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Abstract

The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into
more effective treatments. An alternative strategy is to use a recently published ‘Quantitative Systems Pharmacology’
computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology,
human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine,
gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24
different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two
experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D2 antagonist and ocaperidone, a
very high affinity dopamine D2 antagonist, using only pharmacology and human positron emission tomography (PET)
imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome
scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative
performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS
liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this
modeling approach can support central nervous system research and development by accounting for unique human drug
properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug
discovery and development.
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Introduction

Despite substantial research into the pathophysiology of

schizophrenia, the current antipsychotic drugs based on dopamine

(DA) D2 antagonism are not optimal in treating this disorder [1].

Although animal models have been invaluable in generating a

better understanding of the schizophrenia pathophysiology and

the mechanism of drug action, their inability to mimic the range of

symptoms associated with this disorder [2] has hampered novel

drug development.

In contrast, ‘Quantitative Systems Pharmacology’ is a novel

approach based upon a computer-based biophysically realistic

mechanistic disease model that can increase the parameter space

beyond what can be informally and qualitatively be conceptual-

ized. This approach uses extensive input from preclinical

neurophysiology experiments and simulates a biophysically

realistic model of the nucleus accumbens medium spiny neuron

with a clinically determined striatal hyperdopaminergic tone [3]

and cortical hypofrontality [4].

Drug effects are assessed by running their pharmacological

profile against human receptors in a receptor competition model

with neurotransmitter release based on realistic neuronal firing

patterns that simulates receptor activation changes. In contrast to

animal models, the computer-based model parameters are

adjusted within biological ranges by optimizing the correlation

of the model output calibrated using retrospective clinical

outcomes of 24 antipsychotics at different doses.

This manuscript represents a unique collaboration among

preclinical investigators, computer modelers and drug developers,

and is highly innovative in that it utilizes basic drug pharmacology

information and target engagement data of two novel antipsy-

chotic agents to predict prospectively and blinded the actual

clinical efficacy and extra-pyramidal symptoms (EPS) liability

outcomes. An antagonist with a low affinity for D2 receptor,

JNJ37822681 was developed based on the assumption that this
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would conserve its clinical efficacy with significantly lower EPS

liability, similar to clozapine [5] and quetiapine [6–8], while the

other compound, ocaperidone is a serotonin-dopamine antagonist

with substantial off-target effects.

We will show in this report in a quantitative way that the lack of

off-target effect especially at the 5-HT2AR will drive a substantial

amount of EPS liability for the low-affinity, fast dissociating D2R

antagonist JNJ37822681 that will result in a greater EPS liability

than olanzapine at comparable D2R occupancies. Furthermore,

the simulations will also suggest that the serotonin effect of

ocaperidone will be unable to fully compensate for the same EPS

liability.

This is, to the best of our knowledge, the first evaluation of the

predictive validity of a computer model for the clinical efficacy and

EPS liability, based solely upon the drug pharmacological profile

and target engagement studies.

Methods

A more detailed description of the computer model is contained

in an independent paper [9]. Briefly, a receptor competition model

[10] simulates the competition between active moiety, tracer and

neurotransmitter at relevant central synapses and yields accurate

target exposure levels from imaging studies. A complex biophy-

sically realistic subcortical nucleus (n.) accumbens model simulates

the medium spiny neuron (MSN) dynamics with input from

cortex, hippocampus and amygdala and modulation by 5-

hydroxytryptamine (5-HT; serotonin), norepinephrine (NE) and

acetylcholine (ACh) (Fig. 1). Finally a detailed computer model of

a pyramidal cell in the supplemental motor area interacts with

dorsal striatum MSN as components of the cortico-striatal-

thalamo-cortical loop for the EPS model.

The model includes 27 relevant dopaminergic, serotonergic,

cholinergic, adrenergic, glutamatergic and gamma-aminobutyric

acid (GABA) receptors, implemented using preclinical data while

the pathology is derived from human imaging and postmortem

clinical data. The human pharmacology for each drug was

determined from in vitro experiments performed at the Psycho-

active Drug Screening Program (PDSP) and reported in the PDSP

database (http://pdsp.med.unc.edu/indexR.html), where the af-

finity values are derived under the same standardized assay

conditions. The reported active moiety pharmacology is combined

with 11C-raclopride positron emission tomography (PET) imaging

data to determine the functional target exposure of the different

drug-dose combinations. With this drug concentration, the effect

on postsynaptic receptor activation is calculated at all synapses

using the appropriate pharmacological activity and the model

output is calculated.

B. Mathematical description of the PANSS subcortical n.
accumbens module

The PANSS mathematical module simulates schizophrenia

pathology and drug interventions on the action potential dynamics

of a MSN in the n. accumbens, a key component of the circuitry

involved in schizophrenia [11,12]. Briefly, changes in MSN

membrane potential are calculated using partial differential

equations in NEURON [13], when driven by afferent cortical

projections [14], gated by both hippocampal and amygdala

projections (Fig. 1) and directly and indirectly modulated by

dopaminergic, serotoninergic [15–16], cholinergic [17–19] and

adrenergic [20] neurotransmitter systems [9].

We calculate the time-dependent changes in membrane

potential V using Hodgkin-Huxley equations. For, instance, the

inward rectifying potassium current, Kir2, is modified by the

dopamine D1R activation u [21–22] so that the total current,

I~u:IKir2. With a conductance, gK, and a reversal potential,

EK = 290 mV, the current takes on the form IKir2~gK V{EKð Þ
with a voltage dependent form

gK~�ggK
1

1z exp {
V{VK

h

VK
c

� � ð1Þ

where �ggK = 1.2 mS/cm2 is the maximum conductance,

Vh = 2111 mV is the value of the membrane potential that

causes half activation and Vc = 211 mV describes the sensitivity of

the change [23–24]. All simulations are coded in NEURON [25].

The model outcome is the number of action potentials over a

predefined time period. Using another measure, based upon the

interspike interval variability, essentially gives similar results. This

model is repeated for a D1 MSN (for the direct pathway), a D2

MSN (indirect pathway) and a small percentage of D1+D2

containing MSN. D1R and D2R are coupled to different types

of K+ channels on MSN, but both pathways do have a presynaptic

D2R on glutamate neurotransmission onto MSN neurons [26].

The correlation between the individual models outcome already is

high, but we combine them to be in line with the underlying

striatal neurobiology. While many parameters are fixed from

biological experiments, ten free biological coupling parameters

(two for D1, D2, M2 and alpha1 and one for M1 and 5-HT3) are

calibrated using the correlation between model outcome and the

clinical readouts (43 drug-dose data points).

C. EPS module
The computer-based model for EPS (Fig. 2) has been described

in detail previously [9] and consists of a biophysically realistic

model for the dorsal striatum MSN based upon a direct D1

modulated pathway and an indirect D2 modulated pathway with a

lower D3 autoreceptor level [27], in combination with a major

input from the cortical supplemental motor area [28]. The MSN

neuron model for the motor symptoms is very similar to the MSN

model described above for the PANSS total model. The neuron in

the cortical Supplementary Motor Area is modeled using a 12-

compartment pyramidal cell with 5-HT2AR located at the apical

dendrites [29] and 5-HT1AR [30] located in all compartments,

and a threshold of input firing frequency on the apical dendrites is

calculated that allows signals (calculated as membrane depolar-

ization) to reach the cell soma. This rationale is based upon

optogenetic studies in hemiparkinsonian mice that simulate robust

D2R block by antipsychotics, suggesting that activity in the motor

cortex is key for the pathological phenotype [31]. 5-HT2AR block

and 5-HT1AR activation facilitate this process, thereby lowering

the threshold through an effect on Na+ and Ca2+ [32] and on Ca
2+ channels respectively [33]. Based upon neuronal firing data

from human deep brain stimulation [34,35] in patients with and

without Parkinsonian symptoms, we determined that the best EPS

prediction would be given by multiplying the firing output from

the motor MSN model with this threshold factor [9].

D. Implementation of the schizophrenia pathology
Schizophrenia pathology is derived from in vivo imaging

experiments and postmortem studies in schizophrenia patients,

rather than exploring the causal relationship between different

pathological processes [9]. For example, from human imaging

studies that transiently deplete striatal dopamine [3], the amount

of dopamine released in schizophrenics is about two-fold higher

than in control subjects. Other changes include a decrease in D1R

Evaluation of Schizophrenia Disease Model
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high affinity sites [36], a 30% decrease in D2R binding potential in

chronically treated schizophrenia patients [37], unchanged D3R

binding potential [27], a 30% decrease in DAT density [38] a

decrease in 5-HT2CR expression [39], but no change in M1 and

M2R expression [40].

The calibrated model related MSN firing to total PANSS score

such that increased MSN firing over the fixed 21 second period

leads to better total PANSS scores.

E. The pharmacology of the tested compounds
Table 1 shows the pharmacology of the two test compounds as

determined by in vitro affinity binding (data on file).

JNJ37822681 is a recently reported [41,42] selective low-affinity

D2 antagonist [43–45]. This compound is most similar to

amisulpride with the major difference being that it is a low-

affinity compound with a high off-rate, suggesting that it does not

block the D2R during extended periods of dopamine release, as

occurs during dopamine neuron burst firing.

Ocaperidone is a typical dopamine-serotonin antagonist with a

high affinity for the D2 receptor (Ki 0.75 nM) [46] but with

substantial off-target effects. This compound is similar to the

atypical antipsychotics in that it affects a range of receptors at

clinically relevant doses, including a substantial block of the 5-

HT2AR.

For the missing pharmacology data we assume that the

compound does not affect these receptors.

F. Clinical trials
Briefly, the efficacy and safety of three fixed doses of

JNJ37822681 administered twice daily in schizophrenics was

studied in a randomized, double-blind, placebo- and active

(olanzapine)-controlled, parallel-group study. For the purpose of

the paper, the model prediction was compared for the five

interventions against a PANSS total score, and EPS liability from

spontaneous reporting of motor side-effects after 12 weeks

(Clinicaltrials.gov identifier: NCT00728195).

The study population consisted of subjects with schizophrenia

according to DSM-IV (295.10, 295.20, 295.30, 295.60, or 295.90)

at least one year prior to screening and having experienced an

acute exacerbation of less than six months duration, with a PANSS

total score at baseline between 60 and 120 inclusive and aged 18 to

65 years (intent-to-treat [ITT] sample N = 99, 99, 103, 98, and 93,

respectively, for placebo, 10, 20, 30 mg JNJ37822681, and 15 mg

olanzapine). These doses resulted in raclopride displacement

between 55 and 80% (see below) a range that included the average

D2R occupancy of the comparator drug olanzapine. The existing

antipsychotic medication had to be discontinued three to seven

days before the first dosing with study medication. Although such a

Figure 1. General overview of PANSS total computer-based model. This illustrates the PANSS total computer-based model that was based
upon the neuroarchitecture and neurophysiology of the ventral striatum for a direct pathway medium spiny neuron (MSN), whose activation is driven
by afferent projections from the cortex (further modulated by the D2 receptor), and background gating signals from hippocampus and amygdala and
modulated by dopamine afferents from the ventral tegmental area through the D1 receptor. We combine this model with a similar model for the
indirect pathway where postsynaptic D2 receptors modulate the excitability of the MSN. Serotonergic and noradrenergic tone is determined by dorsal
raphe and locus coeruleus activity, while the cholinergic activity is derived from tonically active interneurons. Pharmacological agents can affect the
model in a number of different ways [9]. We calculate the effect of the drug dose-combinations in the receptor competition model (as an example
here the Dopamine DA receptor competition model), a set of differential equations that simulates the competition between neurotransmitter and
active drug moiety under physiologically realistic conditions of presynaptic neuronal firing and autoreceptor coupling (see text for more details). Ten
biological coupling parameters are fixed by optimizing the correlation outcome of this model for a large number of antipsychotic drug-dose
combinations (43) and their reported clinical efficacy on PANSS total score (Rec = Receptor).
doi:10.1371/journal.pone.0049732.g001
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washout period may be perceived as somewhat short for some

drugs, it is adequate for others. In the current environment

washout periods of 3–7 days are considered ethically and are

accepted by most clinical trial sites.

Ocaperidone was tested in a multi-center, double-blind placebo-

controlled randomized parallel group dose titration study (N3D/

FOROCA-05, data on file) in schizophrenia patients. Patients

were included according to DSM IV-TR with PANSS total score

.60 and a score .4 on any two of the P1, P3 and P6 subscales.

Trial duration was six weeks and 0.6 mg active drug (n = 45) was

tested vs. placebo (n = 43). This dose led to a D2 receptor target

engagement of 69% (see below).

An older four week, double-blind, placebo-controlled trial

(OCA-BEL4, data on file) with 2 to 20 mg haloperidol as active

comparator used an average dose of 2.1 mg ocaperidone (n = 71)

and 8.4 mg for haloperidol. Another 12-week double-blind active

comparator-controlled trial (N3D/FOROCA-06, data on file)

compared 0.40 mg ocaperidone (n = 53) to 15 mg olanzapine

(n = 52).

Results

1. Calibration of the mechanism-based computer model
This model is calibrated using publicly available clinical data on

the PANSS total score collected in schizophrenia patients with

stable medication that were switched to 24 different drugs and

followed over maximal 12 weeks. As studies suggest that any

clinical benefit is almost completely reached by the first 4 weeks

[47], we collated all data on trials with durations between 4 and 12

weeks.

For each of the 71 drug-dose combinations the weighted

average of the clinical outcome was calculated, with the number of

patients in each individual group as the weighting parameter,

resulting in a training set to adjust the ten coupling parameters for

optimization. For the PANSS Total clinical scale we ended up

with 43 different values for drug-dose combinations.

Functional human brain concentrations for each drug-dose

combination were determined from the simulated displacement in

the dopamine receptor competition model [10], where the active

drug moiety competes with endogenous neurotransmitter and the

tracer to reflect actual reported PET raclopride displacement in

patients. Note that for calculating the effect of drugs on

postsynaptic receptor activation levels, we used time-averaged

values (10 seconds) of realistic in vivo firing frequencies as

Figure 2. General overview of extra-pyramidal symptoms (EPS) computer-based model. This model was derived from the
neuroarchitecture and neurophysiology of the relevant parts of the nigro-striatal motor pathway. We consider the D1-mediated direct pathway,
the D2 mediated indirect pathway, and a pathway with both D1 and D2 receptors. We combine this with the effect of thalamic excitation on the
supplementary motor area using a multi-compartment model of the pyramidal neuron [9]. Pharmacological agents can affect the model in many
different ways. SNr = substantia migra pars reticulata. SNc = substantia nigra pars compacta.
doi:10.1371/journal.pone.0049732.g002
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determined from both preclinical and where possible from human

deep-brain stimulation data. For instance the dopaminergic

striatal firing switches from tonic frequencies in the 1–4 Hz range

to burst firing in the 40–80 Hz range [33]. Although this is a very

dynamic process, only one average value is used to describe the

effect of the drug on the receptor activation because the time scales

of GPCR secondary pathways are likely much longer. The

correlation coefficient between the PANSS total score clinical

outcomes and the experimentally determined D2 receptor

occupancies is modest (r2 = 0.18; p = 0.008) but in line with other

reports [48], suggesting that functional D2 receptor occupancy

only explains a small part of the variance with respect to the

clinical outcome [9].

Introducing the same functional drug concentrations for the 43

drug-dose combinations in all the relevant synaptic models (DA,

5HT, NE, Ach, etc.) allows calculation of the drug effect on the

change in postsynaptic receptor activations and subsequently on

the disease model readout. These 43 outputs (number of spikes)

were compared with the corresponding 43 clinical PANSS Total

readouts. With the ten coupling parameters constrained biologi-

cally, we optimized the correlation using coarse grid searching in

the 10-dimensional parameter space followed by the method of

steepest descent with initial values determined by the coarse grid

search. For example, for the optimal value of the coupling

parameters 4 mg risperidone increases the firing number from 199

(placebo) to 245 for which the model predicts a PANSS total

improvement of 13.4 points (11.8 measured). Similarly, 10 mg

olanzapine corresponds to an MSN firing of 286 (PANSS total

predicted 24.0 points vs. 22.7 points measured ), while a 210 mg

dose of clozapine corresponds to an MSN firing number of 297

(PANSS Total predicted 27 points vs. 30 points measured).The

full list of papers for the retrospective clinical database is available

upon request to the authors.

This optimization resulted in a r2 = 0.59 between this outcome

and the reported PANSS total score, much higher than the

correlation (r2 = 0.18) between clinical outcome and D2 receptor

occupancy [9], suggesting that the computer model correctly

captures physiological off-target pharmacology beyond that

predicted solely by D2 receptor occupancy. Similar correlation

coefficients (r2 range between 0.27 and 0.73) were found with

respect to other clinical efficacy readouts, such as the Brief

Psychiatric Rating Scale (BPRS) and the Clinical Global

Impressions Scale (CGI-S) and most are superior to the correlation

coefficients found with the D2 receptor occupancy [9].

With all parameters fixed, the model was tested against different

independent datasets. In one meta-analysis [49], the correlation

coefficient between PANSS total score changes and the computer-

based model was 0.20, compared to 0.09 between PANSS total

score changes and D2 receptor occupancy. Another meta-analysis

[50] studied 10 antipsychotic drugs at low and high doses; the

correlation coefficient between PANSS total score changes and

computer model outcome was 0.56 versus 0.11 for the correlation

with the D2 receptor occupancy. The computer-based model also

outperforms the D2 receptor occupancy correlation in the Clinical

Antipsychotic Trials of Intervention Effectiveness (CATIE) dataset

for five of the eight readouts [9] that probe real-life efficacy of

different antipsychotics [1].

Table 1. Pharmacological affinities of the two experimental compounds (in nM) against human (JNJ37822681) or rodent receptors
(ocaperidone).

Receptor JNJ37822681 Ocaperidone ND8295 (Ocaperidone metabolite)

D1 .10000 251 N/A

D2 220 1.22 1.3

D3 .10000 2.50 N/A

5-HT1A .10000 17.17 19

5-HT1B .10000 540 N/A

5-HT1C .10000 28 N/A

5-HT1D .10000 128.65 19

5-HT2A 1632 0.58 0.59

5-HT2C .10000 27.00 32

5HT3 6692 750 N/A

5-HT6 5667 .10000 .10000

a1 .10000 0.46 0.66

a2 .10000 5.40 4.1

M1 mAChR 3000 1000 N/A

M2 mAChR .10000 N/A N/A

b1 .10000 750 N/A

b2 .10000 750 N/A

H1 2571 1.6 N/A

H2 .10000 500 N/A

Ca 3348 1500 N/A

GABA .10000 1500 N/A

If there are no data available, we assume the compound does not affect that particular receptor. We further assume a 75:25% distribution of the parent molecule
ocaperidone and its metabolite ND8295 (data on file).
doi:10.1371/journal.pone.0049732.t001
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A sensitivity analysis around the calibrated parameters revealed

a high sensitivity for D2.D1.5-HT3.alpha1.M2.M1 in

descending order. For a positive 20% deviation from the

calibrated value of D2 we observe a change between 22.2 and

25.2 points for the different drugs (average 23.12); conversely for

a negative 20% deviation a range between 0.5 and 2.9 change in

PANSS Total is observed (average 1.70).

As a comparison, we performed a multivariate correlation

analysis between the receptor occupancies of each drug-dose

combination and their respective PANSS Total outcomes. We

restricted the receptors to those that had known physiology in the

subcortical regions used in our PANSS model. The receptor

occupancies were calculated using the formula Occ = Dose/

(Dose+Ki) where Ki is the dose at which half of the receptors

are occupied. Because displacement data at all the receptors in the

model are not known, in a first approximation, we set Ki = KD2

(Aff-x/Aff-D2) where KD2 is the dose at which raclopride

displacement from the D2R is 50%. Aff-x and Aff-D2 are the

affinities of the drug for the receptor X (any of the non-D2R) and

D2 respectively. Using this approximation, the correlation then

increases from 0.19 for the single D2R occupancy to 0.35, still

lower than the correlation we could achieve with our physiology-

based model, despite having a similar number of degrees of

freedom.

The EPS computer-based model was calibrated similarly using

the fraction of patients with anticholinergic therapy as reported

clinical EPS liabilities in the same patient population. The

correlation between this clinical outcome and the D2 receptor

occupancy (r2 = 0.03) [9] is much lower than the correlation

between this outcome and the EPS computer-based model

(r2 = 0.39) [9]. With these values, the threshold for cortical

pyramidal firing for example decreases from 0.70 in the placebo

case to 0.62 for the olanzapine 10 mg case. Using the multivariate

regression approach mentioned above, we get a slightly better

correlation of 0.49. A new therapeutic intervention can then be

simulated in the model, based upon its pharmacology and

functional brain concentration derived from target engagement

studies leading to a clinical outcome prediction with a 95%

prediction interval.

2. Calculation of the functional brain concentration for
the two investigative compounds

The reported 11C-raclopride imaging studies for the two

compounds as a function of the dose was used in the receptor

competition model of the primatized dopaminergic synapse [10]

with drug, dopamine and tracer – each with appropriate affinities

– to determine the functional intrasynaptic concentrations that

matched the observed tracer displacement. From the observed

55%, 75% and 80% D2 receptor occupancy for the three doses of

JNJ37822681, we determined effective functional brain concen-

trations of 400, 700 and 840 nM, while 15 mg olanzapine

corresponds to a D2 receptor occupancy of 75% [51]. A single

dose-study with limited numbers of subjects matched the observed
11C raclopride displacement of 69% at 0.52 mg ocaperidone to a

4.3 nM concentration.

3. Prediction of the clinical PANSS total score and EPS
outcome for the two compounds

The pharmacology of the compounds (Table 1) was subse-

quently entered in the PANSS and the EPS computer models for

each of the relevant doses and the predicted clinical scales were

calculated from the model output using the correlation functions

[9]. All clinical PANSS total score outcomes for JNJ37822681

were significantly different from placebo, but not from olanzapine

(Fig. 3). The computer model (error bars = 95% Prediction

Interval) accurately captures the relative order of the clinical

PANSS total score outcome for all treatment arms with

JNJ37822681 versus olanzapine, although the absolute change

for the placebo arm is greatly underestimated (1.7 points in the

model versus 6.4 measured). For instance, the model predicted an

absolute PANSS total score change from baseline of 19.4 points

(measured 20 points) for 30 mg JNJ37822681 and 23.7 points

(measured 22.9); an effect for olanzapine that was inversely

proportional to the D2 receptor occupancy (80% versus 75% for

olanzapine). Along the same lines, the computer model predicts a

225.2 point change for 250 mg of the weak D2 receptor

antagonist clozapine.

It is of interest to compare this predicted outcome with the

clinical outcome predicted by the multivariate analysis above.

Placebo value (all data are improvements from baseline) would be

3.4 (measured 6.4), outcome for 10 mg JNJ would be 16 (measured

18), for 20 mg JNJ (20.7 vs.. 17.7 measured), for the 30 mg JNJ

21.9 vs. 20.2 measured and for olanzapine 20.7 (measured 22.9).

This analysis underestimates placebo and olanzapine and overes-

timates the JNJ effect.

Interestingly and unexpectedly, the computer-based model

predicted a higher EPS liability for JNJ37822681 as compared

to olanzapine (EPS reported liabilities 3%, 8%, 10%, 19% and 3%

for placebo, 10, 20, 30 mg JNJ37822681 and olanzapine,

respectively; model predicted values 16%, 27%, 28%, 29% and

23% for anticholinergic medication use). EPS clinical readouts are

statistically significant for 20 and 30 mg JNJ37822681 versus

placebo or olanzapine (Fig. 4). The EPS scale is different from the

EPS scale used for calibration, resulting in different absolute

outcomes; however, the computer model correctly predicted the

relative risk for Parkinsonian-related side-effects for the therapeu-

tic interventions. This result contrasts with the underlying

rationale for this Research and Development project assuming

that weak D2 receptor affinity combines good clinical efficacy with

a lower EPS liability as observed in preclinical studies [42]. Also

the computer model correctly captures the off-target olanzapine

pharmacology that reduces EPS liability compared to the 10 mg

JNJ37822681, despite a higher D2 receptor occupancy (75%

versus 55%).

The multivariate regression model predicts an EPS liability of

11% for placebo, 34%, 43% and 45% for the three doses of

JNJ37822681 versus 20% for olanzapine, also confirming the

much greater EPS liability; however note the greater difference

between placebo and olanzapine (almost a doubling in frequency

versus an increase from 16 vs. 23% for the computer-based

model).

For ocaperidone, the computer-based model wrongly predicted

the absolute PANSS total score changes from baseline in the

placebo (14.5 points) and ocaperidone (26.9 points), but better

predicted the improvement of ocaperidone-treated patients with

the placebo-difference subtracted (12.4 measured versus 13.7 for

the computer-based model) (Fig. 5). Note that the multivariate

analysis predicted a placebo difference subtraction effect of

9.6 points, much less than the 12.4 points measured. In the active

comparator trial with olanzapine (N3D-OCA6) the computer-

model clearly underestimated the clinical effect of ocaperidone,

measured as a difference from baseline (15.1 predicted versus 23.1

measured), but better predicted the clinical effect of olanzapine

(22.1 predicted versus 24.9 measured). Here the multivariate

analysis predicted values of 13.05 for ocaperidone and 20.7 for

olanzapine; which is in general worse than the computer-based

model outcome.
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In the active comparator trial N3D-OCA6, the computer-based

model underestimated EPS liability for ocaperidone (23.5%

predicted versus 44% measured) but correctly predicted olanza-

pine’s EPS liability (23% predicted versus 23.5% measured)

(Fig. 6). The multivariate regression analysis underestimates even

more the EPS liability of ocaperidone and olanzapine (18% for

ocaperidone and 20% for olanzapine).

We simulated the scenario that the reported single-dose

ocaperidone imaging study underestimated the real target

exposure. For 75, 85 and 90% D2 receptor occupancy respectively

the PANSS total improvement in the model outcome increased to

19.1, 20.6 and 21.3 points, while the EPS liability increased from

22% to 28%, 31% and 32%. A higher actual ocaperidone target

engagement could explain a substantial part of the divergences

between model outcome and clinical outcome.

In contrast, using the multivariate regression model, the

predicted PANSS Total for ocaperidone would increase to 13.8,

14.8 and 14.6 points on the PANSS Total Scale for these three

conditions; certainly a much lower increase than for the computer-

based model. With regard to the EPS outcome, the multivariate

regression analysis would increase the EPS liability from 0.18 to

0.20, 0.23 and 0.24 respectively; much smaller increases than with

the computer-based model outcome.

Discussion

The optimal antipsychotic drug dose in patients is usually based

on PET imaging with an optimal window between 70% and 80%

of D2 receptor occupancy [52–54], with an exception for the

partial D2 receptor agonist aripiprazole. However the D2 receptor

occupancy only partly accounts for the clinical response and our

increased understanding of other neurotransmitter systems and

systems interactions has not been effectively integrated into

antipsychotic drug discovery. We demonstrate here a quantitative

mechanistic computer-based model as a translational tool that

combines preclinical physiology data with patient-centered data

on neuronal circuits, pathology and pharmacology, eliminating

some of the inherent limitations of preclinical animal models [55].

Figure 3. Predicted and actual clinical (PANSS) outcomes using the Computer-based model. This illustrates the predicted and actual
clinical outcomes for placebo, three doses of JNJ37822681 and the comparator olanzapine on the difference in PANSS total score clinical scale
between week 8 and the baseline. Except for the placebo effect, the computer-based model predicts the clinical outcome quite well, especially the
relative performance of JNJ37822681 and the active comparator in terms of actual PANSS total scores. Error bars reflect the 95% prediction intervals
derived from the predicted ANOVA analysis.
doi:10.1371/journal.pone.0049732.g003

Figure 4. Predicted and actual clinical outcomes of JNJ37822681 and olanzapine on EPS liability. This figure illustrates the predicted and
actual clinical outcomes of JNJ37822681 and the comparator olanzapine on EPS liability. Error bars reflect the 95% prediction intervals derived from
the predicted ANOVA analysis. Note that the clinical readout (fraction of patients reporting EPS side-effects) and model readout (fraction of patients
needing anticholinergics) are two different readouts of the same clinical effect. The computer-based model correctly identifies the greater and
unexpected EPS liability of the two highest doses of JNJ37822681 compared to the olanzapine treatment, despite having a lower or identical D2

receptor occupancy.
doi:10.1371/journal.pone.0049732.g004
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Due to its mechanistic nature this model is limited to specific

disease areas like schizophrenia, in contrast to the more generic

systems biology data-mining approaches often applied to different

disease areas.

We showed that retrospective evaluation of drug efficacy with a

wide range of pharmacological activities using this computer

model is more effective than simple receptor D2 receptor

competition or multivariate regression analysis. We have further

tested this translational model by predicting, in a blinded manner,

the clinical profile of two compounds for which clinical data had

been collected but not published or available to the modelers at the

time of evaluation. To our knowledge, this is the first time that any

simulation model has been tested in such a blinded manner.

The results suggest that the mechanistic disease model correctly

predicts the relative performance for JNJ37822681 in PANSS total

score improvement and EPS liability with respect to olanzapine,

but not for ocaperidone. The low-affinity property of

JNJ37822681 differentially modulates only the dopaminergic

striatal pathway effects during burst and tonic dopamine activity.

The model prediction of the potent clinical improvement with

clozapine and of the efficacy of olanzapine as compared to the two

highest doses of JNJ37822681, despite the same or lower D2

receptor occupancy also suggests that the computer model

adequately captures the beneficial contribution of additional

non-D2 receptor actions.

In line with the reported clinical benefit of trazodone in

Parkinson disease patients [56], our model suggests that cortical 5-

HT2A activity is a key modulator of EPS liability and that the fast

dissociation rate of JNJ37822681 may only compensate partially

for the EPS liability induced by significant D2 receptor inhibition

during burst firing, This is not unlike remoxipride that has a

substantial EPS liability despite a low affinity for the D2 receptor

[57]. We believe this translational disconnect is likely due to

species difference of the dopaminergic synapse physiology between

primates and rodents [10].

While a simple multivariate regression analysis can already give

a good idea on the expected outcomes, our analysis suggests that

the mechanism-based computer model is superior in predicting the

clinical outcomes of both JNJ37822681 and ocaperidone. This is

likely due to the fact that the multivariate analysis assumes

Figure 5. Predicted and actual clinical (PANSS) outcomes of ocaperidone and the comparator olanzapine. The panel illustrates the
difference in PANSS total clinical scale between the end of the trial and the baseline (derived from three different trials). Error bars reflect the 95%
prediction intervals derived from the predicted ANOVA analysis. There is a substantial placebo effect that the computer-based model cannot predict;
however, the difference between placebo and treatment with ocaperidone is correctly accounted for.
doi:10.1371/journal.pone.0049732.g005

Figure 6. Model predicted and actual clinical outcomes of ocaperidone and olanzapine on EPS liability. This illustrates the model
predicted and actual clinical outcomes of ocaperidone and the comparator olanzapine on the EPS liability. Error bars reflect the 95% prediction
intervals derived from the predicted ANOVA analysis. While the computer-based model quite accurately described the EPS liability of 15 mg
olanzapine, it greatly underestimated the EPS liability of ocaperidone. As described in the text, assuming higher receptor occupancy for ocaperidone
substantially increases the EPS liability of ocaperidone.
doi:10.1371/journal.pone.0049732.g006

Evaluation of Schizophrenia Disease Model

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e49732



independent processes that affect the outcome in a linear way. In

contrast actual physiological modeling can account for a non-

linear processes such as the threshold for action potential

generation or the complex non-linear interaction between different

receptor systems (for instance one neurotransmitter regulating the

release of another neurotransmitter) that modulate the membrane

potential. While the multivariate regression analysis can identify a

possible target that drives the clinical outcome (for instance the 5-

HT2AR in the case of the unexpected high EPS liability of JNJ),

the computer-based mechanistic mode can add the appeal of

quantitatively understanding the neurobiology, i.e. clarifying the

link from receptor modulation to membrane excitability through

modulation of specific ion channels in specific parts of the

neuronal network. In addition, in contrast to the mechanism-based

computer model, multivariate regression analysis is unable to

predict the outcome of a new target that hasn’t been tested in the

clinic before, or the effect of comedication often used in clinical

trials.

The failure of the model to predict ocaperidone clinical

outcome may be due to imperfect representation of the off-target

physiology in the model. Alternatively, with steady-state dosing,

the ocaperidone levels could accumulate leading to increased

functional brain concentrations. Indeed hypothetical higher D2

receptor occupancy for ocaperidone substantially reduces the

differences between predicted and reported values for EPS liability

and PANSS total score. In that regard it is interest to note that

ocaperidone is much more potent in vivo than haloperidol or

risperidone with ED50 values in the amphetamine test below

1 microg/kg [58]. Additionally, for missing data we assumed the

drug did not affect those receptors and that affinities to rodent

receptors are identical for human receptors, but species differences

in affinity are commonly present.

There are several issues, however, for which the model falls

short. First, the results represent a relative difference from

baseline, rather than an absolute predictor of clinical outcome.

However, this approach is the only ‘preclinical’ model that

predicts actual PANSS total score or EPS liability outcomes, in

contrast to animal models that give more of a binary prediction.

The model fell short on the absolute prediction of the placebo

improvement. The increased placebo improvement which has

been observed lately in clinical trials cannot be effectively modeled

by this approach, because they are presumably associated with

issues like expectancy bias on the part of the investigator and the

patient [59,60]. Additionally, the model has been calibrated using

historical values for the placebo effect collected in 26 different

papers since 1988, where the placebo effect was much less

prominent.

It is also important to realize that the model predictions are

limited by the current state of knowledge. For example, the

computer-based model is much less effective in predicting

akathisia-related side-effects compared to Parkinsonian type side-

effects [9]. Although historically it has been classified as an

extrapyramidal disorder [61], akathisia might be driven by

pathophysiological mechanisms more reflective of anxiety than

motor signs [62]. The current version of the computer-based EPS

model is focused on the cortico-nigrostriatal-thalamic pathway

pathology and does not take into account other extrastriatal

pathways.

The current EPS computer model is limited to Parkinsonian

physiology and is well calibrated with historical data from patients

initiated on anticholinergic medication to treat EPS symptoms.

This might lead to differences between potential and expressed

pathological changes - i.e., the drug may have increased EPS

liability, but its expression in humans may not correspond to a

given clinical readout unless very large numbers of patients are

used. For instance, high EPS liability may not be optimally

assessed by the use of anticholinergics, which is an ‘all-or-none’

approach that depends both on the subjects’ description of the

event and the physician’s ability to elicit, characterize and manage

that symptom. However the results suggest that the model

correctly captures the ranking of the investigative drugs as

compared to olanzapine with regard to the EPS liability. The

platform also has reasonable correlations with some other

measures of EPS liability [9], such as Simpson-Angus Scale

(SAS) and the Abnormal Involuntary Movement Scale (AIMS)

which capture different clinical aspects of this complex side-effect

profile.

It is of interest to compare the predictivity of this computer-

based modeling approach with the more traditional animal models

currently used in psychiatry Research & Development. Both

JNJ37822681 [41] and ocaperidone [46] passed all preclinical

animal tests to the point that they were deemed of interest for a

(financial and resource-intensive) investment in clinical develop-

ment. Yet the computer model would have been able to raise a red

flag about the EPS liability for JNJ37822681, because it

quantitatively showed that the fast dissociating properties at the

D2R did not compensate for the lack of effect at the cortical 5-

HT2AR. The computer model further predicted a lack of clinically

relevant differentiation between ocaperidone and olanzapine and

suggested that higher doses of ocaperidone would reduce the

therapeutic ratio between effect on PANSS Total and EPS

liability. In addition, we are not aware of preclinical animal models

that can quantitatively predict a PANSS total score, especially in

comparison to an existing drug on the market.

The computer-based model has been calibrated using average

values of treatment groups and do not reflect inter-individual

differences caused by differences in individual genotypes and co-

medications; however, the model, in principle can accommodate

genotypic profiles if such information is obtained from the patient

population evaluated, for instance through imaging genetics [63].

We chose to focus on the PANSS Total as readout because this

is usually the primary readout for clinical trials with antipsychotics

and there are more historical data available. We have been testing

our computer model against other subscales, such as PANSS

positive and PANSS negative subscales, for which we have less

published data. Not unexpectedly, the calibration with PANSS

positive subscale is very similar to the PANSS Total scale and the

relative effect of the drugs on the PANSS positive scale is similar to

their effect on PANSS Total.

Future developments include the implementation of more

detailed subcortical anatomy and physiology [64] that will take

into account the different properties of the direct versus indirect

pathway in combination with detailed modeling of the globus

pallidus interna and externa, the subthalamic nucleus and part of

the thalamus. Alternatively other receptor types and neurotrans-

mitter systems can be implemented in the appropriate brain region

to build a model that is for instance, more suited for cognitive or

negative symptoms Such an approach could, in principle, lead to

other models for Parkinson’s and Huntington’s diseases.

Current preclinical animal models generally provide binary

information relative to safety and efficacy, but they rarely predict

relative performance of a novel investigative drug to a comparator.

This computer-based mathematical model, calibrated retrospec-

tively using published clinical data of many antipsychotic drugs

can predict relative clinical outcomes, important in prioritizing

discovery projects. In addition, when no target engagement data in

humans are available, the computer-based model allows for the
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relative therapeutic window between PANSS effect and EPS

liability to be estimated.

The ‘Quantitative Systems Pharmacology’ approach is being

increasingly recognized as a possible translational tool for drug

discovery and development in the field of oncology and

metabolism [65] and contributed to a number of newly approved,

rationally designed cancer drugs. Although the current under-

standing of human neurobiology in general and in schizophrenia

pathology in particular is currently limited, the combination of the

existing large academic expertise in computational neuroscience

and the availability of endophenotype studies of the human brain

using PET imaging and electroencephalogram (EEG) provides the

framework for an increasingly more powerful ‘Quantitative

Systems Pharmacology’ approach. In this context, it is of interest

to note, that although the current version of the computer model is

largely based upon existing dopamine dominated antipsychotic

pharmacology; new cholinergic and glutamatergic targets can be

readily introduced into the model based upon their preclinical

physiology. As they in turn affect more complex neuronal network

systems, like the type we model here; we expect that this

‘Quantitative Systems Pharmacology’ approach can yield better

insights than pure qualitative reasoning as is done now.

In summary, although the current model did not perfectly

predict the clinical outcome for the novel antipsychotic drugs, the

comparative results against the active comparator were more

reliable than could have been estimated by D2 binding properties

or by preclinical animal model outcome. Further refinements

using our expanded knowledge about receptor profiles and systems

interaction should permit an even better predictive capacity. This

approach can provide valuable insight into relative clinical efficacy

and EPS liability, as well as into novel drug targets beyond the

dopamine system and more efficiently drive drug development by

enabling better selection of drugs prior to expensive and time-

consuming clinical testing.
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