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Abstract

Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as
functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3e proteins
in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3e contain
significantly fewer germ line cells (pole cells) in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene
leo. We show that although D14-3-3e is enriched within pole cells it is required in mesodermal somatic gonad precursor cells
which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad.
Loss of D14-3-3e results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3e loss
results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration,
from the somatic gonad precursor cells.
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Introduction

The 14-3-3 proteins are small dimeric acidic proteins which are

highly conserved throughout the eukaryotes [1,2,3]. Multiple

family members exist in metazoans, characterized by exceptionally

high sequence similarity among homologous isotypes from

different species. On the basis sequence identity the 9 mammalian

species form two evolutionary conservation groups [4].. Although

these proteins are highly abundant in the nervous system, they are

also present in an apparently isotype-specific manner in many

other tissues including multiple organ and glands, the retina, the

ovaries and testes in vertebrates and invertebrates [1,2,5].

14-3-3 proteins interact with diverse cellular proteins mostly by

binding to phosphorylated Serines or Threonines within particular

motifs and have been associated with many cellular processes and

functions [6,7]. 14-3-3 binding to clients may enhance or suppress

their interactions with other proteins, which could prevent or

enhance post-translational modifications or stability of the target

proteins. In addition, interactions with 14-3-3 proteins are known

to regulate catalytic activity or sub-cellular localization of client

proteins [8]. In some cases, 14-3-3s engage more than one of these

mechanisms to regulate the function of their targets [9]. For such

effects to be biologically relevant the affinity and specificity of

interactions with clients are likely to be isotype-specific and in fact

in vivo specificity for 14-3-3 isotype-client interactions has been

reported. For example, Cdc25C interacts with the 14-3-3f, e and c
isotypes and not with the 14-3-3s isotype [10], whereas Cdc25B

protein interacts preferentially with the 14-3-3b, g, and f isotypes

[11].

Drosophila contains only two 14-3-3 genes, leonardo, an ortholog

of the mammalian 14-3-3f and D14-3-3e [4]. The leonardo gene

encodes three nearly identical protein isoforms (LeoI, LeoII and

LeoIII) through alternative splicing of the primary transcript [12].

Of these, LeoIII appears to be the most spatially restricted to adult

mushroom body neurons and LeoI the most ubiquitous [12]. In

contrast, D14-3-3e encodes a single protein [13,14], present in all

developmental stages and tissues examined [13,15]. Because Leo

and D14-3-3e represent the two different conservation groups,

Drosophila offers a simple but representative system to investigate

14-3-3 functions and specificity in vivo. In fact, these two fly 14-3-3

proteins have been reported redundant in particular biological

functions in a tissue-specific manner, but not for others [13].

Maternally originating Leo and D14-3-3e appear to have distinct

roles in chromosome segregation and the synchronization of

syncytial mitoses [16]. D14-3-3e plays a role in photoreceptor

specification in the developing eye, where it can be functionally

complemented by Leo isoforms [14,17]. In contrast, the require-

ment for D14-3-3e in wing cross-vein formation cannot be

functionally complemented by Leo [13]. Moreover, LeoI and to a

lesser extend LeoII can functionally compensate for D14-3-3e loss

in processes underlying vital functions essential for late embryonic

development [13].

An additional phenotype which characterizes D14-3-3e null

mutant homozygotes is sterility [14] and we aimed to determine

the cause of this novel phenotype. In addition, in the context of

our work on Drosophila 14-3-3 functional specificity, we

wondered whether the deficit can be functionally complemented

by Leo. In this study, we demonstrate that D14-3-3e regulates the

stability of Zinc finger homeodomain protein-1 (Zfh-1), a

transcription factor essential for formation and function of the

mesodermally-derived somatic part of the embryonic gonad.

Cellular movements play a crucial role in the development of

multicellular organisms and can serve a variety of functions
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ranging from generation of different tissue layers during gastru-

lation to organogenesis. These cellular migrations bring into

contact different cell types, which is often required for their final

differentiation. The migration of primordial germ cells (PGCs)

provides a model to study cellular movement and differentiation

during development [18,19]. In many organisms including the

Drosophila embryo, germ cells form in a position distinct from the

final location of the gonad. Fly PGCs often referred to as pole cells,

are the first to cellularize at the posterior pole of the embryo (stage

5). At gastrulation they move along the dorsal surface of the

embryo and are incorporated into the invaginating posterior

midgut (PMG) pocket (stage 8). Then, the PGCs migrate through

the PMG wall, moving along its basal surface to the dorsal side of

the embryo (stage 9). From this position, they move toward and

eventually align with mesodermal cells that will give rise to the

somatic component of the gonad (stages 12-13). Finally, the PGCs

and gonadal mesoderm coalesce to form the embryonic gonad

(stage 14). Consequently, germ cell migration in Drosophila

provides a model system for the study of cell-cell interactions and

cellular movements through and along different tissue layers

[20,21]. A number of gene products necessary for pole cell

migration and eventual interaction with the somatic component of

the gonad have been identified [22] and the work described herein

demonstrates that D14-3-3e is an additional member of the group.

Results

D14-3-3e is required for pole cell migration to the
embryonic gonads

Male and female D14-3-3e null mutants homozygous for the

deletion D14-3-3eex4 or the transposon insertion D14-3-3el(3)j2B10

were reported sterile [13,14]. Our own results verified these

reports and demonstrated that the sterility did not have behavioral

origins as all male and female mutant homozygotes were observed

to mate with the respective tester w1118 animals (Table 1). This

analysis also revealed that w1118 tester females after mating with

D14-3-3e null males laid ample, but apparently infertile eggs

(Table 1). In contrast, D14-3-3e null females mated with w1118

tester males laid very few also infertile eggs. Quantification of the

fecundity deficit demonstrated that whereas control females

yielded approximately 30 eggs, mutant homozygote females laid

only 1-2 daily (Fig. 1A). Even D14-3-3eex4 (but not D14-3-

3el(3)j2B10/+), heterozygous females laid significantly less eggs

(,18) than controls. The phenotype is a consequence of the

mutations in D14-3-3e as it is readily rescued by trangenes

carrying full length D14-3-3e cDNA under the ubiquitously

expressed heat-shock promoter induced twice daily throughout

development (Table S1). Therefore, we hypothesized that the

apparent rarefaction of eggs and sperm upon D14-3-3e loss may

reflect defective adult gametogenesis, or defective gonadal

development, or both.

Although rather ubiquitous [13], D14-3-3e is also present inside

pole cells and the surrounding tissues from early stage 5 (Fig. 1B)

to the end of embryonic development. Hence, we focused on the

possibility of defective gonadal development in homozygous

mutant embryos as potentially causal of the fertility and fecundity

defects. Homozygous and heterozygous mutants were identified on

the basis of GFP fluorescence conferred by the balancer

chromosome (see Materials and Methods). Although somewhat

fewer, stage 5 homozygous mutant embryos did not contain

significantly less pole cells (Fig.1C) to explain the fertility and

fecundity defect. However, in these mutant embryos, pole cells

failed to coalesce in the embryonic gonad at later stages and

appeared scattered throughout the caudal side. Only few reached

the endpoint of their migration through the mesoderm and

appeared to take residence in the embryonic gonad (Fig. 1D). A

similar, albeit milder distribution of pole cells outside the gonad at

the end of embryogenesis was observed in D14-3-3eex4 heterozy-

gotes (Fig. 1D).

Quantification demonstrated three distinct statistically different

distributions of pole cell numbers coincident with the level of D14-

3-3e. Control gonads contained 18–20 pole cells each, those of

heterozygous mutant embryos 10–12, while only approximately 7

pole cells were found in the gonads of mutant homozygotes

(Fig.1E). The distribution of pole cells outside the gonad in

heterozygous and homozygous mutant embryos, suggests impaired

migration through the mesoderm [19]. In fact, quantification of

the total number of pole cells in different stages of embryogenesis

revealed that in stage 5 embryos, the number of pole cells in

mutant homozygotes is similar with that in controls. However,

whereas pole cell number remained relatively constant thereafter

in control embryos, there was a large reduction in their number by

stage 8 in the mutants, which apparently continued to decline

yielding 4–6 pole cells reaching each gonad by stage 11–13

(Fig. 1C). These results are consistent with the notion that pole cell

number reduction in mutant homozygotes is due to death of cells

failing to reach and coalesce in the gonad. Collectively, the data

indicate that D14-3-3e function is required for efficient pole cell

migration to the embryonic gonad and that abortive pole cell

migration in D14-3-3e mutants and the resultant reduction in

germ cells could be at least a partial explanation for their sterility.

D14-3-3e is required in mesoderm for normal pole cell
migration

Transgenic rescue of the mutant phenotype was attempted to

unequivocally demonstrate that the deficit in pole cell migration

was consequent of tissue-specific D14-3-3e loss. Secondly, we

wondered whether the deficit originates from loss of the protein

Table 1. D14-3-3e mutants are sterile.

Genotype Female Male

# Crossed % Fertile # Crossed % Fertile

D14-3-3e ex5/
D14-3-3e ex5

20 100 20 100

D14-3-3e l(3)j2B10/
D14-3-3e ex5

20 100 20 100

D14-3-3e l(3)j2B10/
D14-3-3e l(3)j2B10

30 0 27 0

D14-3-3e l(3)j2B10/
D14-3-3e ex4

30 0 25 0

D14-3-3e l(3)j2B10/
D14-3-3e ex24

23 0 21 0

D14-3-3e ex4/
D14-3-3e ex5

18 100 18 100

D14-3-3e ex4/
D14-3-3e ex4

25 0 26 0

D14-3-3e ex4/
D14-3-3e ex24

21 0 18 0

w1118 25 100 25 100

The number of single crosses that yielded larvae (% Fertile) over the total
number of animals crossed (# crossed) per genotype is reported. D14-3-3eex5

are used as controls since they have the same genetic background as the
mutants and express normal amounts of the protein [13].
doi:10.1371/journal.pone.0036702.t001
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within the pole cells consistent with the presence of the protein

there, or elsewhere within the embryo. We initially attempted

rescue under the ubiquitous drivers Tub-Gal4 and Act-Gal4 to

emulate the wide distribution of D14-3-3e in embryos [13]. Two

independent UAS driven D14-3-3e transgenes were utilized,

which due to apparent position effects yield high (H) and low (L)

transgenic protein under both drivers (Fig. 2A). Therefore, the two

drivers do not differ significantly with respect to the levels of

Figure 1. Reduction in the pole cell number in D14-3-3e mutant embryos. A. Reduced fecundity of homozygous mutant females reflected in
the number of eggs laid per single female per day. Homozygous D14-3-3eex4 and D14-3-3eJ2B10 lay very few eggs (1 or 2 per day), while D14-3-3eex4

heterozygotes also exhibit significantly reduced fecundity compared to controls. B. Wild type embryos of stage 5 (1–3) and stage 11–12 (4–6) stained
with anti-e (green) and a-vasa (red). D14-3-3e is expressed inside and outside of the pole cells. C. Quantification of the number of pole cells that reach
each embryonic gonad estimated from at least 12 different embryos. The numberof pole cells per gonad of heterozygous (light gray bars) and
homozygous (dark gray bars) mutant embryos is significantly different (p,0.001, Dunnett’s test) from that in controls (open bars). D. Pole cell
distribution in 16–18 hr homozygous mutants and D14-3-3eex4/TM3GFP heterozygotes. anti-GFP staining (green) was used to distinguish
heterozygotes from homozygous mutant embryos. Unlike in similarly aged control embryos, pole cells in heterozygous and homozygous mutant
embryos appear dispersed all over the embryo and result in the formation of gonads with fewer pole cells. C. Quantification of the total number of
pole cells per gonad in control and homozygous mutant embryos (n$12 each) carefully staged according to morphological criteria. Although
consistently somewhat reduced compared to controls at stage 5, pole cell number in mutant embryos became highly significantly different (p,0.001,
Dunnett’s test) from that in controls at stage 8 and 11–12.
doi:10.1371/journal.pone.0036702.g001
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transgenic protein they induce. However, whereas near full rescue

of pole cell number was achieved with the high expressing

transgene under Tub-Gal4, it completely failed under Act-Gal4

(Fig. 2B). Because this difference could not be attributed to

different overall levels of transgenic protein under these two

drivers, we investigated potential differences in their spatial

expression. We made the assumption that such putative spatial

expression differences, however small, might account for the

rather large differences in phenotypic rescue. To increase the

resolution of immunohistochemical detection of potential spatial

expression differences, we drove a transgene expressing the bovine

Tau protein (bTau), which as previously shown [23], yields a

highly defined and specific signal. As demonstrated in Fig. 2C

neither driver is expressed within the pole cells. Importantly, Tub-

Gal4 drives reporter expression in cells surrounding and appar-

ently in direct contact with pole cells in stage 11 and stage 15

embryos (Fig. 2C1–2C4). These mesodermal cells are known to

play important roles in the guidance and survival of pole cells

throughout their migration to the forming gonad [24,25]. These

Somatic Gonadal Precursor (SGP) cells form in parasegments 10–

12 in the caudal area and germ cells migrate towards them. By

stage 13 the two cell types coalesce into the gonad which contains

both germ and somatic cells [19]. In contrast, Act-Gal4 is not

expressed in mesodermal tissues proximal to pole cells (Fig. 2C5–

2C8) and this may underlie the lack of rescue under this driver.

Therefore, the driver expression pattern combined with the results

of the rescue experiments indicate that direct contact between

mesodermal and pole cells is required for full rescue and

importantly, D14-3-3e appears to be required in the mesoderm

for this interaction.

To verify these conclusions independently, we generated a

transgene capable of producing an interfering RNA (RNAi), and

obtained multiple lines capable of abrogating the endogenous

D14-3-3e (Fig. S1). We used the insertion on the X due to its

highest efficacy (Fig S1B), but results were also verified with an

additional independent RNAi transgenic line. In fact, ubiquitous

expression of the RNAi-mediating transgene nearly abolished

D14-3-3e levels in late embryos (Fig. 2D), with the perduring

protein potentially being of maternal origin [13]. Abrogation of

D14-3-3e under Tub-Gal4 phenocopied pole cell loss in otherwise

wild type embryos (Fig. 2E), while abrogation of the protein in

mesodermal cells under How24B-Gal4, did not result in significant

reduction of pole cell number. However under the caudal

mesoderm driver NosVp16-Gal4, which is also expressed in pole

cells, there was a small but significant reduction (Fig. 2E). This is

consistent with the requirement for D14-3-3e in the caudal

mesoderm and likely also reflects differences in the spatial

expression patterns of the two drivers. However, as experiments

under NosVp16-Gal4 did not yield embryonic gonads with the

normal number of pole cells (not shown), it is probable that

expression levels under this driver remain below the required

threshold for full phenocopy or rescue of the pole cell deficit.

Nevertheless, these results verify the outcome of the rescue

experiments (Fig. 2B) and indicate that D14-3-3e is necessary in

posterior mesoderm cells probably the SGPs and subsequent in

somatic gonadal cells, where How24B is apparently not expressed.

Specificity in 14-3-3 protein requirement for pole cell
migration

Previous results have demonstrated functional redundancy

between D14-3-3e, LeoI and LeoII, for specific functions in

particular tissues [13]. Therefore, we investigated whether the two

14-3-3 proteins may also be functionally redundant for pole cell

migration and embryonic gonad formation. We approached this

by attempting rescue of the deficient pole cell number in D14-3-3e
mutant embryos with transgenes encoding LeoI and LeoII, but did

not include LeoIII in these experiments because it is specific to

adult mushroom body neurons and is more divergent from the

other two [12]. Quantification of pole cell number per gonad,

demonstrated that none of the Leo isoforms was able to rescue the

pole cell reduction in the gonad, or their abortive migration upon

D14-3-3e loss under the ubiquitous Tub-Gal4, Act-Gal4, or the

caudal mesoderm driver NosVp16-Gal4 (Fig. 3). Therefore, the

two Drosophila 14-3-3 proteins Leo and D14-3-3e are not

functionally equivalent with respect to the pole cell migration. In

agreement with this conclusion, unlike for D14-3-3e mutant

heterozygotes (Fig. 1D, Fig. 2B, Fig. 3C), the number of pole cells

in leo mutant heterozygotes is not different from that in wild type

embryos. In addition, although leo mutant homozygotes die as late

embryos with developmental defects [26], which hamper accurate

estimation of their number, they do not appear to harbor

significantly less pole cells (not shown).

Interaction of D14-3-3e with proteins essential for pole
cell migration

Normal pole cell migration requires the protein products of

several genes such as serpent (srp) and huckebein (hkb), engaged in

normal mesoderm development [27,28,29] and others that affect

pole cell migration per se, such as wunen (wun), necessary for pole

cell migration along the basal surface of the midgut [30]. In

addition, mutations in Abdominal A (abdA), Abdominal B (abdB),

tinman (tin), heartless (htl), fear of intimacy (foi), trithorax (trx),

trithoraxgleich (trg) kai zinc-finger homeodomain-1 (zfh-1) affect normal

pole cell migration and result in defective gonad formation [22].

Interestingly, mutations in many of these genes precipitate changes

highly reminiscent of the phenotype of D14-3-3e homozygotes,

namely scattered pole cells across the mesoderm and gonads

devoid of, or containing few germ cells. A potential explanation for

the phenotypic similarity in these loss-of-function mutants is that

interaction among one or more of these proteins and D14-3-3e is

necessary for pole cell migration and/or gonad formation. In fact,

an in silico search revealed that Abdominal A, Columbus,

Trithorax and Zinc-finger homeodomain-1 proteins contain one

or more potential 14-3-3 binding sites (Table S2). Hence, we

investigated whether the distribution pattern of these proteins was

altered in D14-3-3e mutant embryos. We focused on Zfh-1 for two

reasons. It is the only one of the group that contains a perfect

match to the consensus of the most common 14-3-3 binding site,

Arg-Ser-x-Ser-x-Pro (where a x is any aminoacid) and has a highly

specific antibody [31] available.

14-3-3e is required for Zfh-1 stability in the somatic
gonadal cells

Zfh-1 is a transcription factor with nine zinc fingers and a

homeodomain. It is normally expressed in the central nervous

system and in mesodermal tissues such as the dorsal vessel, the

precursor muscle cells and the somatic component of the

embryonic gonad ([31] and Fig S2). In D14-3-3e mutant embryos,

Zfh-1 levels were markedly reduced in all tissues where it is

normally expressed and was completely absent from the meso-

dermal cells that constitute the somatic component of the gonad

(Fig. 4B). The absence of Zfh-1 staining in the somatic component

of the gonad was always coincident with reduction of pole cells in

the gonads of D14-3-3e mutant embryos. This result was

confirmed in multiple experiments with representative results

displayed in Fig. 4 B1-4. This reduction is especially apparent in

Fig. 4B4 because of the better resolution afforded by detection of

14-3-3e Mediates Pole Cell Migration
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somatic cells in the far red which eliminates embryo auto-

fluorescence. The differential reduction of Zfh-1 in the gonad is

better illustrated in the hypomorphic D14-3-3eJ2B10 homozygotes.

Although Zfh-1 is reduced somewhat in mesodermal and nervous

system tissues, the protein is totally absent in tissues surrounding

the pole cells (Fig. 4B5 and 6). The fact that Zfh-1 continues to be

expressed even at lower levels in other tissues implies either that it

is not regulated by D14-3-3e in these cells, or that Leo may be able

to functionally compensate for its absence [13].

These results were confirmed independently by selective D14-3-

3e silencing with UASIRepsilon expression in tissues determined

(Fig. 3B) to be required for normal pole cell migration and gonad

formation. D14-3-3e attenuation under Tub-Gal4 resulted in

significant reduction in pole cell number and Zfh-1 levels in the

presumptive somatic cells of the gonad, nearly to levels present in

D14-3-3eex4 homozygotes (Fig. 4C3 and 4C4). A more modest

reduction in pole cells and Zfh-1 levels was observed under the

posterior mesodermal driver NosVp16-Gal4 (Fig. 4C6). In

contrast, no visible effects were precipitated under the broad

mesodermal driver, How24B-Gal4 (Fig. 4C5), underscoring the

cellular specificity of Zfh-1 loss upon D14-3-3e attenuation.

Collectively, these results strongly suggest that D14-3-3e regulates

the expression or stability of the Zfh-1 transcription factor,

especially in the mesodermal component of the gonad. If this is the

only role of D14-3-3e in the somatic cells of the gonad, then by

transgenically restoring the Zfh-1 in D14-3-3e mutant embryos, we

would expect the phenotype of the scattered pole cells to be

reversed. Unfortunately, attempting to transgenically restore Zfh-1

in such homozygous mutant embryos with the Tub-Gal4 driver

resulted in lethality, while the How24B-Gal4 and NosVp16-Gal4

were unable to rescue the pole cell deficit. Therefore, although in

accord with our collective data, we were unable to further examine

and confirm this hypothesis.

Figure 2. Cell type limited transgenic rescue and phenocopy of the pole cell deficit. A. Equivalent expression of two independent
UASepsilon transgenes in different chromosomal locations expressing either low (L) or high (H) levels of transgenic protein under either Tub-Gal4 or
Act-Gal4. B. Transgenic rescue of the scattered pole cell phenotype of D14-3-3eex4 homozygous and heterozygous embryos under the Tub-Gal4 or
Act-Gal4 drivers. The dark bar indicates the number of pole cells per gonad in D14-3-3eex4 homozygotes carrying a silent (no Gal4 driver) UASepsilon
transgene. Pole cell number was significantly (p,0.0001, Dunnett’s test) higher in mutant heterozygotes (medium gray bars) than in D14-3-3eex4

homozygotes. Importantly, expression of the transgene under Tub-Gal4 (middle light gray bar) resulted in a significant increase (p,0.0001, Dunnett’s
test) of pole cells per gonad over those in mutant homozygotes (dark bar). In contrast, pole cell number remained similar to that of the homozygous
mutants under Act-Gal4 (rightmost light gray bar). C. Expression pattern of Tub-Gal4 and Act-Gal4 drivers. Expression of the transgenic protein b-Tau
(red) using the drivers Tub-Gal4 (1–4) and Act-Gal4 (5–8) and in the embryonic stages 11 (1, 2, 5 and 6) and 14 (5, 6, 7 and 8). Pole cells are labeled
with anti-vasa (green) and the arrows indicate their location in late with respect to cells expressing the Tub-Gal4 (3) and Act-Gal4 (7). Arrowheads in 2
and 4 indicate Tub-Gal4 driver expression in mesodermal cells surrounding the migrating pole cells and the of transgenic protein expression under
Act-Gal4 in these cells (6, 8). D. RNAi-mediated attenuation of endogenous D14-3-3e protein upon ubiquitous expression under Tub-Gal4 in embryos.
The western blot probed with the chicken anti-D14-3-3e antibody is also probed with anti-b-tubulin which serves as a loading control and
demonstrates drastic reduction of D14-3-3e to levels nearly as low as those in homozygous mutant embryos. E. RNA-interference(RNAi)-mediated
phenocopy in wild type embryos of the pole cell deficit in D14-3-3eex4homozygotes. Driving the RNAi-mediated transgene with Tub-Gal4 reduced
pole cell number in the gonads of stage 12–13 embryos nearly to that observed in mutant homozygotes (dark gray bar). Partial, but statistically
significant (p,0.001, Dunnett’s test) reduction compared to controls (open bar) was attained under NosVp16-Gal4, but no deficit was precipitated
under the mesodermal driver How24B-Gal4.
doi:10.1371/journal.pone.0036702.g002

Figure 3. 14-3-3f-Leo over-expression does not rescue pole cell number in D14-3-3eex4homozygotes. Expression of the two ubiquitous
Leo isoforms, LeoI and LeoII [12] in mutant homozygotes under Tub-Gal4, Act-Gal4 and NosVp16-Gal4 (light gray bars) failed to change the reduced
number of pole cells in D14-3-3eex4 homozygotes. The dark bar indicates the number of pole cells per gonad in D14-3-3eex4 homozygotes. The number
of pole cells in embryos expressing transgenes (light gray bars) was compared to that of the homozygotes (dark gray bar) and of genotype-matched
heterozygotes (medium gray bars) carrying each UAS transgene on the same chromosome as that bearing the D14-3-3eex4 mutation. Full rescue was
attained only when Tub-Gal4 drove the UASepsilon (UASeps) transgene. The line is drawn to aid comparisons with the number of pole cells in the
mutant homozygotes.
doi:10.1371/journal.pone.0036702.g003

14-3-3e Mediates Pole Cell Migration
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The absence of Zfh-1 from the presumptive mesodermally

derived cells of the gonad may reflect their failure to differentiate

as such, or survive altogether in D14-3-3e mutant embryos. This

was investigated using transcripts from the 412 retrotransposon

which specifically mark the somatic cells of the gonad [22]. In situ

hybridization experiments demonstrated that these gonadal cells

survive and appeared of similar number in controls, heterozygous

and homozygous D14-3-3e mutant embryos (Fig. 5). Therefore,

lack of D14-3-3e only affects the expression or stability of Zfh-1

and not the viability of the somatic cells of the gonad. In situ

hybridization experiments with a probe against zfh-1 transcripts

did not reveal differences between control and homozygous

mutant embryos in the area typically occupied by the gonad, with

the provision that the complicated and rather broad signal pattern

may have obscured subtle differences (not shown). Therefore, we

provisionally conclude that D14-3-3e regulates Zfh-1 protein

stability.

Collectively, our data demonstrate that D14-3-3e is required

within mesodermal cells which guide the pole cells during their

migration and eventually participate in formation of the embry-

onic gonad by regulating Zfh-1 protein levels in the mesodermally

derived somatic cells of the gonad.

Figure 4. The Zfh-1 transcription factor interacts with and is regulated by D14-3-3e. A. The amino acid sequence of Zfh-1 containing the
two 14-3-3 binding sites (red) revealed by in silico analysis. The second site containing the amino acids RSTSSP represents a perfect fit to the typical
consensus 14-3-3 binding. B. The Zfh-1 distribution in control (1, 5), D14-3-3eex4 (2) and D14-3-3eJ2B10 (6) homozygous mutant embryos is shown in
green, while pole cells are stained for Vasa (red). In the independent experiment shown in panel 3 (control) and panel 4 (homozygous D14-3-3eex4

mutant), the Zfh-1 distribution is shown in blue and pole cells marked with anti-Vasa in green. The inserts are magnifications of one of the gonads to
better reveal the severe reduction or absence (arrowheads in 2, 4, 6) of Zfh-1 in mesodermally derived gonadal cells (arrows in 1, 3, 5). In 5 and 6 the
embryos are oriented and images were captured such as to reveal the distribution of Zfh-1 in the ventral nerve chord and other mesodermal tissues.
Note the scattered pole cells in panel 6. C. Phenocopy of the reduction or loss (arrowheads) of Zfh-1 in mesodermally derived gonadal cells upon
RNAi-mediated D14-3-3e abrogation with Tub-Gal4 (4) and to a lesser degree with NosVp16-Gal4 (6) in comparison with the distribution of these cells
in control (1), D14-3-3eex4 heterozygous (2) and homozygous (3) mutant embryos.
doi:10.1371/journal.pone.0036702.g004
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Discussion

Our results demonstrate that D14-3-3e is necessary for

migration of pole cells through the caudal mesoderm to the

forming gonad. Although enriched within pole cells (Fig. 1B), D14-

3-3e is not required therein, but rather in SGPs and somatic

gonadal cells, which mediate this migration and coalesce into the

gonad. Therefore, within the pole cells D14-3-3e likely serves a yet

unknown function. Our data indicate that D14-3-3e is not

required for survival of somatic gonadal cells, but rather for their

interaction with the pole cells, which in agreement with previous

results [31] requires Zfh-1. An important experimental finding is

that D14-3-3e and Leo are not equivalent in mediating pole cell

migration. This suggests specificity in D14-3-3e-Zfh-1 interaction

within somatic gonadal cells and perhaps in other tissues where the

two are co-expressed.

14-3-3 proteins are known to bind transcription factors in a

phosphorylation-dependent manner and modulate their subcellu-

lar localization and thus their activity [8]. For example, 14-3-3s

bind and prevent entry into the nucleus of members of the

Forkhead family of transcription factors [7]. Our results suggest

that the highly consensus 14-3-3 binding site on Zfh-1, R-S-x-S-x-

P, or the second more degenerate site at aas 824–837, are likely

bound by D14-3-3e. However there is no evidence currently that

this occurs in the predicted phosphorylation-dependent manner.

The prediction that Zfh-1 is phosphorylated at the second Serine

of the consensus sequence, mediating D14-3-3e binding will be

addressed in future experiments.

Zfh-1 function is required for the development of the caudal

visceral mesoderm, the SGPs and somatic gonadal cells [31].

Interestingly, D14-3-3e loss seems to affect Zfh-1 levels primarily

in the latter, since its pattern in most other tissues appears little

affected (Fig. 4). It is possible that one or more Leo isoforms may

functionally compensate for D14-3-3e loss in all tissues other than

SGPs and the somatic gonadal cells (Fig. 3), or that Zfh-1 activity

in these cells is under unique regulation. Similarly, Leo isoforms

were reported to compensate for D14-3-3e loss in certain vital

functions, but not in wing vein formation [13]. Alternatively, in

comparison to other cell types, D14-3-3e may serve a unique

function with respect to Zfh-1 activity within SGPs and somatic

gonadal cells. Therefore, although D14-3-3e loss affects many

tissues, the consequences are revealed in these cells because it

regulates a critical factor for their development or survival.

We currently do not know whether D14-3-3e is required for

Zfh-1 transcription or translation per se. However, because its levels

appear largely unaffected in other tissues of homozygous D14-3-3e
mutant embryos, we propose that D14-3-3e is required for Zfh-1

entry into the nucleus and that the transcription factor is unstable

in the cytoplasm in its absence. In fact, 14-3-3s are known to bind

and prevent entry into the nucleus of members of the Forkhead

family of transcription factors [7]. Destabilization of Zfh-1 upon

D14-3-3e loss may lead to fate changes or functional alterations

because the transcription factor is required for expression of the

nuclear protein Clift/Eyes absent. The Clift/Eyes absent protein is

essential for SGPs and somatic gonadal cells differentiation [32] or

functionality. The cells of the presumptive gonal do not appear to

undergo a gross change in fate since they still express the 412

retrotransposon marker (Fig. 5). Rather, they apparently become

unable to efficiently attract pole cells to coalesce into the gonad.

Reduced attraction to the gonad likely results in pole cells not

following the stereotypical migratory pathway, with a significant

number of them remaining scattered in the caudal area of

homozygous mutant embryos while few of them (,7) reach the

gonad. It appears the majority of these ‘‘lost’’ germ cells die

around stages 10–12 (Fig. 1E). This is suggested by previous work

indicating that primordial germ cell survival depends on their

homing behavior and in ectopic cells die via apoptosis, probably

initiated by a lack of localized survival factors [33].

Interestingly, we never observed complete loss of embryonic

gonads in any of the D14-3-3e null embryos even if they contained

but a few pole cells. This is consistent with the evidence for two

independent mechanisms that function in parallel and coopera-

tively for gonad formation. One is Zfh-1-dependent and the other

requires Tin, a transcription factor without 14-3-3 binding sites

(Table S2), which may mediate formation of the rudimentary

gonads in the mutant embryos. Another potential 14-3-3-

interacting protein which could participate in the process is

AbdA, which contains 4 potential binding sites (Table S2) and is

necessary for SGP specification [32,34]. It is then possible that

misregulation of this protein also contributes to the embryonic

phenotype(s) upon D14-3-3e loss. In addition, our in silico results

suggest that the Trx protein with eight 14-3-3 binding sites of three

different consensus variants, is likely to be a bona fide 14-3-3

interacting protein, which has also been proposed to participate in

germ cell migration and embryonic gonad formation [22].

Oocytes and embryos lacking D14-3-3e display gross defects in

anterior–posterior polarization, rendering them unviable and

offers an explanation for the inability to propagate the viable

homozygotes [35]. In contrast, homozygous embryos from

heterozygous mothers such as the ones we focused on in this

work, although they hatch with 25–30% of normal pole cells as we

have shown, they nevertheless do have a germ line. Provided that

these remaining pole cells become germ line stem cells [36], this

does not account for the small number of eggs laid by homozygous

females (Fig. 1A) and the inability of such males to fertilize control

females (Table 1). In fact, homozygous females contain very few

eggs in rudimentary germaria (Fig S3), suggesting that D14-3-3e
may also play a role either in the transition of pole cells to stem

cells, or maintenance of their stem cell-state. Ongoing preliminary

experiments suggest the latter and will also be the focus of future

investigations.

Seen in a wider context, this study focused on mechanisms of

directed cellular migration. In addition to that of pole cells, such

mechanisms underlie other morphogenetic movements in the

embryo that give rise to musculature and nervous system, but also

exhibit common features with the migration of metastatic cancer

cells [37]. Therefore, 14-3-3e or other members of the protein

Figure 5. Mesodermally derived gonadal cells are present in
D14-3-3e mutant embryos. In situ hybridization for transcripts of the
412 retrotransposon as a marker of the mesodermal component of the
gonad (blue) and immunohistochemical labeling of the D14-3-3e
protein (brown) shows that the somatic cells of the gonad are present
in controls, heterozygous and homozygous D14-3-3e mutant embryos
as indicated at stage 9 (1, 4, 7), stage 11 (2, 5, 8) and stage 14 (3, 6, 9).
doi:10.1371/journal.pone.0036702.g005
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family may be involved such processes in vertebrates. In fact,

similar to Drosophila, chemotaxis is vital for primordial germ cell

development in zebrafish and mouse, as Sdf-1/CXCR4 directs

their migration and significantly the same chemokine receptor

may be involved in metastasis of many tumor cell-types [38].

Materials and Methods

Drosophila culture and strains
Drosophila were cultured in standard cornmeal, soy flour and

sugar food supplemented with CaCl2 at 21–23uC [13]. The

mutant alleles D14-3-3el(3)j2B10 and D14-3-3eex4 and the revertant

D14-3-3eex5 were described previously and their genetic back-

ground was normalized to our resident Cantonized w1118.

Homozygous embryos were identified from heterozygotes with

the aid of the fluorescent balancer chromosome TM3GFP,

(TM3Ser1, P{GAL4-Hsp70.PB}TR2, P{UAS-GFP.Y}TR2), ex-

pressing ubiquitously the Green Fluorescent Protein [39]. The

following GAL4 drivers were obtained from the Bloomington

Stock Centre: P{tubP-GAL4}LL7 (abbreviated in the text and

figures as Tub-Gal4 [ubiquitousexpression]), P{Act5C-

GAL4}25FO1 (abbreviated as Act-Gal4 [broad expression]),

P{GAL4::VP16-nos.UTR}MVD2 (abbreviated as NosVp16-

Gal4 [expression in embryonic posterior mesoderm and pole

cells]) and P{GawB}how[24B] (abbreviated as How24B-Gal4

[expression in mesodermal cells]), and the bovine Tau-expressing

UAS-b-Tau transgene. We generated and used the following

transgenic strains: UAS-D14-3-3eG, UAS-D14-3-3eL, UAS-leoI

and UAS-leoII and the RNA-interference (RNAi)-mediating UAS-

IRD14-3-3e. This transgene expresses an inverted repeat RNA

from the D14-3-3e gene. To generate UAS-IRD14-3-3e, a 990 bp

XbaI fragment of the gene containing the complete cDNA, was

subcloned into pUAST [40] in the same orientation as that of the

UAS controlled transcription. Subsequently, another 400 bp

fragment, containing the gene 59 end to the unique EcoRI site,

was subcloned into the same pUAST plasmid in the opposite

orientation (Fig. S1) and transformants were obtained in the w1118

background using standard methods. Of the multiple transfor-

mants obtained, the line bearing an insert in the X chromosome

was the most effective in silencing the endogenous gene (Fig. S1)

and was used for most experiments shown in the figures.

Fertility and pole cell measurements
For single fly experiments mutant females were observed to

mate with w1118 males, or conversely mutant males were observed

to mate with control females in food vials and remained there

undisturbed for 7 days. They were then moved to new vials for

another 7 days. If even a single larva or adult emerged from any of

the two vials per mating the cross was scored as fertile. For

multiple fly crosses, 20–30 females were placed with males in a vial

for 16 hours at 21–23uC. Thereafter, they were transferred in an

egg collection cage made from a polyethylene tri-pour beakers and

embryos were collected on agar and apple juice plates. Counts

continued for 3 days for every cross and were carried out by means

of a Zeiss Stemi V2 stereoscope. The results were analyzed

statistically with the SAS JMP software as suggested by Rolf and

Sokal.

Immunohistochemistry
Embryos were collected on agar-apple juice plates, dechor-

ionated and fixed in 43.2 mM Hepes, 0.96 mM MgSO4,

0.48 mM EGTA, pH 6.9, 1.6% formaldehyde in 59% heptane.

Subsequently, they were rinsed with methanol, 5% EGTA. The

embryos were hydrated in BBT (140 mM NaCl, 2.7 mM KCl,

4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.3, 0.1% Tween-20,

1%, BSA) and ‘‘blocked’’ for 1 hour in BBT-250 (BBT, 250 mM

NaCl), 10% normal goat serum (NGS). Subsequently, they were

incubated with primary antibodies in 5% NGS BBT-250 as

follows: chicken anti-D14-3-3e 1:3000, rabbit anti-vasa 1:3000 (P.

Lasko), mouse anti-GFP 1:5000 (Molecular Probes), mouse anti-

Tau 1:3000 (Developmental Hybridoma Studies Bank, University

of Iowa City, IA), and mouse anti-Zfh-1 (Z. C. Lai). Fluorescent

secondary antibodies conjugated to Alexa-555, Alexa-488 and

Alexa-647 (Molecular Probes, Eugene, OR) were used at 1:2000.

Images from 2–3 mm optical sections were captured on a Biorad

2100 confocal microscope. The homozygous embryos were

indentified based on lack of signal from the GFP-bearing balancer

chromosome. Balancer chromosome homozygotes were excluded

from analyses due to their abnormal appearance.

Pole cell counts were carried out using a Biorad 2100 confocal

microscope and the numbers refer to pole cell number per gonad.

The results were analyzed statistically as detailed above [41].

In situ hybridization
Embryos were collected on agar and apple juice plates,

dechorionated and fixed in 43.2 mM HEPES, 0.96 mM MgSO4,

0.48 mM EGTA, pH 6.9, 1.6% formaldehyde in 59% heptane.

Subsequently, they were rinsed with 50% methanol and 50% PBT

(140 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM

KH2PO4, pH 7.3, 0.1% Tween-20). The embryos were hydrated

in PBT and incubated for 3 minutes in 40 mg/ml proteinase K,

rinsed in PBT and fixed again for 25 minutes in PBT and 5%

formaldehyde. They were then transferred in hybridization

solution for 1–2 hours at 55uC. Finally, 40 ml of single-stranded

RNA probe in complete hybridization solution was added for at

least 12 hours at 55uC. The 412 retrotransposon gene RNA probe

was prepared and used as previously described [31]. After

hybridization and washes, the embryos were stained with the

chicken anti-D14-3-3e antibody (1:3000) and with anti-chicken

biotin a 1:2000, as described previously [42].

Western blot analysis
Staged embryos or entire 2–3 day old flies as indicated were

homogenized in 16 Laemli solution (50 mM Tris pH 6.8,

100 mM DTT, 5% 2-mercaptoethanol, 2% SDS, 10% glycerol,

and 0,01% bromophenol blue). The protein extracts were heated

for 10 minutes at 95uC and the denatured proteins were separated

by SDS-PAGE electrophoresis. The electrophoretically separated

proteins were transferred onto PVDF membranes and the D14-3-

3e and b-Tubulin (Developmental Hybridoma Studies Bank,

University of Iowa City, IA) proteins were detected with the

respective antibodies (at 1:2000 and 1:500). The secondary anti-

chicken and anti-mouse antibodies were used at 1:2000 and

1:4000 respectively. The proteins were detected by chemilumi-

nescence (PIERCE).

Supporting Information

Figure S1 A. A map representing the salient features if the

‘‘head to head’’ construction utilized to generate the UASIRepsilon

RNAi-mediating transgene in the pUAST vector. B. D14-3-3e
abrogation by two independent transgene insetions visualized in

Western blots of late embryo extracts. The two transgenic lines

shown here were utilized for all experiments, with all data shown

in the figures obtained with the insertion on the X chromosome

(UASIRepsilonX), but verified independently with the other on the

second (UASIRepsilon2).

(JPG)
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Figure S2 The distribution of Zfh-1 protein (green) in
wild type embryos stages 8 (1), 11 (2) and 14 (3), shown
with reference to the nervous system labeled with the
22c10 monoclonal antibody (blue) and the pole cells
labeled with anti-Vasa (red). Zfh-1-containing cells of the

gonad are indicated by arrows, whereas arrowheads point to cells

expressing high levels of the protein either in the nervous system or

the mesoderm.

(TIF)

Figure S3 Saggital sections of adult female abdomens of
the indicated genotypes stained with anti-D14-3-3e. The

arrow indicates the single apparent oocyte present in the abdomen

of the mutant homozygous female. Entire flies were fixed in

Carnoy’s fixative, paraffinized, sectioned and processed for

immunohistochemistry as previously described [43,44].

(TIF)

Table S1 Rescue of the fertility deficit of D14-3-3eex4 (2)
and D14-3-3eJ2B10 homozygotes with conditional expres-
sion of heat-shock inducible full length transgenes
yielding high (hsD14-3-3eH) and low (hsD14-3-3eL) levels
of the protein. Experimental conditions are as detailed on the

table and the number of single crosses that yielded larvae (%

Fertile) over the total number of animals crossed (# crossed) per

genotype is reported.

(DOC)

Table S2 Results from the in silico search for 14-3-3
binding sites on proteins known to involved in pole cell
migration and embryonic gonad formation [22]. The

number (# hits) of sequences on each target protein matching the

indicated 14-3-3 binding motif is shown, as well as the exact

sequence and its location in the protein (sequences).

(DOC)
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