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Abstract

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA
2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of
degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from
a network perspective and to determine whether we can assess differences in team offensive strategy by their network
properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They
primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-
off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected
quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive
strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their
shooting specialists, measured as ‘‘uphill/downhill’’ flux, and (2) whether they distributed the ball in a way that reduced
predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no
single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering
(connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent
association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team
strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the
richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with
team organization and effectiveness.
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Introduction

Capturing the interactions among individuals within a group is

a central goal of network analyses. Useful depictions of network

structure should provide information about the networks purpose

and functionality. But how do network attributes relate to

functional outcomes at the group and/or individual levels? A

useful context to ask this question is within small team networks.

Teams occur everywhere across the broad array of biological

societies, from cooperatively hunting carnivores to social insects

retrieving prey [1–4], and are ubiquitous in human organizations.

We define teams as groups of individuals working collaboratively

and in a coordinated manner towards a common goal be it

winning a game, increasing productivity, or increasing a common

good [5]. Within teams, individuals must coordinate across

different roles or tasks, with their performance outcomes being

interdependent [4–6]. The success of the team is rarely a simple

summation of the tools each individual brings. Instead it must

emerge from the dynamic interactions of the group as a whole [7].

How can we capture the relevance of these interactions to team

function? Because teams are dynamic systems, it makes sense to

use network analyses to approach this problem. The game of

basketball is based on a series of interactions, involving a tension

between specialization and flexibility; players must work together

to move the ball into the basket while anticipating and responding

to the opposing team. Thus, plays that begin as set strategies

evolve quickly into dynamic interactions [8]. Unlike many sports,

the game does not revolve around a series of dyadic interactions

(eg tennis, baseball) or a summation of individual efforts (track and

field); it is dependent on a connected team network [9].

The dynamic between within-group cooperation and conflict,

and group versus individual success, is an inherent feature of both

human and biological social systems. This tension, exemplified in

the distribution of shooting opportunities in a game across players,

or by salary dispersion inequities in a team or organization, is

a fundamental issue across cooperative systems [6,10,11]. The

dynamic between specialization and flexibility also appears across

systems. In prides of lions, for example, different females assume

the roles of driving or flanking prey [1]. However, in both contexts

individuals must flexibly change positions in a rapidly changing

game. Finally, like almost all cohesive groups, teams must compete

with other teams, and their success/failure is shaped by their

ability to respond to those challenges. Unlike a lion pride or

business organization, however, the success and failure of specific

network interactions for a basketball team can be easily measured

iteratively and in real time, as the team scores points or loses the

ball to a superior defense.
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To evaluate basketball teams as networks, we examined the

offensive ball sequences by National Basketball Association (NBA)

teams during the first round of the 2010 playoffs. We graphed

player positions and inbound/outcomes as nodes, and ball

movement among nodes (including shots to the basket) as edges.

From the iterated offensive 24 second clocks, we recorded

sequences of ball movement of each of the 16 play-off teams

across two games. We used the compiled data to first ask whether

we can capture the game of basketball through a transition

network representing the mean flow of the ball through these

sequences of play (a stochastic matrix), and secondly whether

individual teams have specific network signatures. We then

examined how different network metrics may be associated with

variation in actual play strategy. We asked whether teams vary

strategically in centrality of ball distribution, such that some teams

rely more heavily on a key player, such as the point guard, to make

decisions on ball movement. We used degree centrality to compare

teams using this strategy with those in which the ball is distributed

more evenly. We similarly used clustering analyses to examine

relative connectedness among players within teams and to ask

whether teams differentially engaged players across multiple

positions. We also asked whether ball movement rate, measured

as path length and path flow rate, could capture the perceived

dichotomy of teams using dominant large players, usually centers,

versus small ball teams that move the ball quickly across multiple

players [12].

We were interested in whether network metrics can usefully

quantify team decisions about how to most effectively coordinate

players. We examined two network metrics that we hypothesized

might capture different offensive strategies. One is to move the ball

in a way that is unpredictable and thus less defensible. To measure

network unpredictability we calculated team entropy, applying

Shannons entropy to the transition networks as a proxy for the

unpredictability of individual passing behavior among team

players. Another, not mutually exclusive, strategy is to capitalize

on individual expertise by moving the ball towards players with

high probability of shooting success. In a sense, this strategy

reflects a coordinated division of labor between ball distributors

early in the play, transitioning to shooting specialists. We looked

for evidence of this strategy using a metric of uphill/downhill flux,

which estimates the average change in potential shooting

percentage as the ball moves between players in relation to their

differential percent shooting success. Uphill/downhill and team

entropy both recognize the need for coordination within a team,

but they emphasize different aspects of network dynamics; one

capitalizes on individual specialization while the other emphasizes

team cohesion.

Methods

We recorded and analyzed transition networks for the 16 teams

in televised games of the 2010 NBA first round play-offs. The

sequential ball movement for each teams offensive plays was

recorded across two games for each pair; games were picked

haphazardly a priori, not based on outcome (analyzed games and

outcomes in Table 1). For analysis, the five starting players for

each team were assigned position numbers from 1–5, in the order

of: (1) Point Guard; (2) Shooting Guard; (3) Small Forward; (4)

Power Forward; (5) Center. All offensive plays with at least three of

the five starters on the floor were included (player list in Table S1.

This allowed us to equate positions with specific players within

each team and to use player positions as nodes. Preliminary

analyses indicated that offensive play paths were fairly consistent

between the two games analyzed for the majority of teams, so

sequences were pooled.

For initial analyses, all possible start-of-play (inbounds, re-

bounds and steals) and outcomes (successful/failed two point or

three point shots, fouls, shooting fouls with different success

outcomes, steals and turnovers) were recorded as nodes. Data per

offensive play generated a sequential pathway [9,13]. The

cumulative paths throughout the game were combined to generate

a weighted graph of ball movement with possession origin, players

and possession outcomes as nodes and ball movement between

those nodes as directed edges.

Although we chose games haphazardly, the differential in total

points in analyzed games generally reflected outcomes for the play-

off round (Table 1). The primary exception was the two Atlanta

Hawks/Milwaukee Bucks games, in which the Bucks beat the

Hawks in the series, but were defeated by a mean of 12.5 points

during the two focal games. In the analyzed Dallas Mavericks/San

Antonio Spurs games, Dallas won by a mean differential of 6

points, but the Spurs beat the Mavericks in the play-off series by

a mean differential of 0.5; wins were split across the two games

analyzed (Games 5 and 6).

Network Analyses
We generated weighted graphs from the cumulative transition

probabilities. When all data were analyzed, almost all nodes

became connected, making it difficult to differentiate across

graphs. Therefore, we generated a series of weighted graphs at

increasing cut-off weights from the 30th to 70th percentiles (with

the 30th percentile graphs highlighting only the most frequently

seen transitions). This allowed us to analyze changes in network

structure as we move from the most likely links between players to

those that were least frequent. We used the entire matrix of

transitions for each team to perform structural network analyses

[12,14], adapted for offensive plays in a basketball game. Metrics

included: path length, path flow rate, degree centrality, clustering

coefficient, individual and team entropy, individual and team flow

centrality, shooting efficiency flux.

Table 1. Analyzed games and outcomes.

Matchup Games Game Winner Series Winner

Bobcats vs. Magic Game 1 Magic Magic

Bobcats vs. Magic Game 2 Magic Magic

Cavaliers vs. Bulls Game 2 Cavaliers Cavaliers

Cavaliers vs. Bulls Game 4 Cavaliers Cavaliers

Hawks vs. Bucks Game 3 Bucks Hawks

Hawks vs. Bucks Game 4 Bucks Hawks

Celtics vs. Heat Game 1 Celtics Celtics

Celtics vs. Heat Game 3 Celtics Celtics

Lakers vs. Thunder Game 1 Lakers Lakers

Lakers vs. Thunder Game 2 Lakers Lakers

Jazz vs. Nuggets Game 1 Nuggets Jazz

Jazz vs. Nuggets Game 4 Jazz Jazz

Mavericks vs. Spurs Game 5 Mavericks Spurs

Mavericks vs. Spurs Game 6 Spurs Spurs

Suns vs. Blazers Game 1 Blazers Suns

Suns vs. Blazers Game 6 Suns Suns

doi:10.1371/journal.pone.0047445.t001

Basketball Networks
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Path length and path flow rate compared the number of passes

and the speed of ball movement involved in team play. Path length

simply included the number of passes between players per play,

ignoring inbound and outcome nodes. Paths included all between-

player edges, such that a given player could be involved twice or

more across the path. Path flow rate was calculated as the number

of edges per unit time from inbound to shot clock time at the end

of the play. To calculate degree centrality we used the weighted

graphs from iterated offensive plays across the two games.

However, we aggregated outcome data into two categories of

shoot and other, to reduce weighting bias from multiple outcome

nodes. Degree was first calculated per position as the weighted

sum of total out-edges per player. The relative distributions of

player degrees were then calculated across the graph, such that

a homogeneous graph (connectivity distributed most equally across

all players) has zero degree centrality. For a weighted graph

G~(V , E) with weights summing to 1 and a vertex of maximal

degree v� the degree centrality is then:

CD~
X

v[V

deg (v�){deg (v)

DV D{1
ð1Þ

To calculate team entropy, we first determined individual player

entropy. For this metric we excluded inbound passes because of

the strong weight of the inbound edge. We included outcome,

because the possibility of shooting the ball represents a decision

point contributing to uncertainty of ball movement. As with

centrality, outcomes were collapsed into two node categories of

shooting or not shooting. We used Shannons entropy [15],

S~{
P

p[P p log (p), to measure the uncertainty of ball transi-

tions between any player or outcome.

We then combined player entropies to determine entropy of the

whole team. There are multiple ways to calculate network entropy.

One possibility is to use a simple averaging of player entropies. A

second is Markov chain entropy, which incorporates the

conditional probability of any given player moving the ball to

any other player, conditioned on the probability that the given

player has the ball. However, from the opposing teams perspec-

tive, the real uncertainty of team play is the multiplicity of options

across all ball movements rather than just across players. We thus

calculated a whole-network or Team Entropy from the transition

matrix describing ball movement probabilities across the five

players and the two outcome options.

We used individual flow centrality to characterize player/

position importance within the ball distribution network [16].

Individual player flow centrality was calculated as the number of

passing sequences across all plays in which they were one of the

nodes, normalized by the total number of plays. We also calculated

a more restricted flow centrality that included only player

appearances as one of the last three nodes before an outcome.

This allowed us to focus on the set-up phase for a scoring drive and

the actual scoring attempt. We compared this more restricted flow

centrality for successful versus unsuccessful plays; this success/

failure ratio was considered as a measure of the utility of an

individual player to team success.

To capture a teams ability to move the ball towards their better

shooters, we developed a metric we call uphill/downhill flux,

defined as the average change in potential shooting percentage per

pass. A team that has a high positive uphill/downhill flux moves

the ball consistently to their better shooters; a team that with

a negative value moves the ball on average to the weaker shooters.

The latter can happen if the ball distributor (e.g. the Point Guard)

is also the best shooter on the team. Letting xi, xj be the shooting
percentages for players i and j and pij the probability of a pass

from player i to player j, we define the uphill/downhill flux as:

F~
X

i=j

pij(xj{xi): ð2Þ

Finally, we wanted to compare teams in terms of relative player

involvement, such that we can differentiate those teams for which

most players are interconnected from those that rely consistently

on a defined subset for offensive plays. One way to do so is to look

for the occurrence of triangles, or connected 3-node subgraphs

within the network. Teams with higher connectedness will contain

more cases in which sets of 3 players have a link to each other; the

maximum number of these triangles in a group of 5 players is 10.

The clustering coefficient measures the number of triangles in

a network as a percentage of all possible triangles. However,

a single evaluation of this metric is again problematic. If we use all

ball movement data, all nodes become connected to all other

nodes, and the clustering coefficient is uniformly high. Addition-

ally, it is important to remember that the triangles in these

networks are association links and not necessarily sequences of

plays. Hence we decided that the most meaningful measure to

characterize the association structure of the ball movements was to

calculate the clustering coefficients for undirected unweighted

graphs across the different cutoffs of the cumulative weight,

beginning with the 30 percentile when triangles first appear. This

allowed us to compare teams with consistently high clustering to

those that showed triangles only when less frequent links were

included.

Results and Discussion

The first question posed by this study was how well a network

approach can capture the game of basketball from a team-level

perspective. We constructed transition networks (i.e. stochastic

matrices) as first-order characterization of team play style for each

team individually and for the pooled set of all observed transitions

across all teams. Because even a single game generates a rich

dataset, we imposed thresholds to clarify the dominant transitions,

highlighting from most to least frequent the minimal set of

transitions representing a particular percentile of all ball move-

ments. At the 60th percentile, players in all but one network were

connected to at least one other player (the San Antonio Spurs

Center was disconnected) and all teams had an edge to at least one

outcome, generally success. This matched the expectation that

these are elite and cohesive teams and gave us a starting point for

comparative analyses (weighted graphs for all teams across the

30th to 70th percentile thresholds shown in Supplemental Figures

S1 and S2).

To look at the NBA as a whole, we combined the transition data

across all teams in a compiled network (Figure 1). As a note,

although it is tempting to relate the structure of play to physical

location on the court, it is important to remember that these data

capture passing probabilities independently of spatial information.

In this network, as in an NBA game, the ball moved most

frequently from the inbound pass to the Point Guard and was

rebounded either by the Center or Power Forward. It was

primarily distributed from the Point Guard to other players, with

most likely distributions to the Shooting Guard or Power Forward.

Other players generally distributed back to the Point Guard, with

lower weights to edges connecting the Shooting Guard, Power

Forward and Small Forward. The only edge to an outcome at this

Basketball Networks

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e47445



weighting was from the Power Forward to a successful shot. This

NBA team thus showed a star-shaped pattern of ball movement

controlled centrally by the Point Guard, with a division of labor

across positional roles. Transitions from other players were most

likely to be towards the Point Guard. The Shooting Guard

occupied a secondary leadership role by creating connections

between the Point Guard and the Power Forward who functioned

as the primary shot-taker. The role of the Center was rebounding

and redistribution to the Point Guard.

The importance of the Point Guard in distributing the ball

identifies this as the primary leadership position in the team

network. If we define leadership as the relative importance of any

player or position in the network, we can capture this quantita-

tively using individual flow centrality, or the proportion of paths

(offensive plays) involving a particular node [16]. We compared

flow centrality across positions from all data (ANOVA; F= 42.02;

P = 1:9|10{18; df = 4, n= 80 (Table S2); and for the three players

contacting the ball before a shot (F = 36.12; P = 8:35|10{17). As

expected from the network graphs, the Point Guard position had

the highest mean centrality across all positions and was highest for

the majority of teams (Figure 2). Flow centrality was conversely

lowest for the Center, with intermediate and similar values for

other positions. Two notable (but unsurprising) exceptions to this

rule were the Cleveland Cavaliers, for which the Small Forward

had high flow centrality, and the Los Angeles Lakers, for which the

flow centrality of the Shooting Guard matched that of the Point

Guard. These deviations match leadership roles within these teams

by LeBron James and Kobe Bryant respectively. It will be

interesting to compare their shifting network roles as their teams

have changed; one moved to a team with an increased number of

skilled offensive players (and the winning team in 2012), and the

other’s team recently gained a new point guard (Steve Nash)

known as an offensive strategist.

Team Network Graphs
How do individual teams vary around this centralized model?

The star pattern was most exemplified by the Bulls (Figure 3), who

inbound only to the Point Guard at 60%, and for which most

passes were between the Point Guard and other players. Their

high degree centrality is illustrated by considering that removing

the point guard node would cause all other player nodes to be

completely disconnected. A similar disconnect would happen to

five of the sixteen teams at 60% weighting and nine teams at 50%

weighting (Figure S1 and S2). There are trade-offs to a highly

centralized team between clarity of roles and flexibility of response.

Figure 1. Weighted graph of ball transitions across all teams and all games. Edge width is proportional to probability of transition between
nodes. Red edges represent transition probabilities summing to the 60th percentile.
doi:10.1371/journal.pone.0047445.g001

Figure 2. Mean flow centrality by position (+/2 S.D.). Dark bars
represent flow centrality calculated across all player possessions in
a sequence, and light bars represent flow centrality calculated across
the last 3 player possessions in successful sequences.
doi:10.1371/journal.pone.0047445.g002

Basketball Networks
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Lack of player connectedness may allow the defense to exploit

a predictable weakness in the network by moving defenders off

disconnected players to double team.

Deviations from the Point-Guard centered star pattern

confirmed known team playing styles (Figure 3). In the 2010

Cleveland Cavaliers network the Small Forward was a highly

weighted distributor of the ball, as expected by his high flow

centrality (Figure 2). He also shot the ball successfully at an edge

weight close to the Power Forward. Thus the network visualization

again picked up Le Bron James combined skills in ball distribution

and shooting. However, perhaps the most important deviation

from a centralized network strategy appeared in the weighted

graphs of the Los Angeles Lakers. Even at low weighting, their

network included multiple between-player edges beyond those

connecting to the Point Guard. One way to analyze the impact of

these additional edges is by quantifying the frequency of triangles

within the network [17] via a clustering coefficient [14]. Figure 4

shows the cumulative clustering coefficients of each team from the

30th to 70th percentile weighting. The Lakers had the highest

cumulative clustering coefficient, primarily because they had high

connectedness in their most frequent plays. In a highly clustered

network like the Lakers, passing decisions are made by multiple

players, expanding the possible paths that must be considered by

the opposing team. In the 2010 first round only two other teams

showed comparable cumulative clustering: the Boston Celtics and

the San Antonio Spurs. Like the Lakers, the Celtics - who also

reached the finals - built triangles even at relatively low weighting.

The Spurs were unusual in that they had low connectedness when

considering their most dominant edges, but high clustering when

less frequent passes were included in the analysis (i.e. at the 70th

percentile).

The network concept of triangles as a fully connected subgroups

translates well to the Lakers highly discussed triangle offense.

Jackson and Winter [8] define the triangle offense as a spatial

concept, in which a group of three players is set up on one side of

the court connecting to a balanced two-man set on the other side.

It is designed to distribute players across the floor so that they can

be used interchangeably, depending on open lanes and defense. In

this strategy the Point Guard becomes less central to the decision

process, because all players have the ability to make decisions

about ball distribution depending on immediate context. Thus the

triangle offense can be considered as a network strategy that can

be visualized in the Lakers weighted graph.

Team Network Signatures: Degree Centrality and Entropy
An important question is whether differences in the weighted

team graphs can be captured more quantitatively by network

metrics. As discussed above, a primary visual distinction in our

Figure 3. Weighted graphs of ball transitions across two games for the (a) Bulls, (b) Cavaliers, (c) Celtics and (d) Lakers. Red edges
represent transition probabilities summing to the 60th percentile. Player nodes are sorted by decreasing degree clockwise from the left.
doi:10.1371/journal.pone.0047445.g003
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weighted graphs was between teams using a central player to

distribute the ball, and those moving the ball across multiple

players. Our calculated degree centralities in general matched our

visual networks (Table 2). The data were not definitive, however,

in whether less centralized teams had an advantage in the 2010

play-offs. Five of the 8 winning teams had lower degree centralities

than opponents, but overall rankings of centrality showed no

pattern of win/loss.

Like degree centrality, entropy should be strongly influenced by

the extent to which multiple players distribute the ball. Degree

centrality and team entropy were negatively correlated (Pearson

product moment correlation=20.6; p,0.003; n = 16), but they

captured somewhat different aspects of ball distribution, because

team entropy takes into account probabilities outside the network

topology. Variation in team entropy was more closely connected

to individual team success/failure; winners in 6 of the 8 first round

match-ups had higher team entropy, and when entropies were

ranked from highest to lowest, 5 of the 8 highest entropies were for

winning teams. The play-offs only provide 8 match-ups, too small

a sample size to make a statistically meaningful claim (and it would

be a simplistic game that allowed a predictive single metric).

However, our analyses do suggest that these combined network

Figure 4. Clustering coefficients for the graphs of each team for cumulative transition probabilities between 30% and 70% of all
ball movements. Networks are ordered according to the average clustering coefficient across all cutoffs.
doi:10.1371/journal.pone.0047445.g004

Table 2. Degree centrality, team entropy, and uphill/downhill flux measured across two games for the 16 teams in the 2010
playoffs.

Degree Centrality Team Entropy Uphill/Downhill

1 Lakers* 0.084 Lakers* 3.234 Mavericks 0.093

2 Spurs* 0.087 Celtics* 3.229 Jazz* 0.044

3 Heat 0.089 Bobcats 3.224 Nuggets 0.025

4 Bobcats 0.093 Heat 3.194 Lakers* 0.016

5 Celtics* 0.117 Nuggets 3.189 Bucks 0.009

6 Blazers 0.119 Hawks* 3.180 Blazers 0.007

7 Mavericks 0.127 Magic* 3.178 Bobcats 0.005

8 Bucks 0.135 Spurs* 3.171 Celtics* 0.001

9 Thunder 0.148 Suns* 3.132 Cavaliers* 0.001

10 Suns* 0.154 Thunder 3.119 Bulls 0.000

11 Cavaliers* 0.158 Blazers 3.117 Magic* 20.001

12 Nuggets 0.162 Cavaliers* 3.112 Suns* 20.001

13 Magic* 0.171 Bucks 3.079 Spurs* 20.003

14 Hawks* 0.176 Bulls 3.041 Hawks* 20.006

15 Jazz* 0.211 Mavericks 2.949 Heat 20.014

16 Bulls 0.219 Jazz* 2.934 Thunder 20.048

(*) indicates the winner of the series.
doi:10.1371/journal.pone.0047445.t002

Basketball Networks
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metrics have value in: (1) capturing variation in team offense, and

(2) supporting the hypothesis that complex and unpredictable ball

distribution pattern is an important component of team strategy.

Indeed, the 2010 Lakers and Celtics teams were arguably built

around this principle. The highest entropies overall were achieved

by the Lakers and Celtics, and the Lakers simultaneously had the

lowest degree centrality. These assertions would be tested by the

subsequent play-off seasons, one in which a team known for its

dominant forward was successful (2011 Dallas Mavericks) and the

next in which the winning team was built around the multi-player

model (2012 Miami Heat).

Uphill-downhill Flux and Passing Rate
The Dallas Mavericks, who lost in the first round in 2010 but

won the title in 2011, are an important counter-point. Their

strategy was clear; move the ball consistently to their best shooter.

To capture this quantitatively, we developed a new metric that

uses flow flux to compare individual player flow centrality with

calculated shooting percentage for each player across the two

games. Uphill/downhill flux measures the degree to which teams

move the ball towards versus away from players relative to their

differential shooting success (Figure 5). High uphill/downhill

indicates a different set of priorities in ball distribution than

entropy. It focuses on playing to strengths by separating the roles

of ball distribution and scoring, moving from distributors to

shooters. Unsurprisingly, the 2010 Mavericks had the highest

uphill/downhill flux of all teams in the play-offs. Success in this

strategy was not connected consistently to team success within our

data set. However, it is notable that only three teams had

a combination of both higher uphill/downhill and higher entropy

than their opponents. Two of the three were the Lakers and the

Celtics; the third was the Heat.

Our final team-level metrics were path length and flow rate

(speed of ball movement through the path; Table 3). Recently,

there has been increased interest in small ball teams, which

distribute the ball quickly across players. Small ball has been

hypothesized to allow teams to achieve success beyond what would

be expected based on individual player skill levels. The exemplar

small ball team in past years has been the Phoenix Suns [18].

However, in 2009–2010 they transitioned away from this

approach. We predicted a correlation between path length and

flow rate, such that some teams distribute the ball quickly and

across multiple players, but surprisingly little variation in path

length or ball movement speed showed in our data.

Player Value
A question in evaluating any organizational network is the

relative value of its individual members [11]. Duch et al. [16] used

individual flow centrality to show that higher paid players in soccer

teams are in fact strong contributors to ball movement during

a game. We asked a similar question for basketball, by quantifying

player involvement in paths with successful versus unsuccessful

outcomes. For our analyses we used only those sequences with at

least 3 of the 5 starting players on the floor. We matched each

player to position and excluded any sequences in which starters

clearly rotated into a different position than assigned. This allowed

us to analyze individual player contribution by position, using flow

centrality analyses to determine the relative frequency by which

any player was involved in (1) all, (2) only successful, and (3) only

unsuccessful plays. We used the ratio of (2) to (3) to determine

whether we could quantify player ‘‘value’’ beyond apparent

dominance in the game (Table 4).

Figure 5. Weighted graphs of ball transitions with nodes sorted from lowest to highest scoring success illustrate uphill-downhill
flux. Data collected across two games for the (a) Mavericks (highest uphill/downhill), (b) Thunder (lowest uphill/downhill), and (c) Lakers.
doi:10.1371/journal.pone.0047445.g005

Table 3. Path length and flow rate measured across two
games for the 16 teams in the 2010 playoffs.

Path Length Flow Rate

Mean Variance Mean Variance

Lakers* 5.81 3.67 0.60 0.28

Blazers 5.52 3.53 0.53 0.22

Heat 5.28 3.83 0.72 0.66

Mavericks 5.24 2.89 0.50 0.16

Bobcats 5.15 2.09 0.58 0.37

Spurs* 5.14 1.87 0.46 0.17

Bucks 4.96 1.94 0.55 0.34

Celtics* 4.93 2.75 0.68 0.52

Thunder 4.88 3.15 0.65 0.35

Nuggets 4.77 1.81 0.57 0.34

Cavaliers* 4.72 1.74 0.59 0.38

Jazz* 4.70 1.55 0.52 0.24

Hawks* 4.69 2.22 0.71 0.74

Suns* 4.68 1.88 0.53 0.22

Magic* 4.65 1.91 0.55 0.28

Bulls 4.48 1.62 0.69 0.53

(*) indicates the winner of the series.
doi:10.1371/journal.pone.0047445.t003
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We found an interesting positional bias in the data, with the

Center often having the highest success/failure ratio. In contrast,

Point Guards tended to have success/failure ratios at or below 1.0.

Although the ratio measure should statistically control for

frequency effects, we suggest this metric might be biased

mechanistically by relative player involvement. The low flow

centrality of the most highly utilized position reflects the argument

that high frequency player contributions become negatively

affected by exposure. The nonlinear relationship between player

involvement and success in our metrics may thus illustrate the

price of anarchy [13], the expectation that maximizing gain within

any given offensive play can ultimately jeopardize overall game

efficiency. If entropy is valuable, as our data suggest, then moving

the ball frequently to a specific player or position is costly, because

it allows the opposition to adjust their defense accordingly.

Conclusion
We have presented a network structure analysis of basketball

teams in the context of team coordination and strategy. As

a starting point, we applied network-level metrics to quantitatively

measure fundamental components of team offensive strategy,

moving currently available individual player metrics (examples at

NBA.com). The study involved more than a thousand ball

movements and typically more than one hundred sequences or

paths for each team. This dataset allowed us to capture the game

of basketball as a network. Because our team comparisons were

limited to the pairs in the first round of the play-offs, correlations

between game outcome and specific aspects of network structure

could not definitively test the specific hypotheses suggested.

Answering the question of how network dynamics contribute to

successful team strategy will be more complex than a single

network variable can capture. We also expect intransitivity across

games and opponents, such that the success of emphasizing any

given strategy is dependent on the behavior of the opposing team.

However our data do suggest that certain metric combinations,

particularly entropy, centrality, and clustering, are relevant

components of team strategy.

One of the advantages of this beautiful game is the wealth of

available data. We encourage the expansion of both the network

toolbox and the datasets analyzed. Analyses across a season will

help determine whether network structures for a given team are

stable or whether they respond flexibly to different defense

strategies. Dissecting network shifts within games (e.g. the final

quarter or as point differentials change) could help explore game

dynamics. Analyses across multiple seasons could track the

development of team cohesion. It would also be extremely useful

to connect network with spatial and temporal models; this may not

be practical with current data acquisition methods, but recent

publications [19] suggest that automated ball tracking in basketball

games is becoming more feasible.

Beyond basketball, this approach may act as a template for

evaluating other small team collaborations. Although the specific

network metrics will vary across the disparate contexts in which

teams occur, the general approach of analyzing network interactions

and function is robust [14]. Teams take multiple approaches to

communication and leadership, from centralized to decentralized,

frommore rigidly bureaucratic to flexible, and from assigned roles to

emergent. Each of these organizational strategies corresponds with

a specific network model. As one example, our finding that themore

successful teams distributed decision making about ball movement

beyond a centralized leader is mirrored in models of business team

structure. Network assessments suggest that business teams with

mixed leadership roles optimize performance relative to highly

centralized or highly distributed teams [6]. It would be interesting to

see how the network measures used here apply to other small teams

that are tasked differently, such as research groups organized around

innovation, remote military teams on assignment, or intelligence

agencies tasked with pattern recognition. The application could also

be expanded to animal teams inwhich roles develop naturally rather

than through external assignment, and for which team success/

failure has a direct connection to fitness. For example, the ontogeny

of team coordination is a general phenomenon. In hunting teams of

lions, chimpanzees andwild dogs, newmembers can require years of

practice to achieve coordination with the group [1–3]. These

discussions highlight the potential of this approach and its

applicability across the broad array of contexts in which cohesive

teams are found.

Supporting Information

Figure S1 Weighted graphs of ball movement for East
Coast teams. Red edges represent transition probabilities

summing to the percentile indicated in the column header.

(PDF)

Figure S2 Weighted graphs of ball movement for all
West Coast teams. Red edges represent transition probabilities

summing to the percentile indicated in the column header.

(PDF)

Table S1 Starting players and position assignments for
the 2010 NBA playoffs, first round. Substitutes are in

parentheses.

(PDF)

Table S2 Player flow centrality. Flow centrality (FC) is

calculated as the proportion of all plays in which a player was

involved. Flow centrality based on outcome is calculated as the

proportion of successful (FC3 S) or failed (FC3 F) plays in which

Table 4. Ratio of player flow centrality for successful versus
unsuccessful plays.

Team Position

PG SG SF PF CN

Bobcats 0.94 0.87 1.17 0.92 1.42

Bucks 0.94 0.65 1.25 0.87 1.54

Bulls 0.72 0.55 0.95 0.78 1.36

Cavaliers 0.76 1.24 0.81 1.51 0.87

Celtics 1.01 0.88 1.44 1.43 0.96

Hawks 0.95 1.00 0.54 0.76 0.82

Heat 0.54 1.63 0.97 0.78 0.48

Magic 1.07 0.55 0.94 0.91 1.70

Blazers 0.99 0.77 1.24 0.77 1.86

Jazz 0.95 1.13 0.86 1.09 0.80

Lakers 0.67 0.85 0.63 1.31 1.94

Mavericks 1.04 0.87 1.13 1.51 0.60

Nuggets 0.99 1.06 1.06 0.62 1.33

Spurs 1.04 1.00 1.83 0.58 1.70

Suns 0.96 0.76 1.20 1.29 0.34

Thunder 0.89 0.50 0.83 0.46 1.52

Flow centrality is calculated for the last three player possessions across plays.
doi:10.1371/journal.pone.0047445.t004
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a player appears as one of the last 3 player possessions in the

sequence.

(PDF)
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