

S1).

Further investigation of our approach (and of supermatrix

analyses in general) should address the potential impact of missing

data on age estimation. Although no obvious bias was apparent

here (with the exception of the arguably inappropriate SC model),

the power of the assessment was limited by the small number of

non-recombinant genomes analysed. Assuming that the models

implemented in BEAST do adequately reflect the uncertainty

involved, the advantages of our approach are clear: by including

both non-recombinant and recombinant isolates in single molec-

ular dating analyses in this manner we were able to estimate the

ages of both clades and recombination events between them, with

improved precision relative to analysis of non-recombinants alone.

The potato, Solanum tuberosum L., originated in the New World

and its centre of diversity is in the Andes. All cultivated varieties

descend from a single domestication [77], with the first archae-

ological evidence of potato use dating to ca. 750 BC in Peru and

the first likely cultivation of potatoes dating to 400 AD [78].

However, our age estimates for the most recent common ancestor

(mrca) of PVY correspond more closely to the timing of the first

introductions of potatoes to Europe (between 1540 and 1565 to

Spain and in 1565 to Britain [79]), consistent with the recent

origins inferred for various plant viruses [80]. The age estimates

could indicate origin either in the New World before the European

introduction, or thereafter, but given that our oldest age estimates

were produced under the SC model, which appears less

appropriate for this data, the latter seems more plausible. Age

estimates for deeper nodes in the phylogeny are imprecise, which

is inevitable given the relatively recent asynchronous tip ages used

for the molecular clock calibration. However, our calibration is

independent of any assumptions regarding correlations of partic-

ular phylogenetic relationships with historical isolation and

outbreak events (as used by [30] in their study of potyviruses).

This logical independence is crucial given our aim to test exactly

these kinds of hypotheses. Despite the wide confidence intervals,

even the oldest estimates for the ages of the crown nodes of PVYO

and PVYN fall within the last c. 150 years. This places the

timeframe of the radiation of PVY clades known from potato

crops, as well as all known recombination events between those

clades, well within that of modern potato cultivation.

In fact, most recombination events inferred here are conspic-

uously recent. PVYN-W A-type descends from a common

recombination between PVYO and PVYN which dates to 48-20

years ago, and PVYNTN and PVYN-W B-type are the results of two

subsequent recombination events that we date to between 47 and

19 years ago and 47 and 6 years ago, respectively. These ages are

consistent with the first observations of symptoms associated with

specific strains in potato crops. PVY strains isolated from non-

potato hosts are restricted to the PVYNON-POT clade and isolate

Chile3 [24] and gene flow (in the form of recombination) between

these and other PVY clades appears to be rare compared to that

between and within PVYO and PVYN. Overall, these suggest that

the strains of PVY currently infecting crops have evolved as

specialists of potato cultivars and not, as might have been the case,

by lateral transfer from other hosts. They are consistent with

recent (recombinant) origins of pathogenic strains of PVY within

modern potato crops. Given the age estimates, these may have

been particularly associated with increased 20th Century interna-

tional trade; there is no evidence for earlier recombination

between the major PVY strains.

Advances in transport have inevitably led to the increasingly

rapid distribution of material infected with different strains of

PVYO and PVYN. It is clear from the age estimates presented

here, as well as the high genetic diversity of PVY strains found in

individual countries such as South Africa [33], that measures to

control such movement were implemented subsequent to the

origin and spread of the most damaging PVY recombinant strains.

Our results illustrate how recombination between both distantly

and closely related strains of PVY has contributed to the origin of

pathogenic strains such as PVYNTN. They also provide evidence

Table 2. The ages of recombination events in PVY.

Clade/recombination Crown age (years; LN/EX/SC) Stem age (years; LN/EX/SC)

NW/NTN 1-3107 36-21/34-20/47-27 38-22/37-21/48-29

NW/NTN 3108-10654 48-21/42-20/64-35 72-27/62-23/79-42

NTN 1-3107 30-19/29-19/41-25 36-21/34-20/47-27

NTN 3108-6519, 9927-10654 33-19/31-18/51-28 48-21/42-20/64-35

NTN 6520-9926 33-19/32-19/44-25 37-20/37-19/48-27

NWB 1-1185 44-10/35-8/73-24 52-14/43-10/145-69

NWB 1186-3107 26-9/25-7/35-17 36-21/34-20/47-27

NWB 3108-10654 19-7/23-6/19-10 48-21/42-20/64-35

PVYNTN1 3160-6541 52-14; 26-8; 21-6/43-10; 17-5; 25-7/38-10; 79-42; 35-17

NN300-60 39-10; 37-20/32-9; 37-19/98-51; 44-25

FR 106-36; 133-39/93-30, 137-33/114-64; 112-56

Minimum and maximum age estimates for the multiple recombination events leading to the origins of of PVYNW/NTN and maximum age estimates for other
recombination events. The most recent bounds of the crown node age of a recombinant clade (i.e. the Most Recent Common Ancestor [mrca] of the recombinants
analysed) represents the most recent possible age for that recombination event. The oldest bounds of the stem node age (i.e. that of the node subtending the crown
node, representing the mrca of the clade and its sister group) correspondingly represents the oldest possible age for the recombination event. ‘Crown ages’ for
recombinant clades represented multiple times in the multi-labelled tree are directly comparable, and should be expected to be the same, give or take margins of error.
‘Stem ages’ by contrast are dependent on taxon sampling outside the crown group and thus should be expected to vary, with some stem node ages representing a
greater overestimation of the age of the recombination event than others. Therefore the oldest possible age for the recombination event can be interpreted from the
older bounds of the most recent of the stem node age estimates. The minimum and maximum ages are represented in bold type.
doi:10.1371/journal.pone.0050631.t002
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for ongoing recombination within PVYNTN, as might be expected

from patterns observed in other viruses [11–14]. This process is a

cause for concern in the context of disease prevention, as it could

facilitate combinations of sequence variants that increase virus

fitness, for example by improving transmission. For crop plants, it

is possible at least in principle to reduce the spread of diseased

material by stringent testing as part of national certification

schemes and monitoring of imports. Our results serve to further

highlight the importance of such efforts.
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Figure S1 Phylogenetic networks summarised using Split-
sTree a) from the 12 70% BS consensus trees in Fig. 3; b)
from a single 70% BS consensus of the multi-labelled tree
in Fig. 5 b. Nodes recovered in one network but contradicted in the

other are indicated with red dots on the corresponding branches.

Major PVY strains and recombinant clades are indicated.
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68. Huson DH, Klöpper TH (2007) Beyond Galled Trees - Decomposition and
Computation of Galled Networks. Research in Computational Molecular

Biology. In: Speed T, Huang H, Huson DH, Klöpper TH, editors. Lecture
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