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Abstract

The overwhelming amount of available scholarly literature in the life sciences poses significant challenges to scientists
wishing to keep up with important developments related to their research, but also provides a useful resource for the
discovery of recent information concerning genes, diseases, compounds and the interactions between them. In this paper,
we describe an algorithm called Bio-LDA that uses extracted biological terminology to automatically identify latent topics,
and provides a variety of measures to uncover putative relations among topics and bio-terms. Relationships identified using
those approaches are combined with existing data in life science datasets to provide additional insight. Three case studies
demonstrate the utility of the Bio-LDA model, including association predication, association search and connectivity map
generation. This combined approach offers new opportunities for knowledge discovery in many areas of biology including
target identification, lead hopping and drug repurposing.
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Introduction

Translational research in medicine is concerned with trans-

forming basic laboratory science into effective patient therapies as

quickly as possible. Developing effective treatments requires a

cross-discipline understanding of medicine, pharmacology, biol-

ogy and chemistry at the physiological, cellular, and molecular

levels. Probably the most significant source of knowledge lies as

text in published literature. PubMed [1] is an online resource that

provides more than 19 million citations for published articles in

journals and books, and while most are associated with short

abstracts, an increasing number are now being accompanied by

free, full text articles. At the same time, sophisticated interdis-

ciplinary research has lead to the development and application of

powerful methods to generate enormous amounts of new data

resulting in an increased topical complexity of research articles.

This complexity makes it challenging to efficiently discover,

evaluate and synthesize the latest information, trends, and

findings deposited in published literature in a reasonable amount

of time. For the biomedical researcher, being able to quickly

generate and ascertain the significance of associations between

chemicals, genes and diseases are valuable in investigations

relating to drug discovery. Thus, generating useful approaches to

facilitate knowledge discovery through systematic analysis of

abstracts and full-text journal articles is an important and

ongoing challenge.

Natural language processing (NLP) is a common approach to

text mining of biomedical corpora [2,3]. However, NLP largely

relies on the syntactic and linguistic structure of documents, and

is not in itself able to identify scientific relationships between

terms. In contrast, statistical modeling techniques including

Latent Dirichlet Allocation (LDA) [4] make the automated

identification of topics from large document collections and

corpora possible [5]. LDA, a hierarchical Bayesian model, has

been extended to obtain relations between topics and terms [6].

Having a specialized and advanced LDA model using life sciences

terms may provide a more effective way of exploring the

biomedical literature.

Despite enormous investments in generating information

pertinent to drug discovery and disease research, the problems

associated with data integration are still a barrier to medical

research [7]. An important tool in breaking down this barrier is the

Semantic Web. Using Semantic Web technologies it becomes

possible to convert data to a common syntax and specify the

meaning of the data through shared vocabularies that can be

specified as a formal, logical-based ontology. Bio2RDF [8],

Chem2Bio2RDF[9], and Linked Open Drug Data (LODD) [10]

are all projects involved in providing life sciences data using

Semantic Web technologies. The resulting cloud of Linked Open

Data now makes it possible to download interlinked data in a

common format and the ability to query across their diverse

resources, such resources are likely to become powerful drivers for

increasing scientific productivity. Clearly, being able to link these

datasets with complementary extracted information from the

PubMed datasets would dramatically increase the overall oppor-

tunity for knowledge discovery.

The LDA model considered in this paper is a model for a text

corpus viewed as a collection of bags of words. It assumes that

people write an article with several topics in mind; each topic is

associated with a different conditional distribution over a fixed set

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17243



of words. A collection of documents can be seen as being

generated by the same set of topics with different probability

distribution for each document [4,11]. Therefore, LDA is a

mixture model, i.e., the mixture components are shared across all

documents but each document exhibits different mixture propor-

tions [4].

Since Blei et al. introduced the LDA model [4], various extended

LDA models have been used in automatic topic extraction from text

corpora. Rosen-Zvi et al. introduced the Author-Topic model

which extended LDA to include authorship [5]. Each author is

associated with a multinomial distribution over topics. They applied

the model to a collection of 1,700 NIPS conference papers and

160,000 CiteSeer abstracts. The primary benefit of the author-topic

model is that it allows the explicit inclusion of authors in the

document models, providing a general framework for answering

queries and making predictions at the level of authors as well as the

level of documents. Based on Author-Topic model, McCallum and

Wang presented an Author-Recipient-Topic (ART) model for social

network analysis, which learns topic distributions based on the

direction-sensitive messages sent between entities, adding the key

attribute that distribution over topics is conditioned distinctly on

both the sender and recipient [12]. Tang et al. further extended the

LDA and Author-Topic model to the Author-Conference-Topic

model [6], which is considered as a unified topic model to

simultaneously model the different types of information in the

academic network. They found that the proposed method had a

high performance in expertise search and association search.

Xiance and Maosong proposed a tag-LDA model which extended

LDA model by adding the tag variable and applied it to social

tagging systems [13].

In addition to text data, adapted LDA models are also applied

to visual data for topic mining. In order to refine tags associated

with images, Xu et al. proposed a regularized LDA (rLDA) which

facilitates the topic modeling by exploiting both the statistical of

tags and visual affinities of images in the corpus [14]. Wang and

Grimson proposed a topic model Spatial Latent Dirichlet

Allocation (SLDA), in which the knowledge of spatial structure

can be flexibly added as a prior, grouping visual words which are

close in space into the same document [15]. They found that

SLDA achieved better performance than LDA when applied to a

collection of images.

Those studies above extended the classic LDA model mainly by

incorporating new variables to meet the customized demand in the

applied area. Other advanced extensions of LDA model include

supervised Latent Dirichlet Allocation (sLDA) [16] and dynamic

topic model [12].

Some prior studies have been devoted to multiple alternatives of

speeding up the learning of LDA, including parallelization across

machines. Newman and et al. presented two synchronous

methods, AD-LDA and HD-LDA, to perform distributed Gibbs

sampling [17]. Asuncion, Smyth and Welling proposed asynchro-

nous distributed learning algorithms for LDA and Hierarchical

Dirichlet Process (HDP) in which processors independently

perform Gibbs sampling on their local data and communicate

their information in a local asynchronous manner with other

processors [18]. Wang et al. introduced a parallel implementation

of LDA on MPI and MapReduce, which smoothes out storage and

computation bottlenecks and provides fault recovery for lengthy

distribution computation [19].

As for applications of LDA in biomedical domain, Blei et al.

examined 5,225 free-text items in the Caenorhabditis Genetic

Center (CGC) Bibliography using the classic LDA model [20].

They found that like other graphical models for genetic, genomic

and other types of biological data, the LDA model estimated from

CGC items had better predictive performance than two standard

models (unigram and mixture of unigrams) trained using the same

data. Zheng, et al. applied the classic LDA model to a corpus of

protein-related MEDLINE titles and abstracts and extracted 300

major topics [21]. They found that those topics were semantically

coherent and most represented biological objects or concepts.

They further mapped those topics to controlled vocabulary of the

Gene Ontology (GO) terms based on mutual information. They

concluded that those identified topics provide parsimonious and

semantically-enriched representation of the texts in a semantic

space with reduced dimensionality that can be used to index text.

Bundschus et al. presented a Topic-Concept model, which extends

the basic LDA framework to reflect the generative process of

indexing a PubMed abstract with terminological concepts from an

ontology [22]. The Topic-Concept model extends the LDA

framework by simultaneously modeling the generative process of

document generation and the process of document indexing. For

each of the concepts in the document a topic is uniformly drawn

based on the topic assignments for each word in the document;

each concept is sampled from a multinomial distribution over

concepts specific to the sampled topic. They applied the model

into a large-scale collection of medical text from PubMed and

found that a number of important tasks for biomedical knowledge

discover can be solved with Topic-Concept model.

While previous applications of LDA in the biomedical domain

have yielded several benefits, few considered the extension of the

LDA model to include bio-terms (that is a restricted vocabulary of

genes, compounds, diseases, and so on) as input parameters. In this

paper, we develop a Bio-LDA model, which extends the LDA

model by incorporating bio-terms as input variables to the classic

LDA model. The associations of the bio-terms are measured based

on the topic distribution of the bio-terms. This approach is useful

to establish hidden relations between biomedical concepts from

literature compare to the commonly used co-occurrence-based

methods [23,24]. The identified bio-term associations are

evaluated using Chem2Bio2RDF.

Our contributions are: 1) the development of Bio-LDA, a novel

advanced LDA model to mine the latent semantics among topics

and biological terms; 2) conversion of identified latent semantics to

RDF triples and alignment with existing semantic life data; 3) the

demonstration of the application of these methods through use

cases which cannot be solved by using traditional literature and

database searches. This paper is organized as follows: Section 2

covers the data and methodology, the proposed Bio-LDA model,

and other related tools/services built using this model. Section 3

presents the experimental results of the Bio-LDA model and

describes three use cases to illustrate the utility of the approach in

solving interesting problems in biomedical domain and section 4

offers our summary discussion.

Materials and Methods

Datasets
Chem2Bio2Rdf. Chem2Bio2RDF[9] consists of about 78

million RDF triples over 25 datasets relating to systems chemical

biology, which is grouped into 6 domains, namely chemical

(PubChem Compound, ChEBI, PDB Ligand), chemogenomics

(KEGG Ligand, CTD Chemical, BindingDB, MATADOR,

PubChem BioAssay, QSAR, TTD, DrugBank, ChEMBL, Binding

MOAD, PDSP, PharmGKB), biological (UNIPROT, HGNC, PDB,

GI), systems (KEGG Pathway, Reactome, PPI, DIP), phenotype

(OMIM, Diseasome, SIDER, CTD diseases) and literature

(MEDLINE/PubMed. Provenance information pertaining to these

resources is available at http://chem2bio2rdf.org/datasets.html.

Finding Complex Biological Relationships in PubMed
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Chem2Bio2RDF data is linked to LODD and Bio2RDF data using

owl:sameAs.

MEDLINE and Bio-Terms Extraction. PubMed offers a

web-based and programmatic search service over its content [1].

However, this interface is limited to small- to medium-scale

queries, and text mining using this interface is not possible.

MEDLINE is the primary component of PubMed, where

approximately 5400 biomedical journals published in the United

States and worldwide, and covers abstracts from 1949 to present.

The entire content of MEDLINE is available as a set of text files

formatted in XML (eXtensible Markup Language). In this project,

the 2010 MEDLINE/PubMed baseline database is used as our

primary data source, which contains 617 files and 18,502,916

records (which covers citations through 2010).

In order to support our information extraction and text mining,

we developed a system to load MEDLINE XML files to a relational

database, extracting bio-terms from MEDLINE, and converting the

relational database to RDF schema as shown in Figure 1.

The relational database schema used in our system is designed

based on the category of bio-terms (compound, drug, gene, disease,

side-effect, pathway) and DTD (Document Type Definition) provided

by National Library of Medicine (NLM). Considering the size of

MEDLINE database (over 18 million citations), we tried to minimize

lookups by introducing redundant information in database. Our

MEDLINE database contains several tables: medline_citation contains

the title, abstract information, medline_biblio contains the bibliography

information, medline_author contains the authors’ information, medli-

ne_comp contains the mentioned compounds in the citation, etc. All

tables contain a PubMed identifier (PMID) in one column, which

connects tables and is also the key attribute in the RDF conversion.

Information such as citation, authors, journals, MeSH terms

were directly parsed from the XML file and loaded into

database. The bio-terms information needs to first apply

extraction method to intermediate files and then load to

database. In our system, we used the dictionary extraction

method. Bio-term dictionaries are generated from the following

data sources listed in Chem2Bio2RDF: the compound dictio-

nary is generated from PubChem Synonym with the PubChem

Compound identifier (CID); the drug dictionary is generated

from DrugBank and used DBID as the identifier; the gene

dictionary is generated from the HGNC and used UniprotID as

the identifier; the disease dictionary is generated from the CTD

(the comparative toxicogenomics database) and used MeshID as

the identifier; the side effect dictionary is generated from the

Sider and used UMLSID as the identifier; the pathway

dictionary is generated from the KEGG pathway and used

KeggID as the identifier. The extraction tools parses the XML

file and extracts the terms based on the pre-generated

dictionaries, then saved the results to intermediate flat files,

and then loads the files into the database. Table 1 summarizes

the dictionary attributes.

The D2R tool [25] is used to convert to the MEDLINE

relational database to RDF schema and combined to the

Chem2Bio2Rdf [9], which supports data visualization and

complex query retrievals. The key attribute for the MEDLINE

triples is the PMID. The extracted bio-terms, which used the well-

Figure 1. Data Preprocessing.
doi:10.1371/journal.pone.0017243.g001
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known identifies, are the key to bridge MEDLINE with other data

sources, i.e. PubChem, UniProt, etc.

Bio-LDA
The Bio-LDA model extends the ACT model [6] and

emphasizes on bio-terms occurred in literatures. The basic

assumption of the Bio-LDA model is that bio-terms of a paper

would determine topics written in this paper and each topic then

generates the words and determines the publication journal. The

generative process can be summarized in the Figure 2:

1. For each bio-term x = 1, … , B, draw hx , Dirichlet(a)

For each topic z = 1, …, T, draw wz , Dirichlet(b), and yz ,
Dirichlet(m)

2. For each document d = 1, …, D

Given the vector of bio-terms bd

For each word wi in document d:

Draw a bio-term xdi , Uniform(bd)

Draw a topic zdi , Dirichlet(hxdi)

Draw a word wdi , Dirichlet(wzdi)

Draw a journal jdi , Dirichlet(yzdi)

In this model, the number of possible topics T is fixed. Three

continuous random variables, h, w, and y, are involved in this

model. For a given set of documents, Dtrain, our aim is to estimate

the posterior distribution of those continuous random variables.

Our inference scheme is based on the observation that

P(h,w,yjDtrain,a,b,m)~X
z,x

P(h,w,yjz,x,Dtrain,a,b,m)P(z,xjDtrain,a,b,m)
ð1Þ

In the training process, an empirical sample-based estimation of

P(z,xjDtrain,a,b,m) is first obtained using Gibbs sampling.

P(zdi,xdijz{di,x{di,w,j,a,b,m)!

m{di
xdizdi

zazdiP
z (m{di

xdizzaz)

n{di
zdiwdi

zbwdiP
wv

(n{di
zdiwv

zbwv
)

n{d
zdi jd

zmjdP
j (n{d

zdi jzmj)

ð2Þ

where the superscript -di denotes a quantity, excluding the current

instance (e.g., the di-th word token in the d-th paper). After Gibbs

sampling, the probability of a word given a topic w, the probability

of a journal given a topic y, and the probability of a topic given a

bio-term h can be estimated as follows:

wzwdi
~

n{di
zdiwdi

zbwdiP
wv

(n{di
zdiwv

zbwv
)

ð3Þ

yzjd
~

n{d
zdi jd

zmjdP
j (n{d

zdi j
zmj)

ð4Þ

hxz~
mxzzazP

z0 (mxz0zaz0 )
ð5Þ

With the estimated continuous random variables, h, w, and y,

we can identify the information content of bio-terms, and find

association among bio-terms.

Bio-term Entropy over Topics. In information theory,

entropy is a measure of the uncertainty associated with a

random variable. It is also a measure of the average information

content. In our Bio-LDA model, we can compute the bio-term

entropies over topics as shown in equation 6, which indicates that

bio-terms tend to address a single topic or cover multiple topics.

The higher the entropy is, the more diverse the bio-term is over

topics.

Entropy(bi)~{
XT

z~1

hbiz
log hbiz

ð6Þ

Semantic Association of Bio-Terms. Kullback-Leibler

divergence (KL divergence) is a non-symmetric measure of

the difference between two probability distributions. In our Bio-

LDA model, we used the KL divergence as the non-symmetric

distance measure for two bio-terms over topics, as shown in

equation 7.

Table 1. Statistics of the bio-terms extraction.

Bio-Terms
# of unique
terms

# of term-
citation pairs

# of unique
citations

Compound 56,383 11,775,891 5,856,084

Drug 2,820 5,624,529 3,427,067

Gene 13,022 5,252,844 3,735,517

Disease 3,848 12,612,636 7,066,084

Side Effect 1,363 10,489,676 6,310,741

Pathway 180 916,754 838,090

doi:10.1371/journal.pone.0017243.t001

Figure 2. Graphical representation of the Bio-LDA models.
doi:10.1371/journal.pone.0017243.g002
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KL(bi,bj)~
XT

z~1

hbiz
log

hbiz

hbj z

ð7Þ

The symmetric distance measure of two bio-terms over topics is

the sum of two non-symmetric distances, as shown in equation 8.

sKL(bi,bj)~
XT

z~1

(hbiz
log

hbiz

hbj z

zhbjz log
hbjz

hbiz

) ð8Þ

In this study, the direction of the associations is not considered.

We only focus on the association score calculated by the symmetric

distances unless user specified to use the non-symmetric distances.

Other implemented tools
In our Bio-LDA model, the association of two bio-terms in the

literature can be measured use the KL-divergence. The smaller

the score is, the stronger the association is. This association score

can combined with the pre-knowledge of bio-terms (i.e. Chem2-

Bio2Rdf) for novel knowledge discovery.

Association Predication. Two Bio-terms can be associated if

there is a path between them or two bio-terms have similar

chemical or biological activities. The graph definition of three

types of semantic association is shown in Figure 3 [26]. However,

the number of association pairs is usually very large for the big

network. The association score from bio-LDA model can be used

to rank and select the most interest pairs from the candidate pool.

In Chem2Bio2RDF, there are eight kinds of relations: compound-

compound, compound-gene, compound-disease, compound-side effect, compound-

pathway, gene-gene, gene-disease, and gene-pathway. For a given source, it

is quite easy to find its associated target with a given type in

Chem2Bio2RDF. For instance, finding compounds that target

genes can be done by finding the direct relation among compound-

gene pairs. However, users are usually not only interested in those

already known links but also want to get information about the

possible indirect links. Indirect relations through an intermediary

also offer an opportunity to find linked compound-gene relations (r-

path association). The relations can then be validated using the

calculated association scores from the Bio-LDA topic model. For

instance, in order to find the possible in-directed linkage for a given

gene-compound pair, we can look up the four extended associations

in Chem2Bio2RDF: gene-disease-compound, gene-compound-compound,

gene-pathway-compound, and gene-gene-compound, and then compute the

association scores for the outputs from Chem2Bio2RDF. A valid

extended association is defined as following:

sKL b1,b2ð ÞƒcT

Association b1,b2ð Þ

�
[R̂RT b1,b2ð Þ ð9Þ

where association(b1,b2) indicates that possible semantic r-associa-

tions from Chem2Bio2RDF, sKL(b1,b2) is the association score

calculated using the Bio-LDA model described in section 3.2.2.

Association Search. In the area of network analysis, the task

of association search can be formalized as a task of path find in

graph. In our study, we are given a semantic network (e.g.,

Chem2Bio2RDF), which can be represented as a graph G = (V,

E), where vMV represents an entity (e.g., drug and gene) in the

network; er
ijME represents a relationship with property r (e.g., drug-

target interaction) between entities vi and vj; the relationship can be

directional or bi-directional; the goal of association search is to find

relationship sequences from vi to vj. We assume that no entity will

appear on a given association more than one time. We then define

the process of association search from one entity to the other as:

Given an association query (vi, vj), where vi denotes the source entity and vj

denotes the target entity. Association search is to find possible associations

{ak(vi, vj)} from vi to vj.

There are two subtasks along with association search: finding

possible associations between two bio-terms and ranking the

associations. In this work, we formalize the association search

problem as that of near-shortest associations search. We used a

two-stage approach for finding the near-shortest associations for

an association query (vi, vj):

1. Shortest association finding. It aims at finding the shortest

associations from all entities vMV\vj in the network to the target

entity vj (including the shortest association from vi to vj with length

Lmin). In a graph, the shortest path between two nodes can be

found using a heap-based Dijkstra algorithm to quickly find the

shortest associations that can achieve a complexity of O(nlogn).

2. Near-shortest associations finding. Based on the length of

shortest association Lmin and a pre-defined parameter b, the

algorithm requires enumeration of all associations that are less

than (1+b)Lmin by a depth-first search. We constrain the length

Figure 3. Semantic Association.
doi:10.1371/journal.pone.0017243.g003
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of an association to be less than a pre-defined threshold. This

length restriction can reduce the computational cost.

The obtained associations are then ranked according to the

accumulated KL-divergence scores obtained from the Bio-LDA

model (eq. 8).

Connectivity Map Generation. The concept of molecular

connectivity maps is gaining an increased popularity in systems

chemical biology [27], which can help researchers to study and

compare the molecular therapeutic/toxicology profiles of many

candidate drugs. In this work, we proposed a computational

approach to build interest-specific connectivity maps, i.e. build

disease-specific gene-drug connectivity maps, based on both the

genomic data sources and the literature resources. The input query

for the connectivity map is ((vi, t), t1, t2), where (vi, t) is the specified

bio-term and its type (e.g. Alzheimer’s Disease, Disease), t1 and t2 are

the bio-term types that formed the connectivity maps (e.g., drug and

gene). In this study, the candidate bio-terms for t1 are identified and

refined based on the genomic data sources in Chem2Bio2Rdf and

the candidate bio-terms for t2 are those that could interact to the

candidate bio-terms for t1. Their connection scores are given: the

linkage in Chem2Bio2Rdf, the association score calculated based on

the Bio-LDA model (equation. 8). Here, we used the disease-specific

gene-drug connectivity map as an example to show the process:

1. Specify a disease

2. Identify the genes that related to the given disease from prior

knowledge (i.e. Chem2Bio2Rdf).

3. Expand the genes based on the gene-gene interaction. This

step can be ignored if user does not want to count the protein-

protein interaction.

4. The genes identified from step 2 and 3 are combined and re-

ranked.

5. Find the drugs that can target one or more genes from the gene

set given by step 4. The drugs are ranked based on an

accumulated score of the importance of the targeted genes.

6. Calculate the association score based on the Bio-LDA model

for the gene set from step 4 and the drug set from set 5 to form

the connectivity maps.

Results

Analyzing the Bio-LDA Model Results
In our experiments, we applied the Bio-LDA model to 336,899

MEDLINE abstracts (, 330M in size) published in 2009, which

contains 308686 words, 13338 extracted bio-terms (only drug,

gene, disease are considered in this experiment), and 4450

Table 2. Representations for selected topics.

Topic 13 Topic 14

Word Prob Word Prob

patient 0.0177 patient 0.0231

transplant 0.0149 liver 0.0129

platelet 0.0074 hepat 0.0126

studi 0.0066 diseas 0.008

group 0.0063 studi 0.007

donor 0.0058 treatment 0.0063

factor 0.0056 result 0.0059

risk 0.0054 group 0.0057

result 0.0053 hcv 0.0056

graft 0.0053 associ 0.0052

Bio-Terms type Prob Bio-Terms type Prob

Thrombosis DISEASE 0.0855 Hepatitis C DISEASE 0.0883

Venous Thromboembolism DISEASE 0.0449 Colitis DISEASE 0.0784

Heparin DRUG 0.0417 Hepatitis B DISEASE 0.0511

Tacrolimus DRUG 0.0402 Hepatitis DISEASE 0.0467

Cyclosporine DRUG 0.0338 Fibrosis DISEASE 0.0383

VWF GENE 0.0335 Fatty Liver DISEASE 0.0274

Thrombocytopenia DISEASE 0.0274 Ribavirin DRUG 0.0258

Mycophenolate mofetil DRUG 0.0259 Liver Cirrhosis DISEASE 0.0236

IMPACT GENE 0.0225 Gastroesophageal Reflux DISEASE 0.0229

ABO GENE 0.0223 Irritable Bowel Syndrome DISEASE 0.0222

Journal Prob Journal Prob

Transplant. Proc. 0.0734 Hepatology 0.064

Transplantation 0.0721 World J. Gastroenterol. 0.0553

Thromb. Haemost. 0.0431 Am. J. Gastroenterol. 0.0532

Thromb. Res. 0.0428 Gastroenterology 0.0477

Transfusion 0.0412 Liver Int. 0.0394

doi:10.1371/journal.pone.0017243.t002
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journals, using a default maximum association path length of 3.

The output includes the estimated parameters, h, w, and y, and

the top term lists of words, bio-terms and journals for each topic.

We created different models with 50, 100 and 200 topics. No

significant improvement was found with increased numbers of

topics. Thus, we used 50-topics model to optimize efficiency.

Examples of two topics (out of 50 topics in total) with the top 10

representative words, top 10 associated bio-terms, and top 5

related journals are listed in Table 2. The Bio-LDA model

provides an unsupervised method for extracting an interpretable

representation from a collection of documents. As shown in the

Table 2, the topic 13 is related to organ transplant and all of the

highest probability BioTerms for topic 14 are highly related to

liver disease (hepatitis). Our Bio-LDA model used the bio-terms,

journal information and the word information to characterize the

topic providing a better representation of topics than the simple

LDA model, which only can provide the word representation

Table 3 shows a table with the most associated topics for 3 of

13,338 possible bio-terms. The first bio-term, tuberculosis, is an

infectious lung disease caused by various strains of mycobacterium.

Topic 21 is the majority topic associated with tuberculosis with a

conditional probability of 0.8024 and very low probabilities for all

other topics. TNF, tumor necrosis factor, are almost equally

distributed to topic 33 and 38, with probability of 0.5203 and

0.4149. The last bio-term, cholesterol, is a waxy steroid metabolite

found in the cell membranes and transported in the blood plasma of

all animals. The topics associated with this drug are quite intuitive.

The word representations of topics provide an overview of the

published literature. Research trends over time could be discovered

by applying the Bio-LDA topic model on different years individually

and comparing results (looking for emerging topics).

Comparing the Bio-LDA and LDA models
We chose the top 20 representative words for all 50 topics and

computed the word frequency based on the Bio-LDA model and

the general LDA model. As shown in Table 4a, 635 distinct words

are used to represent topics for LDA model and 354 distinct words

for Bio-LDA model. 462 words only appeared once in the top 20

topic words for the LDA model and 234 words for the Bio-LDA

model. It is shown that Bio-LDA tended to use fewer words to

represent topics.

In order to compare the output, we mapped the topics

generated using the LDA model with the topics generated using

the Bio-LDA model. To map the Bio-LDA model to the LDA

model, we searched the top 20 words for all topics in the LDA

model for each topic in the Bio-LDA model. The topic with the

highest number of shared words is considered as the mapped topic

in the LDA model. As shown in Table 4b, the 50 topics in the Bio-

LDA are mapped to 25 topics in the LDA. Only 17 topics in the

Bio-LDA model can mapped to unique topics in the LDA model.

The reverse mapping gave better performance. The 50 topics in

the LDA model can be mapped to 39 topics in the Bio-LDA

model. About 30 topics have unique mappings. Table 5 shows

three mapping examples of mapping LDA to Bio-LDA. Topic 30

in the LDA model is mapped to topic 25 in the Bio-LDA model;

topic 41 is mapped to topic 33, and topic 25 is mapped to topic 38.

There are 11 common words for each mapping.

Identification of Bio-Term Relationships within Topics
In the biomedical literature, bio-terms (drug names, gene

names, diseases, etc.) play an important role in determining the

topics. The Bio-LDA model makes direct use of bio-terms to

improve the overall topic generation and word association. As

shown in Table 6, only 55 words (5 drugs, 17 genes, and 33

diseases) are bio-terms among the 635 unique words (Table 7a)

generated from the top 20 words of the 50 topics in the LDA

model contains only. There are 66 bio-terms (9 drugs, 17 genes,

and 40 diseases) among the 354 unique words in the Bio-LDA

model. The top 20 bio-terms associated with topics are also output

for our Bio-Terms. Thus, significant number of bio-terms can be

identified in the Bio-LDA model. As shown below, 663 distinct

bio-terms, including 145 drugs, 150 genes, and 368 diseases are

identified.

We assume that there exists a weak topic related association if

the bio-terms are in the top list of a topic. Figure 4 illustrates an

association network drawn from the top 5 terms from 6 selected

Table 3. Top topics for the selected bio-terms.

BioTerm = Tuberculosis (Disease)

P(z|b) Topic Words

0.8024 21 infect, hiv, patient, vaccin, studi, case, tuberculosi, result, year, risk

0.0841 12 gene, protein, cell, express, strain, infect, pathogen, these, host, respons

0.0594 29 protein, bind, activ, structur, cell, domain, interact, these, membran, site

BioTerm = TNF (Gene)

P(z|b) Topic Words

0.5203 33 cell, express, inflamm, activ, inflammatori, induc, increas, alpha, effect, level

0.4149 38 cell, express, activ, immun, respons, induc, mice, cd4, receptor, these

0.0341 30 cell, activ, effect, induc, rat, studi, increas, oxid, level, express

BioTerm = Cholesterol (Drug)

P(z|b) Topic Words

0.3314 31 weight, obes, studi, associ, risk, women, children, group, bodi, increas

0.2926 33 cell, express, inflamm, activ, inflammatori, induc, increas, alpha, effect, level

0.1072 36 insulin, diabet, patient, glucos, level, studi, type, increas, associ, result

doi:10.1371/journal.pone.0017243.t003
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topics. The colors of lines are used to present various topics. Solid

lines indicate the generated relationships are proofed by

Chem2Bio2RDF (i.e. there is a relationship in one of the

Chem2Bio2RDF datasets that confirms the literature relationship).

The dashed lines indicates the generated relationships have not

been found in Chem2Bio2Rdf, perhaps indicating very recent

findings which are not yet encoded in databases, or associations

which are not direct enough to be in a dataset. For instance, our

Bio-LDA model suggested that there might be protein protein-

protein interactions between CCND1 and EGFR, since both of

them are important targets in the tumor related diseases:

Carcinoma and Melanoma. It also suggested that EGFR may

also be target for Melanoma, although the linked database does

not mention it.

Discovery of Bio-Term Associations
In traditional text mining, bio-term association is usually

calculated based on the literature co-occurrence of those two

terms (Li J, et. al, 2008):

H(bi,bj)~ ln (df (bi,bj) �Nzl){ ln (df (bi) � df (bj)zl) ð10Þ

Here, df(bi) and df(bj) are the number of documents in which

bio-terms bi and bj are mentioned, respectively, df(bi,bj) are the

total number of documents in which both bio-terms are co-

mentioned in the same document. N is the size of the document

collection. l is a small constant (l = 1 here) introduced to avoid

out-of-bound errors if any of df(bi,bj), df(bi) or df(bj) values are 0.

The H(bi,bj) representing the connections between the two bio-

terms. It is positive when the potential pairs are over-represented

and negative when the pairs are under-represented. The higher

the H(bi,bj) is, the more significant the two bio-terms are

connected.

However, a big limitation of this method is that it cannot

detect association between two bio-terms if they are not

involved in the same document. For example, the HTR1A

and HTR2A both do not appear in same abstracts as

Venlafaxine based on the PubMed collection. So the calculated

association scores are negative as shown in table 7, which

means there shouldn’t be any association between Venlafaxine

and HTR1A or HTR2A. However, we known that Venlafaxine

is used in the treatment of mental disorder, e.g. depressive

disorder and anxiety disorder. HTR1A and HTR2A have also

been studied in relation to mental disorders. So, in reality, there

must be certain association between Venlafaxine and HTR1A

and HTR2A.

To cover the drawbacks of this co-occurrence based method,

a better association approach based on the Bio-LDA topic model

is used. In the Bio-LDA model, venlafaxine, HTR1A and

HTR2A are all signed to topic 10, which focus on research on

mental diseases (top 5 word representation of topic 10 are

patient, studi, depress, schizophrenia, and treatment). The

calculated association score between venlafaxine and HTR1A

is quite small, indicating a very strong association between

venlafaxine and HTR1A. It is also in agreement with our

previous explanation.

Table 4. a) Frequency word sets of LDA model and Bio-LDA
model. b) Mappings between Bio-LDA model and LDA model.

Bin LDA Bio-LDA Bin BioLDA2LDA LDA2BioLDA

1 462 234 1 17 30

2 100 52 2 2 7

3 32 22 3 2 2

4 19 11 4 2 0

5 8 2 5 0 0

6 4 0 6 0 0

7 2 4 7 1 0

8 1 4 8 1 0

9 0 4

10 4 2

.10 3 19

SUM 635 354 SUM 25 39

(a) (b)

doi:10.1371/journal.pone.0017243.t004

Table 5. Compare word representation of topics in the Bio-
LDA model to topics in the LDA model.

30,–.25 41,–.33 25,–.38

LDA Bio-LDA LDA Bio-LDA LDA Bio-LDA

cell cell alpha cell cell cell

induc cancer factor express respons express

apoptosi express inflammatori inflamm immun activ

line tumor induc activ antibodi immun

effect activ beta inflammatori specif respons

human gene endotheli induc antigen induc

inhibit protein increas increas anti mice

death induc inflamm alpha gamma cd4

growth human express effect lymphocyt receptor

prolifer growth activ level ifn these

activ inhibit effect mice cd4 cytokin

vitro studi tnf protein induc human

p53 effect vascular factor product specif

result result growth studi activ regul

increas associ role tnf cytokin function

cycl line cytokin cholesterol human antigen

caspas these macrophag result against infect

treatment apoptosi mmp role receptor role

tumor breast tissu receptor cd8 mediat

vivo regul matrix these system signal

doi:10.1371/journal.pone.0017243.t005

Table 6. Bio-terms associated with topics.

Top 20 LDA Bio-LDA

words words bio-terms

Drug 5 9 145

Gene 17 17 150

Disease 33 40 368

bio-terms 55 66 663

doi:10.1371/journal.pone.0017243.t006
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In order to get a quantitative measurement of the goodness of

our Bio-LDA model in discovering the bio-term associations, the

bio-term pairs in Chem2Bio2Rdf are used as the gold standard. As

shown in table 8, only few bio-term pairs are identified using the

co-occurrence method. The KL-divergence method based on the

Bio-LDA model can identify a much larger number of association

pairs. The cut-off for co-occurrence method is 0 and the cut-off for

Bio-LDA model is 5.

Identifying Potential Drugs for a Target
As discussed in section 3.3.1, we can generate bio-term

associations by combining the linked data resources (i.e.

Chem2Bio2Rdf) and literature resources (Bio-LDA model). To

illustrate, we investigated drugs that target the abelson murine

leukemia viral oncogene homolog 1 (ABL1), which has been

implicated in processes of cell differentiation, cell division, cell

adhesion, and stress response. ABL1 is also known as a factor in

chronic myeloid leukemia. As shown in Figure 5, five drugs,

cisplatin, adenesine triphosphate, imatinib, dasatinib, and gefiti-

nib, target ABL1 according to Drugbank (accounting for the solid

lines in the diagram). We make predictions about drugs that may

target ABL1 from our model generated via the gene-disease-drug

association which must satisfy two conditions:

1) There exists a gene-disease-drug path in Chem2Bio2RDF

2) The calculated association score for the gene-drug pair

should be less than a certain threshold.

The association scores are computed using the Bio-LDA model

with 50 topics on the most recent 336899 abstracts published

recently. The association score based on the Bio-LDA model are

given by equation 8, which is also known as the symmetric KL

divergence. We used the score not larger than 5 as the threshold.

Usually, there exist multiple gene-disease-drug paths in Chem2-

Bio2Rdf for a given gene-drug pair. The accumulated score of

each pair in the path is used to rank the possible paths and only the

one with the most significant score will be shown in the network.

The diseases, leukemia, myeloma and neoplasm, are the most

significant diseases that associate the gene with drugs. Figure 5

shows the generated network using the Bio-LDA model. 15 drugs

are suggested by the Bio-LDA model. Similar to the directly linked

five drugs, which are used in the treatment of various cancer, those

predicted drugs are all chemotherapy related drugs. The diseases,

leukemia and multiple myeloma, are also highly associated with

the ABL1 based on our analysis.

Investigating Drug Polypharmacology
In drug discovery, a major question is how to find drug

candidates for a targeted disease. Since approximately 35% of

known drugs have more than one target, the efficacy of many

drugs is increasingly thought to come from their effect on multiple

targets, which is known as polypharmacology. Based on this

assumption, drug candidates can be identified from compounds,

which have the same multiple targets as a marketed drug. Thus,

the question of how to find drug candidate for a therapy can be

formulated as a query in our system: find all drug-like compounds

that share at least two targets with the drug that used for the

therapy. For example, if a user wants to find some drug candidates

for inflammatory and autoimmune conditions, such as rheumatoid

arthritis, he can start with the typical drug, dexamethasone, and

then search for the compounds that active the similar targets with

a activity score greater than 50 (activity score 0–100). The

graphical representation of an example of the query process is

shown in the following Figure 6.

To further understand the relation between the given drug,

dexamethasone, and the found compound, hydrocortisone, we

Figure 4. An illustration of bio-relationships generated from selected topics.
doi:10.1371/journal.pone.0017243.g004

Table 7. Calculated association score for Venlafaxine and
HTR1A, HTR2A.

Bio-terms Co-occurrence Bio-LDA

Venlafaxine , HTR1A 211.76 0.34

Venlafaxine , HTR2A 212.72 4.0

doi:10.1371/journal.pone.0017243.t007

Finding Complex Biological Relationships in PubMed

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e17243



apply the semantic association search proposed in section 2.3.4

within our Chem2Bio2Rdf. 47 near-shortest paths are found from

hydrocortisone to dexamethasone including 5 types, drug-gene-

drug, drug-disease-drug, drug-gene-gene-drug, drug-gene-disease-

drug, and drug-disease-gene-drug. Those near-shortest paths are

then ranked based on the association scores calculated using

equation 10. The top 10 paths and the association scores for each

pairs (based on 50 topics) are shown in Figure 7. As shown in

graph, three similar gene targets, NR3C1, ANXA1 and NOS2 are

shared by both dexamethasone and hydrocortisone. Among those

paths, five paths are associated with NR3C1, Glucocorticoid

receptor, which indicates its significant role in understanding

pharmacokinetic of drugs.

Table 9 shows the entropy of the two drugs and three gene

targets calculated based on the Bio-LDA model with 50, 100 and

200 topics using the recent 336,899 MEDLINE abstracts, which

contain 13,338 identical bio-terms. Here n represents the number

of abstracts that contain the given bio-terms in the literature set.

Dexamethasone is a more effective drug when compared to

Hydrocortisone, since it is involved in 742 more abstracts and has

higher entropies. This makes sense from a biological point of view

as dexamethasone is 40 times more potent than hydrocortisone.

Table 10 shows the symmetric KL divergence for pairs of bio-

terms in this use case, and n shows the number of co-occurrence of

the given bio-term pair. Hydrocortisone and dexamethasone co-

occurred in 17 abstracts and have lower KL divergence.

Hydrocortisone and dexamethasone target genes NR3C1,

ANXA1, and NOS2. Thus what do the entropy and KL

divergence indicate about the features of those two paths? For

different number of topics (T = 200, T = 100, and T = 50), Table 9

shows that these ascending order of the values of average entropy

for the three genes is: ANXA1,NR3C1,NOS2, suggesting

NOS2 tends to be involved with more topics while ANXA1 tends

to be associated with less topics. Thus the path between the two

drugs with ANXA1 is more focused and specific, which intuitively

conveys more meaning. This makes sense as hydrocortisone and

dexamethasone are involved in de novo synthesis of ANXA1 gene

(Mulla, A, et. al, 2005). Thus the three paths involved with the

three genes can be ranked according to their semantic specificity

as: path with ANXA1.path with NOS2.path with NR3C1.

Moreover, the smaller the KL divergence of the path is, the more

semantically relevant are the nodes and edges along the path.

Table 10 shows that the entities and relationships along the path

through NR3C1 are the most relevant to each other of the three

paths. Combining entropy and KL divergence, the path with

ANXA1 is more favorable in specific research and the path with

NR3C1 is more favorable in general research.

Figure 5. The association network for Tyrosine-protein kinase ABL1 based on the Bio-LDA model.
doi:10.1371/journal.pone.0017243.g005

Table 8. Comparing the co-occurrence method and the Bio-
LDA in identifying associated bio-terms.

Bio-terms Chem2Bio2Rdf Co-occurrence Bio-LDA

Disease , Gene 412117 266 14895

Disease , Drug 1490 20 228

Gene , Drug 5047 28 355

Gene , Gene 7593 13 1282

doi:10.1371/journal.pone.0017243.t008
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Building a Disease-Specific Drug-Protein Connectivity
Map

The molecular connectivity map shows how the expression level

of genes change in response to different drug compound

perturbations, which enables researchers to compare the molec-

ular therapeutic/toxicological profiles of many candidate drugs or

drug target genes, therefore improving the chance of developing

high quality drugs and reducing drug development time. In this

Figure 7. The top 10 paths obtained between Hydrocortisone and Dexamethasone.
doi:10.1371/journal.pone.0017243.g007

Figure 6. Graphic representation of the SPARQL query for finding the compound similar to Dexamethasone.
doi:10.1371/journal.pone.0017243.g006
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study, we use a novel method to compute the high-coverage disease-

specific drug-gene connectivity maps, by integrating chemogenomic

sources (i.e. Chem2Bio2Rdf) with literature from our Bio-LDA

model. The purpose of the connectivity maps is finding novel

therapeutic uses of old drugs, also known as drug repositioning.

Using Alzheimer’s disease (AD) as an example, the gene list is

created by searching for AD-related genes from our linked data

(Chem2Bio2Rdf). 88 genes were identifies. 382 drugs are selected

Table 9. Bio-term entropies for nodes shown in the top 3
paths.

Bio-terms
name

Bio-terms
Identify Type n T = 200 T = 100 T = 50 Average

Hydrocortisone DB00741 Drug 139 2.558 1.880 2.454 2.297

Dexamethasone DB01234 Drug 881 4.292 3.754 3.484 3.843

ANXA1 P04083 Gene 23 2.266 1.631 1.365 1.754

NR3C1 P04150 Gene 16 2.123 2.840 2.486 2.483

NOS2 P35228 Gene 40 2.824 2.833 2.598 2.752

doi:10.1371/journal.pone.0017243.t009

Table 10. Symmetric KL divergence for the top 3 paths.

Bio-term semantic associations T = 200 T = 100 T = 50 Average

Hydrocortisone , NR3C1 ,
Dexamethasone

29.96 21.55 20.49 24.00

Hydrocortisone , NOS2 ,
Dexamethasone

35.40 31.00 27.42 31.28

Hydrocortisone , ANXA1,
Dexamethasone

43.39 40.31 33.20 38.97

doi:10.1371/journal.pone.0017243.t010

Figure 8. A connectivity map linking AD-related genes to significant drugs, highlighting two areas (A) and (B).
doi:10.1371/journal.pone.0017243.g008
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based on the drug-gene interaction. The gene list can be expanded

to 13998, and the drug list can expand to 1898 if the gene-gene

interaction is involved. Our research shows that the top ranks of

the expanded genes and drugs are close to the lists without

extension. Thus, we do not consider gene-gene interaction unless

user specified to speed up the calculation.

The connectivity scores are calculated using the Bio-LDA

association scores. Figure 8 shows the AD-related drug-protein

connectivity map. The x-dimension represents drugs and the y-

dimension represents genes. Hierarchical clustering of drugs and

genes is performed use their Euclidean distances. The color

intensity for each cell is drawn in proportion to the connectivity

score as shown in the heatmap legend. In the Bio-LDA model,

the connectivity scores indicate the distance between the gene-

drug pair. The smaller the score is, the more significant the

relationship is. The cells with purple color indicate the significant

interactions related to Alzheimer’s disease. From the figure and

zoom in boxes, we can study the genes and drugs highly related

to Alzheimer’s disease. For example, the CYP family is known to

be highly associated with AD. The discovered drug, Ketocona-

zole, may affect some AD drug metabolism, such as Donepezil.

The Diclofenac is a non-steroidal anti-inflammatory drug

(NSAID). Research shows the NSAIDs may prevent the

development of AD if given daily in small doses during many

years.

Discussion

In this paper, we describe the architecture and main features of

the Bio-LDA model. Three applications, association predication,

association search, and connectivity map generation, are presented

which we believe are useful for biomedical and drug discovery

applications, especially when combining the Bio-LDA model with

a pre-knowledge network, i.e. Chem2Bio2Rdf. We believe these

experiments demonstrate great value in performing this kind of

analysis for enhancing biological knowledge.

We demonstrate how Bio-LDA, in contrast to natural language

processing methods, can automatically derive a collection of topics

of related biological terms that map to clearly understandable

biological themes, and which allow the complexity of topics

addressed in individual papers to be represented by probabilities of

association with topics. Further, individual bioterms can be

associated with topics with a given level of probability, and

through the KL Divergence measure, a distance between any two

terms can be generated via their probabilities of association with

topics. This opens up the possibility of using the method for

ranking paths through the data, or for an alternate way of

measuring degree of association between, for example, drugs and

genes, or pathways and diseases.

Our examples indicate that the topics created using Bio-LDA

are surprisingly succinct in identifying the bioterms associated with

particular topic areas. Our comparison of Bio-LDA with a

standard LDA model showed that the models created by BioLDA

are distinctly different from standard LDA and indicate that the

use of bioterms only is useful in defining crisp clusters. Further, our

case studies pertaining to drug targets and drug polypharmacology

and indicate that when combined with methods for finding paths

between entities, highly relevant results can be obtained (for

example, finding potential drugs for a target or compounds with

similar polypharmacology). Finally we show how Bio-LDA can be

used to increase the utility of molecular connectivity approaches

such as heatmaps.

Our experiment used 336899 recent MEDLINE abstracts. The

performance of various LDA and extended LDA implementations

is computationally expensive, motivating efforts to improve

scalability. As the underlying algorithms for various implementa-

tions differ, the efforts to improve scalability have also differed

[19,28,29]. In order to run our model in all 18 million papers in

PubMed, a scalable model, such as the parallel Bio-LDA model, is

required. We plan to investigate the PLDA implementation of

Wang et al with Bio-LDA, using the Map Reduce implementation

[19]. By making larger collections available for analysis, we hope

to expose better and more complex relations.
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