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Abstract

The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria
monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria
monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display
biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L.
monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L.
monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an
attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were
performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations
were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of
solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne
pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria
spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L.
monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp.
This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was
used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential
application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries.

Citation: Mclvor MJ, Karoonuthaisiri N, Charlermroj R, Stewart LD, Elliott CT, et al. (2013) Phage Display-Derived Binders Able to Distinguish
Listeria monocytogenes from Other Listeria Species. PLoS ONE 8(9): €74312. doi:10.1371/journal.pone.0074312

Editor: Jamunarani Vadivelu, University of Malaya, Malaysia
Received May 28, 2013; Accepted July 28, 2013; Published September 10, 2013

Copyright: © 2013 Mclvor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Department of Employment and Learning postgraduate studentship to MJM, a safefood Listeria Network grant
tolRG and MJM, and an European Union FP7 Incoming Marie Curie Fellowship awarded to NK. The funders had no role in study design, data collection

andanalysis, decision to publish, or preparation of the manuscript.

* E-mail: i.grant@qub.ac.uk

Competing interests: The authors have declared that no competing interests exist.

Introduction

Listeria monocytogenes is one of six species within the
Listeria genus, with the other six identified as L. grayi (subsp.
grayi and subsp. murrayi), L. innocua, L. ivanovii, L. seeligeri,
and L. welshimeri [1,2]. They are Gram positive, facultative
anaerobic, non-spore-forming, rod-shaped bacteria 0.5 pym in
width and 1-1.5 ym in length [2]. Although L. monocytogenes
and L. Jvanovii are both deemed pathogenic only L.
monocytogenes infects both man and animals, with L. ivanovii
being an animal pathogen rarely occurring in man [3,4]. Listeria
spp. are ubiquitous in the environment and found in soil, water,
effluents, animal and human intestines and, a wide variety of
foods including fresh produce. L. monocytogenes possess the
ability to grow at refrigeration temperatures (<4 °C) making its
presence in food a pertinent public health risk where ready-to-
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eat, refrigerated foods dominate the convenience food market.
Although the incidence rate of L. monocytogenes infection is
lower than that for other foodborne pathogens such as
Salmonella and Campylobacter, the associated mortality rate is
much higher [5]. There are thirteen different L. monocytogenes
serovars based on variation in the somatic (O) and flagellar (H)
antigens, however, at least 95% of the strains isolated from
foods and patients are serovars 1/2a, 1/2b, 1/2c, and 4b [6-8].
While these four serovars demonstrate varying pathogenicity, it
is serovar 1/2a that is the most frequently isolated from food,
with serovar 4b causing the majority of human epidemics [8,9].
The current commercially available tests for Listeria spp. are
mostly culture techniques which tend to be labour and time
intensive. To enhance the detection and identification of L.
monocytogenes more rapid methods are urgently needed to
meet current demands for food safety testing. A number of
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rapid methods have been developed, for example
immunological techniques such as biosensor [10,11], enzyme-
linked immunosorbent assay (ELISA) [12] and antibody array
[13,14] and, genotypic techniques such as real-time
polymerase chain reaction (RT-PCR) [15—17], deoxyribonucleic
acid (DNA) microarray [18] and loop-mediated isothermal
amplification (LAMP) methods [19,20]. Listeria spp. are closely
related both morphologically and biochemically making it
difficult to distinguish L. monocytogenes from other Listeria
spp. Although genotypic techniques that rely on detecting
unique DNA sequences between species are available, such
techniques can be time-consuming requiring additional sample
extraction steps. Culture combined with immunological
techniques are used more routinely, however, generating
antibodies with the desired specificity and sensitivity for L.
monocytogenes detection presents the challenge of identifying
cell surface epitopes which are specific.

Successful rapid diagnostic techniques require a specific and
high affinitybinder, usually an antibody. Development of animal
derived antibodies is not an easy task and they are expensive
to produce. In addition efforts are ongoing to reduce, refine and
replace the use of animals in scientific research in accordance
with EU legislation, Directive 2010/63/EU [21]. Phage display
biopanning is a technique extending from the invention of
phage display technology in 1985 [22] and offers an alternative
means of generating specific affinity ligands. This technique
has been used previously in an attempt to generate alternative
binders to L. monocytogenes; Paoli et al. [5,23] and Nanduri et
al. [24] produced phage display-derived antibody fragments to
L. monocytogenes, while Carnazza et al. [25] described the
production of phage display-derived peptide binders to L.
monocytogenes. However, Carnazza et al. presented no data
on cross-reactivity of their binders with other Listeria spp. or
relevant foodborne bacteria to support the specificity claim.

This study aimed to use phage display biopanning to
produce L. monocytogenes-specific binders with the ability to
distinguish pathogenic L. monocytogenes from other Listeria
species. The biopanning regime employed subtraction
biopanning against L. innocua, the strain genetically closest to
L. monocytogenes [26], in the hope that this would increase the
probability of identifying L. monocytogenes-specific binders.
The ultimate goal was to determine the potential utility of the
phage display-derived L. monocytogenes-specific binders in a
rapid diagnostic assay to enhance the detection and
identification of this important foodborne pathogen.

Materials and Methods

Preparation of target antigen and biopanning plates
Target antigen for positive surface biopanning was L.
monocytogenes NCTC 4885 (serovar 4b) and for subtraction
surface biopanning was L. innocua NCTC 11288 (Table 1). The
bacteria were maintained on Cryobeads (Pro-Lab, Wirral, UK)
at -80 ‘C. Each culture was prepared by the inoculation of
nutrient broth (CM0001, Oxoid Limited, Hampshire, UK) with a
single Cryobead followed by incubation at 30 °C for 48 hours.
Each culture was standardized to 2x10° cfu mI' in phosphate
buffered saline pH 7.4 (PBS) and subjected to a 10 kGy dose
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Table 1. Bacterial strains employed in this study.

Bacterium Serogroup Source

Listeria monocytogenes 4b NCTC 4885

Listeria monocytogenes 1/2a Environmental swab®
Listeria monocytogenes 1/2b Environmental swab®
Listeria monocytogenes 1/2¢ Environmental swab®
Listeria innocua - NCTC 11288
Listeria grayi subsp. grayi - ATCC 19120°
Listeria grayi subsp. murrayi - NCTC 10812 b
Listeria ivanovii - NCTC 11846 °
Listeria seelgeri - NCTC 11856 °
Listeria welshimeri - Environmental swab®
Salmonella Enteriditis 9,12:g,m:7 NCTC 6676
Salmonella Typhimurium 4,12:i:2 Pig carcass swab®
Salmonella Dublin 9,12:g,p Pork®

Salmonella Infantis 6,7:r:5 Raw chicken®
Salmonella Senftenberg 3,19:g,s,t Animal feed"
Salmonella Hadar 6,8:210:e,n,x QA sample- Lac?
Salmonella Mbandaka 6,7:z10:e,n,215 Hygiene swab®
Salmonella Virchow 6,7:r:2 NCTC 5742
Escherichia coli K12 - NCTC 10538
Campylobacter jejuni - NCTC 11351

aQriginally isolated from environmental swabs taken at food processing facilities
and serotyped by Teagasc Food Research Centre, Moorepark, Republic of Ireland.
Kindly provided by Dr Kieran Jordan

bKindly provided by Mr Mark Linton, Agri-Food and Biosciences Institute for
Northern Ireland, Belfast, UK

€Originally isolated and serotyped by Salmonella Reference Laboratory, Agri-Food
and Biosciences Institute for Northern Ireland, Belfast, UK. Kindly provided by Dr
Robert Madden

dLaboratory of the Government Chemist, Middlesex, UK

doi: 10.1371/journal.pone.0074312.t001

of gamma radiation (using a Gammabeam 650 irradiator
located at Agri-Food and Biosciences Institute for Northern
Ireland, Belfast, UK). Once irradiated the cultures underwent a
10-fold concentration with final resuspension in 0.1 M sodium
hydrogen carbonate pH 8.6 (coating buffer). Four 60 mm Petri
dishes (Sarstedt, Leicester, UK) were coated with 1.5 ml of L.
monocytogenes (2x10' cfu mI') and one Petri dish with 1.5 ml
of L. innocua (2x10"° cfu ml') and incubated with agitation at 4
°C in a humidified container until required.

Other bacteria used (Table 1) were maintained on
Cryobeads and were cultured and irradiated in the same
manner as described above, Salmonella serovars and
Escherichia coli were incubated at 37 ‘C overnight, and
Campylobacter jejuni incubated at 42 ‘C for 48 hours. The
Salmonella spp. cocktail consisted of an equal ratio mix of the
eight Salmonella serovars most commonly associated with
foodborne outbreaks in Europe [27]. The bacteria listed in
Table 1 were also prepared in a heat-killed (heat treated to 80
°C for 15 minutes) form.
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Table 2. Summary of biopanning outcomes.

Phage Display Binders to Listeria Monocytogenes

No. of phage

clones tested by

Biopanning Type of No. of phage No. of consensus’®  Consensus peptide sequence(s)phage binding No. of phage clones able to
Round biopanning clones sequenced peptide sequences (no. of phage clones) ELISA bind L. monocytogenes 4b
3 Surface 18 1 MGTTHLPYQFSL (3) 13 1
4A Surface 18 2 KQATFDDYPVAH (7) 7 7
MGTTHLPYQFSL (2)
4B Solution 18 2 KQATFDDYPVAH (3) o
KLHISKDHIYPT(2)
Solution 192 12 see Table S1 o
8 Solution 18 1 GPLATLHLPHKT (2) 12 11
Solution 192 29 see Table S2 12 12

@consensus meaning two or more phage clones expressing the same peptide sequence

bNo phage binding ELISA performed - decision was made to wait until after round 5 to perform further phage binding ELISA

doi: 10.1371/journal.pone.0074312.t002

Production of phage clone binders to L.
monocytogenes by phage display biopanning

Surface biopanning. Four surface biopannings (Figure 1)
were performed using a phage display peptide library
[Ph.D.-12, New England Biolabs (NEB) Hertfordshire, UK]
according to the kit instructions. The first three rounds were
performed against L. monocytogenes to select for phages
binding to L. monocytogenes. The fourth included an initial
subtraction biopanning step performed against L. innocua and
using the supernatant derived from that for the subsequent
biopanning against L. monocytogenes.

Solution biopanning. Two solution biopannings (Figure 1)
were performed following the completion of the third surface
biopanning round and the protocol based on a combination of
the surface biopanning protocol in the NEB kit instructions and
the solution biopanning protocol employed by Paoli et al. [5].
Each round included one solution biopanning against viable L.
innocua and one against viable L. monocytogenes 4b. The
cultures were prepared and standardized to 2x10° cfu ml" in
the same manner as described above and the bacterial cells
washed twice in tris buffered saline pH 7.5 (TBS), before final
resuspension with a blocking solution [TBS-1 % bovine serum
albumin (BSA)] to the original volume. Four sterile 1.5 ml
Eppendorf tubes (Eppendorf 1, 2, 3 and 4) were blocked with 1
ml of blocking solution and mixed for 1 hour at 20 'C on a
rotator mixer (Stuart Scientific, UK) and prior to their use the
blocking solution was discarded. L. innocua (750 ul, 2 x 10° cfu
ml') was added to Eppendorf 1 and rotated (1 hour at 20 °C)
followed by 100 pl of amplified phage (containing 10'? phage
particles) from surface biopanning round 3 with rotation as
above. While this incubation was underway 750 pl of L.
monocytogenes (2x10° cfu ml') was added to Eppendorf 2 with
rotation as above. Eppendorf 1 was centrifuged (10,000 g for 2
minutes at 20 'C), the supernatant collected and added to
Eppendorf 2 with rotation as above. Eppendorf 2 was
centrifuged and the pellet of phages bound to L.
monocytogenes washed five times with TBS-0.5 % Tween 20
followed by five times with TBS. For the final wash step the
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Figure 1. Schematic of phage display biopanning
regime adopted in order to generate L. monocytogenes-
specific binders.
doi: 10.1371/journal.pone.0074312.g001

resuspended pellet was transferred to Eppendorf 3 (to
eliminate the possibility of eluting phage that may have bound
to Eppendorf 2) and the pellet resuspended in 500 pl of elution
buffer [0.2 M glycine-hydrochloric acid (HCI) pH 2.2] with
rotation for 20 minutes at 20 “C. Eppendorf 3 was centrifuged,
the supernatant containing phages bound to L. monocytogenes
collected, added to Eppendorf 4 and neutralized with 75 pl of 1
M Tris-HCI pH 9.1. This unamplified phage from solution
biopanning round 4B was tittered and amplified. This solution
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Table 3. Information on peptides chemically synthesised and evaluated for specific binding to L. monocytogenes 4b by either

magnetic separation (MS) or sandwich ELISA.

Biopanning Phage clone Expressed peptide Tested by MS + Tested by
Round Type of biopanning identifier sequence Synthesised peptide sequence plate counts sandwich ELISA
3 Surface LM0315 KQATFDDYPVAH KQATFDDYPVAHGGGSC® v x
4A Surface LM0411 LCAKTKLHNKTY LCAKTKLHNKTYGGGSC v x

LM0418 ANPRKVRLQRNK ANPRKVRLQRNKGGGSC v x

LM0408 RKQNRNKSLPTN RKQNRNKSLPTNGGGSC[BSAb] x v

LMO0418 ANPRKVRLQRNK ANPRKVRLQRNKGGGSC[BSA] x v
5 Solution LM020502 GKIWTEPPPPKP GKIWTEPPPPKPGGGSC v x

LM020507 GVIYDKPA-KLH GVIYDKPAGGGSC v x

LM020509 GPLATLHLPHKT GPLATLHLPHKTGGGSC v x

2GGGSC: 5-amino acid spacer recommended by NEB phage display kit manual
bCarrier protein BSA added for detection purposes in sandwich ELISA
doi: 10.1371/journal.pone.0074312.t003

biopanning protocol was repeated one additional time (round
5).

DNA sequencing and phage binding ELISA

After rounds 3 and 4A surface biopanning, and rounds 4B
and 5 solution biopanning, eighteen phage clones were
randomly selected for small scale DNA sequencing by DNA
Sequencing and Services, Dundee, UK. In addition, after
rounds 4B and 5 solution biopanning, a larger number of phage
clones (n=192) were selected for larger scale DNA sequencing
by Macrogen, Korea. All corresponding 12-mer peptide
sequences were deciphered using FinchTV software (http://
www.geospiza.com/Products/finchtv.shtml) and ExPASy
translate tool (http://web.expasy.org/translate/) and the
consensus between peptide sequences was assessed using
online ClustalW2 software (http://www.ebi.ac.uk/Tools/msa/
clustalw2/). The SAROTUP tool [28] was used to ensure
deciphered peptide sequences were not previously recognised
target-unrelated peptide sequences [29]. Unique peptide
sequences were screened for their ability to bind to L.
monocytogenes 4b and four other bacteria, L. innocua,
Salmonella spp. cocktail, E. coli and C. jejuni (Table 1) at 1x108
cfu mI'. The phage binding ELISA protocol (antigen-coated
format) was carried out as described in NEB phage display kit
instructions. Stock cultures of L. monocytogenes 4b, L.
innocua, Salmonella spp. cocktail and C. jejuni stock had been
gamma irradiated whereas E. coli stock had been heat-killed.

On the basis of the phage binding ELISA results the 12-mer
peptides expressed by eight phage clones showing greatest
capability to bind L. monocytogenes 4b were chemically
synthesised (GL Biochem, Shanghai, China) at > 85% purity
(Table 2). The synthesised peptides were subsequently
evaluated for magnetic separation (MS) and/or sandwich
ELISA applications (Table 3).

Evaluation of the binding capability of synthetic
peptides

(a) Magnetic separation. Synthetic peptides (Table 3) were
coupled to MyOne™ tosylactivated Dynabeads® (Life
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Technologies Limited, Paisley, UK) as per the manufacturer’s
instructions, using 1 mg of peptide to coat 25 mg of beads (10"
beads ml'). Protein concentration was measured at 280 nm for
post-coupling supernatants from the preparation of peptide-
coated beads to verify that coupling had occurred. A Dynal®
BeadRetriever (Life Technologies Limited, Paisley, UK) was
used for automated MS. Serial dilutions (10-fold) of L.
monocytogenes 4b or L. innocua prepared in nutrient broth
(containing 10'-107 cfu ml") were tested. The MS protocol
used peptide-coated beads on duplicate aliquots of two cell
concentrations of L. monocytogenes and L. innocua (3x10? and
3x103 cfu ml"). The protocol was as follows; capture of cells by
beads for 30 minutes at very slow speed (1 ml bacterial dilution
and 10 pl beads), 10 second release of beads at very fast
speed, with two washes for 1 minute in 1 ml PBS with 0.05%
Tween 20 (PBST) at very slow speed followed by 10 second
release of beads at fast speed with final 2 minutes elution at
fast speed into 100 pl of nutrient broth (thus a 10-fold
concentration was achieved during MS). Alongside the peptide-
coated beads, commercially available antibody-coated beads
(anti-Listeria Dynabeads®, Life Technologies Limited, Paisley,
UK) were included as a positive control. Plate counts were
performed pre- and post-MSfor each bead type by spreading
100 pL sample, or an appropriate dilution, onto a nutrient agar
plate and incubating at 30 °C for 48 hours. The concentrations
of 3x102 and 3x10® cfu ml"* were chosen because a countable
number of colonies would result if capture occurred. The
protocol was performed in duplicate and mean % capture
values for each bead type with each bacterium subsequently
calculated.

(b) Sandwich ELISA. Preliminary trials established that the
optimized blocking and diluting buffers for ELISA were 3% and
1% skimmed milk in PBST, respectively. For specificity studies
a Nunc Maxisorp ELISA plate (Nunc, New York, USA) was
coated with 100 pl of synthetic peptide-BSA conjugates,
LM0408-BSA and LM0418-BSA (Table 3), at 50 pg ml* in 50
mM sodium carbonate-bicarbonate buffer pH 9.6 with
incubation overnight at 4 °C. The plate was washed three times
with 300 pl of PBST before adding 300 ul of blocking buffer
with incubation for 1 hour at room temperature. The plate was
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washed as described above before the addition of 100 pl of
bacteria (Table 1) at 1x108 cfu mI* with incubation for 1 hour at
20 °C. Stock cultures of L. monocytogenes 4b, L. innocua,
Salmonella spp. cocktail and C. jejuni stock had been irradiated
whereas E. coli stock had been heat-killed. The plate was
washed as described above before the addition of 100 ul of 4
Mg ml' Listeria-specific monoclonal antibody 3C3 (Monoclonal
Antibody Production Laboratory, BIOTEC, Thailand) with
incubation for 1 hour at room temperature. The plate was
washed as described above before goat anti-mouse
horseradish peroxidase (final concentration of 0.7 g ml’,
P0447, Dako Corporation, Denmark) was added with
incubation for 1 hour at room temperature in the dark. The 3,3',
5,5'-tetramethylbenzidine (TMB) substrate (Thermo, Fisher
Scientific, USA) was added with incubation for 15 minutes at 37
°‘C with agitation before the developing reaction was stopped
with 2.5 M sulphuric acid. Absorbance was immediately read at
OD 450 nm using a plate reader (Tecan Safire2, Switzerland).
For sensitivity studies the same ELISA protocol was used with
a total of 11 bacterial concentrations (half-log increments from
1x103-1x10® cfu ml'"). The intensities were used to fit on a
dose-response curve with equation [14,30]:

Y=A+B/{+10¢%)

Y is the intensity when detecting bacteria at concentration X,
while A, B, and C are constants obtained from the curve fitting.
The limit of detection (LOD) was calculated using the intensity
values greater than twice the background [31,32].

Evaluation of additional selected phage clones

Seventeen phage clones were selected from throughout the
biopanning series for more extensive evaluation by phage
binding ELISA (Table 4). Eight of the 17 had their equivalent
synthetic peptides previously evaluated by MS and sandwich
ELISA (Table 3) and the other nine were from solution panning
round 5. For the specificity study the phage clones were used
at 1x10" pfu mlI' in PBS-0.1 % Tween 20 and the phage
binding ELISA protocol was essentially as described above.
However, for these experiments viable bacteria (L.
monocytogenes 4b, L. innocua, Salmonella spp. cocktail, E.
coli and C. jejuni) were employed, prepared and standardized
as described earlier. Each phage clone evaluation was
performed in duplicate. Mean OD signals for each phage clone
were calculated and the relative binding capability, expressed
as ‘fold difference’ between the normalized OD signal for L.
monocytogenes 4b divided by the normalized OD signal for the
other bacteria determined. Based on the fold difference results
the four best L. monocytogenes 4b-binding phage clones
(LM020507, LM020509, LM0205P02B02 and LM0205P01H01)
were further evaluated with three additional serovars of L.
monocytogenes (1/2a, 1/2b, 1/2¢) and six other Listeria spp., L.
grayi subsp. grayi, L. innocua, L. ivanovii, L. grayi subsp.
murrayi, L. seelgeri and L. welshimeri, in the same manner as
described above.

For the sensitivity experiment the same four phage clones
were evaluated in the same manner as for the specificity
experiment with serial concentrations (103108 cfu ml") of viable
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Table 4. Information on phage clones from biopanning
rounds 3, 4A and 5 chosen for further evaluation in terms of
specificity for L. monocytogenes 4b by phage binding
ELISA.

Ability to
distinguish L.
monocytogenes
BiopanningType of Phage clone Expressed 4b from L.
Round biopanning identifier sequence innocua
3 Surface LM0315 ° KQATFDDYPVAH x
4A Surface LM0408 ° ANPRKVRLQRNK  x
LM0409 * KLHISKDHIYPT x
LM0411 * LCAKTKLHNKTY  x
LM0418 ® ANPRKVRLQRNK x
5 Solution LM020502 ° GKIWTEPPPPKP v
LM020503 * GPIFQSQLKSQT v
LM020504 ° GPLVDLGPGDLR v
LM020505 * GVIYSKPNSVQL v
LM020507 ° GVIYDKPA-KLH v
LM020509 ° GPLATLHLPHKT v
LMO0205P01B07
b GNLFASPQKMH v
LMO0205P02A10
b GPLISTPRHMNI v
LM0205P01D05
b GAMHLPWHMGT v
LM0205P02B02
b GPIRDIGPVMDH v
LM0205P01HO01
b GRIADLPPLKPN v
LM0205P02D06
b GPIYSTQHMKTS v

aldentified via small scale DNA sequencing
bidentified via large scale DNA sequencing
doi: 10.1371/journal.pone.0074312.t004

L. monocytogenes 4b and two phage concentrations (1x10"
and 1x10" pfu ml"). The experiment was performed in
duplicate and LOD values for each phage clone were
calculated as described above.

Results

Biopanning outcomes

The results of biopanning are summarised in Table 2. DNA
sequences were obtained for 17 of the 18 phage clones from
round 3, with three phage clones having the same peptide
sequence, MGTTHLPYQFSL. Thirteen phage clones were
screened by phage binding ELISA for their ability to bind L.
monocytogenes 4b and four other non-target bacteria. Only
one phage clone LM0315, expressing peptide
KQATFDDYPVAH, exhibited higher binding to L.
monocytogenes 4b and L. innocua than to the other bacteria
tested (Figure 2A).
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Figure 2. Phage binding ELISA specificity study for phage clones obtained at different stages of biopanning. (A) after
surface biopanning round 3 (B) after surface biopanning round 4A and (C) after solution biopanning round 5. Each experiment
performed once only due to limited amount of phage clone stock available for testing. Normalized data equates to relative OD signal

after subtraction of background OD signal.
doi: 10.1371/journal.pone.0074312.g002

After round 4A, DNA sequences were obtained for 17 of the
18 phage clones, with seven phage clones having the same
peptide sequence, KQATFDDYPVAH (also found after round 3
of surface biopanning), and another two phage clones
expressing the peptide sequence MGTTHLPYQFSL. Seven
phage clones were screened by phage binding ELISA for their
ability to bind L. monocytogenes 4b and four other non-target
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bacteria. All seven phage clones exhibited higher binding to L.
monocytogenes than to the non-target bacteria (Figure 2B).
After the first solution biopanning (round 4B) DNA sequences
were obtained for 17 of the 18 phage clones by small scale
DNA sequencing, with three phage clones expressing the
same peptide sequence, KQATFDDYPVAH (also found in
rounds 3 and 4 of surface biopanning), and another two phage
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clones expressing the
KLHISKDHIYPT.

After solution panning round 5 DNA sequences were
obtained for 15 of the 18 phage clones by small scale DNA
sequencing, with two phage clones expressing the same
peptide sequence, GPLATLHLPHKT. Twelve phage clones
were screened by phage binding ELISA for their ability to bind
L. monocytogenes 4b and four other non-target bacteria.
Except for LM020518, all phage clones exhibited higher
binding to L. monocytogenes 4b than to L. innocua (Figure 2C),
two of which, LM020502 and LM020507 expressing peptides
GVIYDKPA-KLH and GKIWTEPPPPKP, respectively, also
exhibited higher binding to L. monocytogenes 4b than to any
other bacterium.

Subsequent larger scale DNA sequencing of 192 phage
clones randomly selected after rounds 4B and 5 demonstrated
more consensus amongst the peptide sequences expressed
(Tables S1-S3). Multiple sequence alignment of peptide
sequences is shown in Figures S1 and S2. The peptides
GAMHLPWHMGTL, GNLFASPQKMHR, GPIRDIGPVMDH,
GPIYSTQHMKTS, GPLISTPRHMNI and GRIADLPPLKPN
were found amongst round 5 phage clones but not amongst
phage clones from earlier surface biopanning rounds.

same peptide sequence of

Evaluation of the binding capability of synthetic
peptides by:

(a) Magnetic separation. Protein  concentration
measurements for post-coupling supernatants demonstrated
that synthetic peptides had coupled to the beads to varying
degrees. However, % capture values for L. monocytogenes 4b
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of the peptide-coated beads were indicative of non-specific
capture (< 5% capture). This was in stark contrast to the
positive control, commercial antibody-coated anti-Listeria
Dynabeads® which achieved close to 100% capture of both L.
monocytogenes 4b and L. innocua.

(b) Sandwich ELISA.

Specificity studies with peptide-BSA conjugates, LM0408-
BSA and LMO0418-BSA, demonstrated that both peptides
exhibited binding to L. innocua and L. monocytogenes 4b and
low binding to the three other test bacteria (data not shown).
Sensitivity studies for both peptide-BSA conjugates with L.
monocytogenes 4b demonstrated that LM0418-BSA was more
sensitive for L. monocytogenes 4b detection than LM0408-
BSA, with LODs of 4.8x10% cfu ml' and 1.5x107 cfu ml",
respectively. Sensitivity studies for both peptide-BSA
conjugates with L. innocua demonstrated that LM0418-BSA
was more sensitive for L. innocua than LMO0408-BSA, with
LODs of 6.5x10° cfu mlI"* and 7.9x108 cfu ml, respectively.

Evaluation of additional selected phage clones

Relative binding to L. monocytogenes 4b and L. innocua for
seventeen selected phage clones demonstrated that none of
the phage clones from the surface biopannings (rounds 3 and
4A) had higher binding to L. monocytogenes 4b than to L.
innocua, whereas the twelve phage clones from solution
biopanning round 5 did (Figure 3). On further evaluation of the
four best L. monocytogenes 4b-binding phage clones,
LM020507, LM020509, LM0205P02B02 and LM0205P01HO01,
with four L. monocytogenes serovars (4b, 1/2a, 1/2b and 1/2c)
and six other Listeria spp., it was found that all four phage
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clones demonstrated higher binding to L. monocytogenes 4b
than to the other three L. monocytogenes serovars (1/2a, 1/2b
and 1/2c, Figure 4). All four phage clones exhibited binding to
1/2b and three of the four phage clones (exception of phage
clone LMO0205P02B02) exhibited no binding to L.
monocytogenes 1/2a and 1/2c. The four phage clones
exhibited minimal or no binding to L. grayi subsp. grayi, L.
ivanovii, L. grayi subsp. murrayi, L. seeligeri and L. welshimeri.
While varying degrees of binding to L. innocua occurred, the
fold difference results demonstrated that phage clones
LM020507, LM020509 and LM0205P02B02 to have at least
2.5 times more binding capability to L. monocytogenes 4b than
to L. innocua (8.0, 4.4 and 2.5 fold difference, respectively,
data not shown). In fact, phage clone LM0205P01H01
demonstrated 43 times more binding capability to L.
monocytogenes 4b than to L. innocua (data not shown). The
results demonstrate the four phage clones are L.
monocytogenes-specific.

The detection sensitivity of the four phage clones with L.
monocytogenes 4b was examined using two phage clone
concentrations (1x10"" and 1x10' pfu ml'). The LODs were
1x107 pfu ml' for each phage clone regardless of the phage
concentration (data not shown).

Discussion

The objectives of this study were to produce phage display-
derived peptide binders with the ability to distinguish
pathogenic L. monocytogenes from other Listeria spp. and to
evaluate these novel binders in a number of testing formats
which would facilitate rapid detection of L. monocytogenes. A
series of both surface and solution based biopannings were
required to achieve the desired binding specificity for L.
monocytogenes. The first three biopannings were surface
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based without subtraction against L. innocua, therefore it was
not surprising that the one phage clone with higher specificity
to L. monocytogenes 4b than to the other non-Listeria bacteria
also demonstrated equally high binding to L. innocua (Figure
2A). L. innocua is the Listeria sp. genetically closest to L.
monocytogenes [26], hence we hypothesised that subtraction
against non-target L. innocua was a necessity to select for
peptides with higher specificity to L. monocytogenes. The effect
of subtraction in surface biopanning round 4A was exemplified
by all tested phage clones exhibiting higher binding to L.
monocytogenes 4b in the phage binding ELISA than to the
other bacteria, including L. innocua. However, when the
peptides expressed by these phage clones were chemically
synthesised and evaluated (Table 3) they did not demonstrate
higher specificity to L. monocytogenes 4b by MS + plate counts
(exhibited no binding to L. monocytogenes 4b or L. innocua) or
by sandwich ELISA (exhibited similar binding to L.
monocytogenes 4b and L. innocua). The lack of Listeria cell
capture by MS, which was observed with all peptide-coated
beads tested during this study, was a surprising result given
that we have recently demonstrated the applicability of phage
display-derived peptides for MS of Salmonella spp., with
equivalent or better capture capability observed with peptide-
coated beads than for antibody-coated anti-Salmonella
Dynabeads® [33]. The commercially available antibody coated
anti-Listeria Dynabeads® were able to capture both L.
monocytogenes 4b and L. innocua, but were not able to
differentiate between the two species. Paoli et al. [34] have
previously described an L. monocytogenes-specific antibody
fragment-coated bead but, to our knowledge, no publication
exists describing an L. monocytogenes-specific peptide-coated
bead, perhaps suggesting that the generation of such a bead is
a difficult task. Paoli et al. [5] described L. monocytogenes as
lacking surface epitopes which are both unique and antigenic,
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or having such epitopes but not effectively processing or
presenting these during in vivo antibody production and
maturation. Alternatively, the immunodominant epitopes may
be shared between Listeria species making it difficult to identify
the less immunogenic but crucially specific epitopes. This may
explain why no L. monocytogenes-specific antibody coated
magnetic beads are commercially available. However, in vitro
selection by phage display biopanning does not rely on antigen
immunogenicity, the lack of which is a major limitation of in vivo
antibody production [35]. Furthermore, the biopanning
incubation times are short (~ 1 hour) unlike during in vivo
antibody production and maturation processes. Therefore, it is
plausible that a window of opportunity may exist for phage
display biopanning to successfully generate a L.
monocytogenes-specific binder. It may be the case that the
peptides used to coat magnetic beads during this study were
true binders however, presentation of the L. monocytogenes
epitopes during MS was not appropriate for binding, unlike
during the biopanning process when the target was in
suspension rather than bead-surface attached. Future studies
could evaluate different MS conditions such as mixing speed or
capture time.

The biopanning regime adopted during this study included
two rounds of solution biopanning, with inclusion of subtraction
biopanning, a similar approach to that employed by Paoli et al.
[5], to determine if binding between peptides and target in a 3-
dimensional environment (solution panning) as opposed to a 2-
dimensional environment (surface biopanning) would result in
binders with the desired specificity. The specificity study of
twelve phage clones from solution biopanning round 5
demonstrated that all phage clones exhibited higher binding to
L. monocytogenes 4b than L. innocua (Figure 3). In addition
the results from the further evaluation study confirmed the four
phage clones, LM020507, LM020509 LMO0205P02B02 and
LM0205P01HO01, are L. monocytogenes-specific (Figure 4) with
all four phage clones exhibiting binding to L. monocytogenes
4b and 1/2b and minimal or no binding to L. grayi subsp. grayi,
L. ivanovii, L. grayi subsp. murrayi, L. seeligeri and L.
welshimeri, and L. monocytogenes 1/2a and 1/2c (with the
exception of phage clone LM0205P02B02 which did exhibit
binding to these two serovars). While all four phage clones
exhibited varying degrees of binding to L. innocua, the fold
difference results demonstrated the phage clones to have
2.5-43.5 times more specificity for L. monocytogenes than for
L. innocua. Phage clone binding to L. monocytogenes 4b and
1/2b can be explained by the classification of these two
serovars in the same phylogenetic division. The L.
monocytogenes species has two major phylogenetic divisions
as identified by numerous molecular subtyping techniques;
division | consists of serovars 1/2b, 3b, 4b, 4d, and 4e, and
division Il consists of serovars 1/2a, 1/2c, 3a, and 3c [2]. The
results suggest the four phage clones bind to the somatic (O)
antigen, a serovar-specific protein, on the L. monocytogenes
cell wall, explaining their binding to L. monocytogenes serovars
and their lack of binding to other Listeria spp. Phage clone
binding to L. innocua even after the inclusion of subtraction
biopanning against L. innocua can be explained by a similar
somatic (O) antigen, or other L. monocytogenes 4b-like surface
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antigen, between the two species. As mentioned earlier, Lan et
al. [26] described L. innocua as being the species genetically
closest to L. monocytogenes and reported that some L.
innocua strains express L. monocytogenes 4b-like surface
antigens. Overall, the results suggest that the inclusion of
solution biopanning, and a possible synergistic effect of
combined subtractive and solution biopanning, resulted in
phages clones of the desired specificity for L. monocytogenes.

It would appear that solution biopanning also highlighted the
amino acids most important in binding to L. monocytogenes.
Many of the same amino acid residues were present (Table 4
and Tables S1 and S2). The twelve phage clones from round 5
with high binding capability for L. monocytogenes expressed
peptide sequences with an N-terminus glycine residue, with six
having proline as the adjacent amino acid residue (Table 4).
The four phage clones with the highest specificity to L.
monocytogenes, expressing peptide sequences GVIYDKPA-
KLH, GPLATLHLPHKT, GPIRDIGPVMDH and
GRIADLPPLKPN contain proline with increased frequency
(frequency of 1, 2, 2 and 3 proline residues, respectively).
According to Kay et al. [36] among the primary structures of
many ligands for protein—protein interactions proline is critical,
and the authors have identified protein-interaction domains that
prefer proline-rich ligand sequences. In addition, these four
phage clones were not obtained in the earlier surface
biopanning rounds. In fact, the last clone exhibited 43 times
more specificity for L. monocytogenes than for L. innocua and
other Listeria spp. and was deduced by large scale DNA
sequencing only. The authors believe incorporation of such
high throughput capabilities for screening of phage clones, for
both their DNA sequencing and binding capacities, would
greatly increase the success rate of obtaining phage clone(s)
with the desired target specificity. The use of a high throughout
technique such as a microarray system could lead to better and
faster screening, as has been demonstrated recently for the
high throughput screening of hybridmonas [37].

In conclusion, the adopted biopanning regime, utilizing both
surface and solution biopanning, resulted in an increase in both
phage-target binding and consensus which are the desired
outcomes of phage display biopanning, the purpose of which is
to generate a unique library of high affinity phage-target
binders which possess the amino acid residues most important
for target binding. This proof-of-principle study successfully
generated phage display-derived binders with the ability to
distinguish L. monocytogenes from other Listeria spp. These
binders have the potential to be used for the development of
more rapid and specific detection methods for L.
monocytogenes in food and clinical samples.
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