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Abstract

Background: This study compares inflammation-related biomarkers with established cardiometabolic risk factors in the
prediction of incident type 2 diabetes and incident coronary events in a prospective case-cohort study within the
population-based MONICA/KORA Augsburg cohort.

Methods and Findings: Analyses for type 2 diabetes are based on 436 individuals with and 1410 individuals without
incident diabetes. Analyses for coronary events are based on 314 individuals with and 1659 individuals without incident
coronary events. Mean follow-up times were almost 11 years. Areas under the receiver-operating characteristic curve (AUC),
changes in Akaike’s information criterion (DAIC), integrated discrimination improvement (IDI) and net reclassification index
(NRI) were calculated for different models. A basic model consisting of age, sex and survey predicted type 2 diabetes with an
AUC of 0.690. Addition of 13 inflammation-related biomarkers (CRP, IL-6, IL-18, MIF, MCP-1/CCL2, IL-8/CXCL8, IP-10/CXCL10,
adiponectin, leptin, RANTES/CCL5, TGF-b1, sE-selectin, sICAM-1; all measured in nonfasting serum) increased the AUC to
0.801, whereas addition of cardiometabolic risk factors (BMI, systolic blood pressure, ratio total/HDL-cholesterol, smoking,
alcohol, physical activity, parental diabetes) increased the AUC to 0.803 (DAUC [95% CI] 0.111 [0.092–0.149] and 0.113
[0.093–0.149], respectively, compared to the basic model). The combination of all inflammation-related biomarkers and
cardiometabolic risk factors yielded a further increase in AUC to 0.847 (DAUC [95% CI] 0.044 [0.028–0.066] compared to the
cardiometabolic risk model). Corresponding AUCs for incident coronary events were 0.807, 0.825 (DAUC [95% CI] 0.018
[0.013–0.038] compared to the basic model), 0.845 (DAUC [95% CI] 0.038 [0.028–0.059] compared to the basic model) and
0.851 (DAUC [95% CI] 0.006 [0.003–0.021] compared to the cardiometabolic risk model), respectively.

Conclusions: Inclusion of multiple inflammation-related biomarkers into a basic model and into a model including
cardiometabolic risk factors significantly improved the prediction of type 2 diabetes and coronary events, although the
improvement was less pronounced for the latter endpoint.
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Introduction

Based on data from observational and intervention studies,

subclinical inflammation is considered a risk factor for the

development of type 2 diabetes [1–3]. In many prospective

studies, circulating concentrations of acute-phase proteins, cyto-

kines, chemokines and soluble adhesion molecules are associated

with incident type 2 diabetes [1,4]. However, the association of

each of these biomarkers alone with incident disease is rather

weak, because hazard ratios (HRs) for 1-SD increases of single

biomarkers are usually ,2 and mostly even ,1.5 [5]. Statistical

simulations indicate that higher HRs or the combination of

multiple biomarkers with low HRs are needed for better prediction

[6,7]. Despite the wealth of data on individual inflammation-

related biomarkers and incident type 2 diabetes, the predictive

value of combinations of multiple of these biomarkers is still

unclear [4].

Simple immune scores based on five or six markers of

subclinical inflammation in the ARIC (Atherosclerosis Risk In
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Communities) and MONICA/KORA (MONItoring of trends and

determinants in CArdiovascular disease/Cooperative Health

Research in the Region of Augsburg) Augsburg cohorts showed

that the risk for type 2 diabetes was almost 4-fold increased in

individuals with high compared to those with low circulating levels

of all tested immune markers after adjustment for multiple

confounders [8,9]. These initial data indicated that the strength

of association between subclinical inflammation and incident type

2 diabetes could be increased by a combination of several

inflammation-related biomarkers. However, both studies did not

report areas under the receiver-operating characteristic curves

(AUC) or C-statistics to assess the relevance of these biomarkers

for the prediction of type 2 diabetes or to compare them with

established cardiometabolic risk factors.

Two recent reports from the Inter99 and FINRISK97 cohorts

provided some evidence that risk scores from multiple biomarkers

may indeed improve the prediction of type 2 diabetes over and

above certain established risk factors [5,10]. Both studies included

measurements of a large range of inflammation-related biomark-

ers. However, cardiometabolic and inflammation-related bio-

markers were combined with the aim to derive final risk scores

based on only a few biomarkers for diabetes prediction, whereas

the question how cardiometabolic and inflammation-related

biomarkers compare has not been addressed. Moreover, both

studies had in common that they were based on biomarker

measurements from fasting blood samples. As circulating concen-

trations of several immune mediators respond to food intake and/

or display circadian rhythms [11,12], it is as yet unknown whether

measurements of inflammation-related biomarkers from nonfast-

ing blood samples can also be used for modeling the risk of type 2

diabetes.

In order to characterize the relevance of markers of subclinical

inflammation for the prediction of physician-diagnosed type 2

diabetes, we addressed the following questions in the population-

based MONICA/KORA cohort: (i) What is the accuracy of

models based on inflammation-related biomarkers in the predic-

tion of incident type 2 diabetes? (ii) Is this accuracy comparable

with established cardiometabolic risk factors? (iii) Can the

accuracy be improved by combining both sets of risk factors? (iv)

How does the accuracy of prediction of incident diabetes compare

with that of coronary events using the same set of biomarkers and

risk factors in the same population?

Materials and Methods

Study Design and Population
The design of this prospective case-cohort study within the

population-based MONICA/KORA Augsburg cohort has been

described in detail before [9,13,14]. Briefly, three independent

cross-sectional population-based surveys were performed within

the MONICA Augsburg project in 1984/85 (S1), 1989/90 (S2)

and 1994/95 (S3) in Augsburg and two adjacent counties

(Germany). The total number of participants was 13,427 (6,725

men, 6,702 women) aged 25–64 (S1) or 25–74 years (S2, S3). All

subjects were prospectively followed within the KORA research

frame. The studies were approved by the local authorities and

performed according to the Declaration of Helsinki. The case-

cohort study was approved by the Bayerische Landesärztekam-

mer. All participants provided written informed consent.

The incidence of type 2 diabetes between participants’ study

start dates and December 31st, 2002 was assessed using a written

follow-up questionnaire sent to all participants of the 3 baseline

surveys in 1997/1998 and 2002/2003. Furthermore, all S1

participants were invited to a follow-up examination in 1987/

1988. Cases with self-reported incident diabetes were validated by

a questionnaire mailed to the treating physician or medical chart

review [13]. Only subjects for whom the treating physician clearly

reported a diagnosis of type 2 diabetes or for whom a diagnosis of

type 2 diabetes was mentioned in the medical records or who were

taking antidiabetic medication were classified as cases for the

present analysis. Measurements of autoantibodies to exclude type

1 diabetes were not performed in the study.

Details on the selection of study participants are shown in the

supporting information (Fig. S1). This study was based on 1,846

participants (244 men, 192 women with incident type 2 diabetes;

693 men, 717 women without incident type 2 diabetes) with

complete information on all biomarkers and cardiometabolic risk

factors and no prevalent diabetes. Mean follow-up time (6 SD)

was 10.664.6 years (range 1.0–18.2 years).

Incident coronary events were defined as combined endpoint of

incident non-fatal myocardial infarction and fatal coronary death

or sudden cardiac death before the age of 75 years. Cases were

identified through the MONICA/KORA Augsburg coronary

event registry and follow-up questionnaires for persons who had

moved out of the study area. Until December 2000, a major non-

fatal myocardial infarction was diagnosed based on the MONICA

algorithm (symptoms, cardiac enzymes, ECG changes). Since

January 2001 myocardial infarction was diagnosed according to

criteria defined by the European Society of Cardiology and the

American College of Cardiology [15,16]. Coronary deaths were

validated by autopsy reports, death certificates, chart review and

information from the last treating physician.

Details on the selection of study participants are shown in the

supporting information (Fig. S2). This study was based on 1,973

participants (239 men, 75 women with incident coronary events;

793 men, 866 women without incident coronary events) with

complete information on all biomarkers and cardiometabolic risk

factors and no prevalent myocardial infarction. Mean follow-up

time (6 SD) was 10.564.5 years (range 0.05–18.2 years).

Assessment of Cardiometabolic and Inflammation-
Related Risk Factors

Information on sociodemographic and lifestyle variables as well

as on parental history of diabetes and myocardial infarction was

collected through standardized interviews. In addition, standard-

ized medical examinations including collection of a nonfasting

venous blood sample were performed. All procedures and

laboratory methods for cardiometabolic risk factors have been

described in detail [9,13,14,17,18].

Laboratory methods for the assessment of inflammation-related

biomarkers have been reported before [9,13,14,19–22]. Table S1

(supporting information) provides an overview of assays, reagents

and coefficients of variation (CVs) for the measurement of serum

concentrations of C-reactive protein (CRP); interleukin-6 (IL-6);

IL-18; macrophage-migration inhibitory factor (MIF); monocyte

chemoattractant protein-1 (MCP-1)/C-C motif ligand 2 (CCL2);

IL-8/C-X-C motif ligand 8 (CXCL8); interferon-c-inducible

protein-10 (IP-10)/CXCL10; adiponectin; leptin; regulated on

activation, normal T-cell expressed and secreted (RANTES)/

CCL5; transforming growth factor-b1 (TGF-b1); soluble E-

selectin (sE-selectin); and soluble intercellular adhesion molecule-

1 (sICAM-1).

Statistical Analysis
Descriptive analyses for baseline characteristics were carried out

for cases and non-cases for both outcomes. For continuous

variables, means with SD were determined using the SAS

procedure SURVEYMEANS and were compared with t tests

Immunological Risk Factors and Type 2 Diabetes
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using SURVEYREG. In case of non-normality, log-transformed

variables were used, and results were presented as geometric

means with antilogs of SEs of the adjusted log-means. For

categorical variables cases and non-cases were compared using

Wald chi-square test using SURVEYFREQ. Weighting was

performed using the survey- and sex-specific sampling weights.

Correlations between inflammation-related biomarkers were

assessed by Spearman correlation coefficients (r).

To assess the impact of inflammation-related biomarkers and

cardiometabolic risk factors on incident type 2 diabetes or

coronary events, Cox proportional hazards regression was applied

by calculating a first model for each biomarker which included the

respective biomarker and age, sex and survey as adjustments

(model 1) and a second model which included additionally the

categorical variables smoking status (never/former/current smok-

er), alcohol consumption (no/moderate/high consumption),

physical activity (low/high), family history of diabetes for incident

type 2 diabetes or family history of myocardial infarction for

incident coronary events (positive/negative/unknown), and prev-

alent diabetes for incident coronary events (yes/no), as well as the

continuous variables systolic blood pressure, ratio of total

cholesterol to HDL cholesterol and BMI as adjustments (model

2). Additional models were calculated by reducing or extending

the number of covariables as indicated. For the Cox regression,

each biomarker concentration was included standardized by

subtracting the mean and divided by the SD of the biomarker

concentration [(biomarker – mean(biomarker))/SD(biomarker)].

This standardization (also known as z transformation) allows a

comparison of the associations of each biomarker as it is

independent from the underlying unit and distribution. Based on

the Cox regression, HRs with 95% confidence intervals (95% CI)

and P values were calculated. For all analyses, P,0.05 was

considered to be statistically significant.

The accuracy of the different models to assess 10-year event risk

were estimated by four measures: (i) the area under the receiver-

operating characteristic curve (AUC) (also known as C-statistic or

C-index) using survival probabilities within 10 years estimated by

a modified Kaplan-Meier method to account for censored

observations and the weighting scheme appropriate to the case-

cohort design; AUC differences between two models are given as

DAUC [23]; (ii) Akaike’s information criterion (AIC) regarding an

AIC difference (DAIC) between two models of .10 essentially

different (the lower the AIC, the better the fit of the model)

[24,25]; (iii) the integrated discrimination improvement (IDI)

statistics which can be viewed as the difference of the R2 statistic

between two models, i.e. the difference in the proportion of

variance explained by the two models [26,27]; and (iv) the net

reclassification index (NRI) using the categories 0–3.0%, 3.1–

8.0%, 8.1–15.0% and .15% [26,27]. Sensitivity analyses were

performed using lower (0–2.0%, 2.1–5.0%, 5.1–10.0% and

.10%) and higher (0–5.0%, 5.1–10.0%, 10.1–20.0% and

.20%) thresholds for both outcomes. 95% CI for DAUC and

IDI were calculated using a bootstrap percentile approach

following Efron and Tibshirani [28]. The bootstrap sampling

was conducted accounting for the case-cohort design. All statistical

evaluations were performed using the SAS software package

(Version 9.1, SAS-Institute, Cary, NC, USA).

Results

Study Populations
Table S2 gives the baseline characteristics of the overlapping

study populations with/without incident type 2 diabetes as well as

with/without coronary events during the follow-up period. Slightly

larger populations with fewer exclusions due to incomplete

biomarker data have been described before [13,29]. Briefly, cases

for both outcomes were older, more likely to be male, had a higher

BMI, a less favorable metabolic profile and higher levels for most

inflammation-related biomarkers. A correlation matrix for the

inflammation-related biomarkers is given in the supporting

information (Table S3).

Modeling the Risk of Type 2 Diabetes
Fig. 1 shows HRs (95% CI) for increases of inflammation-

related biomarkers standardized by z-transformation for incident

type 2 diabetes. In the model adjusted for age, sex, survey and

cardiometabolic risk factors (model 2), IL-18, adiponectin, sE-

selectin and sICAM-1 were each significantly associated with

incident type 2 diabetes with HRs betwen 1.11 and 1.67 (0.33 for

the protective adipokine adiponectin).

AUCs were calculated for different sets of risk factors for

incident type 2 diabetes (Table 1). Age, sex and survey (model a)

predicted type 2 diabetes with an AUC of 0.690 (the AUC for age

alone was 0.670). Addition of all 13 inflammation-related

biomarkers (model b) significantly increased the AUC to 0.801

(DAUC [95% CI] 0.111 [0.092–0.149] compared to model a;

P,0.05). Similarly, addition of cardiometabolic risk factors (BMI,

systolic blood pressure, ratio of total cholesterol/HDL cholesterol,

smoking, alcohol, physical activity, parental history of diabetes;

model c) significantly improved the AUC to 0.803 (DAUC [95%

CI] 0.113 [0.093–0.149] compared to model a; P,0.05). When all

13 biomarkers were added to model c, the combination of age, sex,

survey, inflammation-related biomarkers and cardiometabolic risk

factors (model d) led to an AUC of 0.847 (DAUC [95% CI] 0.044

[0.028–0.066] compared to model c, P,0.05). The differences in

DAUC, AIC as well as data for IDI and NRI (Table 1, Table S4)

indicate that addition of all 13 inflammation-related biomarkers to

the basic model a or to the cardiometabolic risk model c improved

the models substantially.

Measures for DAUC, DAIC, IDI and NRI also revealed that

adiponectin and E-selectin were the biomarkers which improved

model fit the most when added to model c. Moreover, a model

that only included the four biomarkers that were significantly

associated with incident diabetes (Fig. 1) was almost as good as

model d based on all 13 biomarkers (Table 1, Table S4).

Modeling the Risk of Coronary Events
As shown in Fig. 2, two inflammation-related biomarkers were

significantly associated with the risk for coronary events in the fully

adjusted models (HRs for IL-6 and sICAM-1: 1.23 and 1.31,

respectively).

Analogous analyses for coronary events as described above

yielded AUCs of 0.745 for age alone, 0.807 for model a (age, sex,

survey), 0.825 for model b (addition of inflammation-related

biomarkers to model a, DAUC [95% CI] 0.018 [0.013–0.038],

P,0.05), 0.845 for model c (addition of cardiometabolic risk

factors to model a, DAUC [95% CI] 0.038 [0.028–0.059],

P,0.05) and 0.851 for model d (combination of all biomarkers

and risk factors, DAUC [95% CI] 0.006 [0.003–0.021], P,0.05

compared with model c). The differences in DAUC, IDI and NRI

(Table 2, Table S5) indicated that addition of all 13 inflammation-

related biomarkers significantly improved the basic model a and

the cardiometabolic risk model c, but improvements were much

lower than for type 2 diabetes.

Sensitivity Analyses
Most inflammation-related biomarkers were measured using

high-sensitivity ELISA kits with inter- and intraassay CVs

Immunological Risk Factors and Type 2 Diabetes
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generally below 10%, whereas inter- and intraassay CVs for some

parameters measured with bead-based multiplex assays exceeded

10% (Table S1). In order to exclude effects of less robust assays on

the estimation of model accuracy, we repeated our analyses after

exclusion of the four biomarkers that were measured with the

multiplex assay (i.e. IL-18, MCP-1/CCL2, IL-8/CXCL8 and IP-

10/CXCL10). For incident type 2 diabetes, the AUCs for models

b and d were only slightly altered (from 0.801 to 0.796 and from

0.847 to 0.843, respectively). Similar results were seen for incident

coronary events, where the AUCs for models b and d changed

from 0.825 to 0.826 and from 0.851 to 0.852, respectively.

We also performed sensitivity analyses replacing BMI with waist

circumference in our risk models. Unfortunately, waist circumfer-

ence was only measured in S2 und S3, but not in S1. Thus, our

study samples were reduced to 311 cases and 928 non-cases for the

outcome incident type 2 diabetes and to 219 cases and 1,133 non-

cases for the outcome incident coronary events. For type 2

diabetes, the AUCs for models c and d were increased by 0.010

and 0.007, respectively. For coronary events, the increases were

even lower with 0.002 for both models c and d. These results

indicate that the substitution of BMI with waist circumference in

this subpopulation of the case-cohort study only slightly improved

the model accuracy.

Low socioeconomic status represents an important risk factor

for type 2 diabetes and coronary events. Education (in years) is the

only index of socioeconomic status that is available for all

participants of the MONICA/KORA case-cohort study. When

education was added as a covariable to the respective models c

(cardiometabolic risk models), this variable was not significantly

associated with incident type 2 diabetes (P = 0.184) or incident

coronary events (P = 0.859) so that we decided not to include

education in the list of cardiometabolic risk factors.

It has been reported that measures of NRI depend on the chosen

cut-off values [30]. Our initial cut-off values (3%, 8%, 15%) were

based on previous publications [26,27], but at least for incident type

2 diabetes, a clear clinical basis for these cut-off values does not exist.

Therefore, we repeated our analyses with lower (2%, 5%, 10%) and

higher (5%, 10%, 20%) cut-off values. As shown in Table S6, we

found minor changes for NRI values when lower or higher cut-offs

were used, but overall, our results seem relatively robust.

Irrespective of the used cut-off values, NRI values were always

considerably higher for type 2 diabetes than for coronary events.

Figure 1. Hazard ratios (95% CI) for incident type 2 diabetes for z-transformed inflammation-related biomarkers. Solid lines (model 1):
each biomarker adjusted for age, sex and survey. Dashed lines (model 2): each biomarker adjusted for age, sex, survey, BMI, systolic blood pressure,
ratio of total cholesterol to HDL cholesterol, smoking, alcohol consumption, physical activity and parental diabetes.
doi:10.1371/journal.pone.0019852.g001
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Discussion

The main findings of our study are (i) that the combination of 13

biomarkers of subclinical inflammation improved the accuracy of a

risk model of incident type 2 diabetes in the MONICA/KORA

cohort significantly and equally well as a combination of

established cardiometabolic risk factors, (ii) that a combination

of both sets of risk factors led to a further significant improvement

of the accuracy of predicting type 2 diabetes compared with either

set of risk factors alone, and (iii) that the improvement of accuracy

of prediction models for type 2 diabetes over and above age, sex

and cardiometabolic risk factors by the combination of inflam-

mation-related biomarkers was more pronounced than for

coronary events employing the same methods in the same

population.

The study extends previous knowledge because it is the first

study to focus on the predictive value of multiple markers of

subclinical inflammation for incident type 2 diabetes. The set of 13

inflammation-related biomarkers consists of an acute-phase

protein (CRP), cytokines (IL-6, IL-18, TGF-b1, MIF), chemokines

(MCP-1/CCL2, IL-8/CXCL8, IP-10/CXCL10, RANTES/

CCL5), adipokines (adiponectin, leptin) and soluble adhesion

molecules (sE-selectin, sICAM-1) and is therefore more compre-

hensive than the combinations of immune mediators that were

used in the ARIC cohort (leukocyte count, IL-6, four acute-phase

proteins) or the MONICA/KORA cohort (CRP, IL-6, three

chemokines) before [8,9].

Our study design differs in two important aspects from the

design of the aforementioned Inter99 and FINRISK cohorts

[5,10]. First, we provide an estimate of the accuracy of models

based on biomarkers of subclinical inflammation only (over and

above age, sex and survey as essential covariates) and both

compared and combined them with established cardiometabolic

risk factors because we were interested in the contribution of

subclinical inflammation as pathophysiological mechanism to the

development of type 2 diabetes. Therefore, it was not our aim to

build a risk score with optimal predictive value for incident type 2

diabetes. Second, we used nonfasting rather than fasting blood

samples as fasting samples were not available from the MONICA/

KORA Augsburg surveys. Although it could be argued that this

represents a major limitation of our study (to be discussed below),

it should be noted that the question whether inflammation-related

biomarkers from nonfasting samples could be useful in the

prediction of type 2 diabetes has not been addressed in

comparable population-based studies and is therefore of interest.

Although we observed a substantial increase in AUC (0.044

[95% CI 0.028–0.066]) as well as large values for DAIC (139.8),

IDI (0.061) and NRI (0.202) by the addition of inflammation-

related biomarkers to a model that already contained strong

cardiometabolic risk factors for type 2 diabetes, we found that this

increase could be attributed to just a few biomarkers. Only

adiponectin and sE-selectin increased the AUC by more than

0.010 and showed DAIC considerably larger than 10. Importantly,

adiponectin was also one out of four biomarkers (next to

apolipoprotein B, CRP and ferritin) that was included in the final

prediction score derived from 31 biomarkers in the FINRISK97

cohort [5]. Moreover, inclusion of adiponectin in an extensive risk

score based on anthropometric, metabolic and lifestyle factors

led to a small, but significant increase in the AUC in the

Table 1. Predictive value of Cox regression models for each inflammation-related biomarker assessed by AUC for incident type 2
diabetes.

Biomarker AUC1a DAUC1 (95% CI)a AUC2b DAUC2 (95% CI)b

None 0.690 — 0.803 —

hsCRP 0.693 0.003 (0.001–0.008) 0.803 0.000 (20.000–0.002)

IL-6 0.692 0.002 (0.001–0.007) 0.804 0.001 (20.000–0.004)

IL-18 0.694 0.004 (0.002–0.019) 0.805 0.002 (0.000–0.012)

TGF-b1 0.694 0.004 (0.001–0.011) 0.805 0.002 (20.000–0.007)

MIF 0.692 0.002 (0.001–0.007) 0.804 0.001 (20.000–0.003)

MCP-1 0.693 0.003 (0.001–0.010) 0.804 0.001 (20.000–0.006)

IL-8 0.691 0.001 (0.001–0.004) 0.803 0.000 (20.000–0.002)

IP-10 0.695 0.005 (0.001–0.016) 0.807 0.004 (20.000–0.010)

RANTES 0.695 0.005 (0.001–0.013) 0.803 0.000 (20.000–0.003)

Adiponectin 0.753 0.063 (0.042–0.088) 0.826 0.023 (0.010–0.037)

Leptin 0.728 0.038 (0.024–0.062) 0.805 0.002 (20.000–0.007)

sE-selectin 0.716 0.026 (0.010–0.054) 0.821 0.018 (0.006–0.031)

sICAM-1 0.699 0.009 (0.002–0.022) 0.806 0.003 (20.000–0.009)

With all 13 biomarkers 0.801 0.111 (0.092–0.149) 0.847 0.044 (0.028–0.066)

With IL-18, adiponectin, sE-selectin,
sICAM-1c

0.783 0.093 (0.071–0.125) 0.841 0.038 (0.021–0.056)

Bold print denotes statistical significance for DAUC (P,0.05). ‘‘20.000’’ denotes values between 20.0005 and 0.0000.
aAdjusted for age, sex and survey (model 1).
bAdjusted for age, sex, survey, BMI, systolic blood pressure, ratio of total cholesterol/HDL cholesterol, smoking, alcohol, physical activity and parental history of diabetes

(model 2).
cWith biomarkers that were significantly associated with incident type 2 diabetes in multivariable-adjusted models (IL-18, adiponectin, sE-selectin, sICAM-1).
DAUC denotes the differences between the model with the respective inflammation-related biomarker and the model without any inflammation-related biomarker.
DAUC for the difference between the model adjusted for age, sex, survey and cardiometabolic risk factors (model c) and the basic model adjusted for age, sex and
survey (model a) was 0.113 [95% CI 0.093–0.149].
doi:10.1371/journal.pone.0019852.t001
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EPIC-Potsdam Study [31]. We reported before that adiponectin

improved risk prediction over and above cardiometabolic and

selected inflammation-derived biomarkers in the MONICA/

KORA Augsburg case-cohort study [22]. These data are in

contrast with findings from the KORA S4/F4 cohort study, which

was conducted later and independently from the MONICA/

KORA surveys 1–3. In KORA S4/F4, there was no significant

improvement of the AUC when adiponectin was added to a model

that contained HbA1c and fasting glucose [32]. Data on the

impact of sE-selectin on measures of discrimination are available

from a small nested case-control study within the Western New

York Study. The addition of sE-selectin, serum albumin and

leukocyte count improved the accuracy of a risk model for type 2

diabetes compared to a basic model based on sex, BMI and familiy

history of type 2 diabetes [33].

Our findings on type 2 diabetes are in contrast to several other

studies on the improvement by inflammation-related biomarkers

of risk models already containing measure of glycemia or insulin

resistance. In the Insulin Resistance Atherosclerosis Study, the

addition of CRP to a prediction model for type 2 diabetes that was

based on the metabolic syndrome (without or with an estimate of

insulin resistance) had little impact on AUCs [34]. CRP (alone or

in combination with other biomarkers) also failed to improve

AUCs of prediction models already containing plasma glucose

glucose levels as in the Framingham Offspring Study [35] and the

aforementioned EPIC-Potsdam Study [31]. In the Sandy Lake

Health and Diabetes Project, leptin, CRP, IL-6 and serum

amyloid A were included in a risk model based on cardiometabolic

risk factors, adiponectin and impaired glucose tolerance, but could

not improve diabetes prediction [36]. Recently, the Women’s

Health Initiative Observational Study did not find that biomarkers

of subclinical inflammation (hsCRP, IL-6, soluble tumor necrosis

factor-receptor 2) and of endothelial dysfunction (E-selection,

ICAM-1, vascular cell adhesion molecule-1) contribute to the

prediction of incident type 2 diabetes over and above clinical risk

factors and fasting glucose [37]. Taken together, these data suggest

that our findings may be specific for analyses based on nonfasting

blood samples and that the contribution of multiple inflammation-

related biomarkers to prediction models with diabetes risk factors

that are used for the diagnosis of type 2 diabetes (glucose, HbA1c)

may be less pronounced than for prediction models without these

measures of glycemia.

An important aspect of our study is the fact that our case-

cohort design allowed us to compare inflammation-related and

Figure 2. Hazard ratios (95% CI) for incident coronary events for z-transformed inflammation-related biomarkers. Solid lines (model
1): each biomarker adjusted for age, sex and survey. Dashed lines (model 2): each biomarker adjusted for age, sex, survey, BMI, systolic blood
pressure, ratio of total cholesterol to HDL cholesterol, smoking, alcohol consumption, physical activity, parental myocardial infarction and prevalent
diabetes.
doi:10.1371/journal.pone.0019852.g002
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cardiometabolic risk factors for both type 2 diabetes and coronary

events as outcomes using the same methods and two largely

overlapping study populations. The combination of all biomarkers

and risk factors yielded almost identical AUCs for both outcomes.

However, the improvement of inflammation-related biomarkers

over a basic model based on age, sex and survey was considerably

larger for type 2 diabetes (DAUC 0.111 [95% 0.092–0.149]) than

for coronary events (DAUC 0.018 [95% CI 0.013–0.038]). This

difference is confirmed by larger DAIC, IDI and NRI values when

models for both outcomes were compared. This is most likely

attributable to the higher accuracy of the basic model for coronary

events (AUC 0.807) compared to type 2 diabetes (AUC 0.690) so

that further improvements by additional biomarkers or risk factors

can be expected to be less pronounced. Although we found a

significant increase in AUC, these data are in line with data from

other studies that focused on risk models for incident coronary

events or cardiovascular death and that assessed the incremental

predictive value of inflammation-related biomarkers. AUCs for

prediction models based on cardiometabolic factors were usually

in the range between 0.70 and 0.82. Although multiple promising

biomarker candidates were tested, the improvement of risk models

by addition of novel inflammation-related biomarkers was

relatively small, especially when the basic model already had a

good accuracy, and AUCs of the extended models did not increase

beyond 0.82 in these studies [38–45]. A recent study indicated that

in particular N-terminal pro-brain natriuretic peptide (NT-

proBNP) and sensitive troponin I may improve the prediction of

risk of coronary events [44].

Regarding the clinical relevance of our findings, the present

study did not aim at providing a simple clinical risk score, but

rather at studying to which extent subclinical inflammation as one

of several other mechanisms contributes to the prediction of the

development of type 2 diabetes. The approach of this study was

chosen to extend previous work that mainly evaluated statistical

associations between inflammation-related biomarkers and inci-

dent diabetes using Cox regression models.

Overall, our data demonstrate that age (but not sex or survey)

contribute a substantial part to the AUC that can be achieved with

a basic risk model and with more sophisticated models involving

multiple risk factors and biomarkers. Interestingly, although

cardiometabolic risk factors are strongly associated with inflam-

mation-related biomarkers, we found a significant increase in

accuracy when adding inflammation-related biomarkers to a

model based on age, sex and cardiometabolic risk factors.

Therefore, these data are in line with a role for subclinical

inflammation in the development of type 2 diabetes and indicate

that in particular adiponectin and sE-selectin should be further

evaluated as markers for type 2 diabetes risk in combination with

other risk factors and biomarkers.

Strengths of our study include the use of the MONICA/KORA

Augsburg cohort with a large number of cases and non-cases, a

long follow-up period, availability of data for multiple biomarkers

representing different aspects of subclinical inflammation, and the

inclusion of both cases with incident type 2 diabetes and coronary

events in the case-cohort study so that a direct comparison of risk

factors and biomarkers for both outcomes in the same cohort using

the same methods was possible.

There are also several limitations that should be pointed out.

First, we did not perform oral glucose tolerance tests at baseline or

follow-up so that some misclassification may have occurred and

Table 2. Predictive value of Cox regression models for each inflammation-related biomarker assessed by AUC for incident
coronary events.

Biomarker AUC1a DAUC1 (95% CI)a AUC2b DAUC2 (95% CI)b

None 0.807 — 0.845 —

hsCRP 0.809 0.002 (0.001–0.008) 0.845 0.000 (20.001–0.003)

IL-6 0.810 0.003 (0.001–0.008) 0.846 0.001 (20.000–0.004)

IL-18 0.808 0.001 (0.001–0.005) 0.845 0.000 (20.001–0.003)

TGF-b1 0.808 0.001 (0.001–0.005) 0.845 0.000 (20.000–0.003)

MIF 0.809 0.002 (0.001–0.008) 0.845 0.000 (20.000–0.003)

MCP-1 0.808 0.001 (0.001–0.005) 0.845 0.000 (20.001–0.002)

IL-8 0.808 0.001 (0.001–0.003) 0.845 0.000 (20.000–0.002)

IP-10 0.808 0.001 (0.000–0.005) 0.845 0.000 (20.001–0.005)

RANTES 0.808 0.001 (0.001–0.006) 0.845 0.000 (20.000–0.003)

Adiponectin 0.808 0.001 (0.000–0.007) 0.845 0.000 (20.000–0.005)

Leptin 0.811 0.004 (0.001–0.010) 0.845 0.000 (20.000–0.004)

sE-selectin 0.817 0.010 (0.004–0.018) 0.847 0.002 (20.000–0.009)

sICAM-1 0.817 0.010 (0.005–0.021) 0.848 0.003 (0.000–0.011)

With all 13 biomarkers 0.825 0.018 (0.013–0.038) 0.851 0.006 (0.003–0.021)

With IL-6,sICAM-1c 0.819 0.012 (0.006–0.024) 0.849 0.004 (0.001–0.012)

Bold print denotes statistical significance for DAUC (P,0.05). ‘‘20.000’’ denotes values between 20.0005 and 0.0000.
aAdjusted for age, sex and survey (model 1).
bAdjusted for age, sex, survey, BMI, systolic blood pressure, ratio of total cholesterol/HDL cholesterol, smoking, alcohol, physical activity, parental myocardial infarction

and prevalent diabetes (model 2).
cWith biomarkers that were significantly associated with incident coronary events in multivariable-adjusted models (IL-6, sICAM-1).
DAUC denotes the differences between the model with the respective inflammation-related biomarker and the model without any inflammation-related biomarker.
DAUC for the difference between the model adjusted for age, sex, survey and cardiometabolic risk factors (model c) and the basic model adjusted for age, sex and
survey (model a) was 0.038 [95% CI 0.026–0.055].
doi:10.1371/journal.pone.0019852.t002
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the outcome of our study was physician-diagnosed type 2 diabetes.

Second, we had no data on fasting glucose and fasting insulin

(HbA1c data for a subgroup of study participants only) so that we

could not investigate the change in AUC by inflammation-related

biomarkers over a model that contained these variables. In

addition, minor variations of levels of inflammation-related

biomarkers due to the nonfasting state cannot be excluded. Third,

we used continuous values of biomarker concentrations in order to

render results comparable to other studes [5,44], although

consideration of sex differences or non-linear associations between

biomarkers and endpoints could have led to higher accuracy of our

models. Fourth, biomarkers of non-alcoholic fatty liver disease

(liver enzymes such as alanine aminotransferase, aspartate

aminotransferase or c-glutamyl transferase) are relevant risk

factors for type 2 diabetes [4,46], but were not available in our

study (with the exception of c-glutamyl transferase in S1) so that

we could not include them in our cardiometabolic risk models.

Finally, we did not seek for external replication of our results.

Taken together, 13 inflammation-related biomarkers measured

in nonfasting serum samples significantly improved the prediction

of incident type 2 diabetes and coronary events over and above

cardiometabolic risk factors in the MONICA/KORA study, but

this improvement was much more pronounced for type 2 diabetes.

Our study could not address the question whether biomarkers of

subclinical inflammation can also improve the predictive value of

risk models that contain various measures of glycemia. Therefore,

further research is warranted to investigate whether multiple

inflammation-related biomarkers can increase the accuracy of risk

models that include data on (fasting or nonfasting) glucose, insulin

or HbA1c levels.
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