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Abstract

Objectives: While global measures of cardiovascular (CV) risk are used to guide prevention and treatment decisions, these
estimates fail to account for the considerable interindividual variability in pre-clinical risk status. This study investigated
heterogeneity in CV risk factor profiles and its association with demographic, genetic, and cognitive variables.

Methods: A latent profile analysis was applied to data from 727 recently postmenopausal women enrolled in the Kronos
Early Estrogen Prevention Study (KEEPS). Women were cognitively healthy, within three years of their last menstrual period,
and free of current or past CV disease. Education level, apolipoprotein E e4 allele (APOE4), ethnicity, and age were modeled
as predictors of latent class membership. The association between class membership, characterizing CV risk profiles, and
performance on five cognitive factors was examined. A supervised random forest algorithm with a 10-fold cross-validation
estimator was used to test accuracy of CV risk classification.

Results: The best-fitting model generated two distinct phenotypic classes of CV risk 62% of women were ‘‘low-risk’’ and
38% ‘‘high-risk’’. Women classified as low-risk outperformed high-risk women on language and mental flexibility tasks
(p = 0.008) and a global measure of cognition (p = 0.029). Women with a college degree or above were more likely to be in
the low-risk class (OR = 1.595, p = 0.044). Older age and a Hispanic ethnicity increased the probability of being at high-risk
(OR = 1.140, p = 0.002; OR = 2.622, p = 0.012; respectively). The prevalence rate of APOE-e4 was higher in the high-risk class
compared with rates in the low-risk class.

Conclusion: Among recently menopausal women, significant heterogeneity in CV risk is associated with education level,
age, ethnicity, and genetic indicators. The model-based latent classes were also associated with cognitive function. These
differences may point to phenotypes for CV disease risk. Evaluating the evolution of phenotypes could in turn clarify
preclinical disease, and screening and preventive strategies. ClinicalTrials.gov NCT00154180
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Introduction

Several known risk factors for the development of vascular

disease have been linked to not only cardiovascular (CV) disease

endpoints, but also to accelerated cognitive decline and prodromal

Alzheimer’s Disease (AD) [1–5]. Despite public awareness

campaigns and the availability of well-established preventive

options, CV disease remains one of the leading causes of death

for women in the United States [6–7]. Menopause-related changes

in hormonal profile may potentiate the increased risk in CV

disease. Postmenopausal women are at higher risk than age-

matched men, possibly due to gonadal failure and reduced

gonadal steroid production [8]. Estrogens play a key role in

maintaining adequate levels of high-density lipoprotein cholesterol

(HDL-C), a positive influential CV health factor and a significant

independent predictor of nitric oxide-dependent coronary vasodi-

lation (as measured by flow-mediated dilation) in healthy

individuals [9–10]. In contrast, elevated plasma levels of low

density lipoprotein cholesterol (LDL-C) contributes to endothelial

dysfunction and progression of coronary heart disease [11–12].

Endothelial dysfunction, often characterized by decreases in

production of nitric oxide, is mediated not only by lipid profile,

but also by other putative CV risk factors such as elevated glucose

and triglyceride levels and high-sensitivity C-reactive protein [13–

14].

The association between these classical CV disease risk factors

and the magnitude of reactive hyperemia in small arteries can be

observed in individuals with no history of CV disease and normal

lipid profile [15]. Findings further suggest that menopause and

aging also are independent risk factors for endothelial dysfunction

in normotensive women [16]. Moreover, predisposing vascular

disease risk factors such as central obesity, unhealthy diet and

physical inactivity may synergistically increase risk for vascular

disease (for example, low serum HDL-C, diabetes, and elevated

blood pressure). Lower education and income are socio-economic

factors often linked to increased risk of vascular disease, especially

in women [17–18]. Genetic characteristics such as the apolipo-

protein E (APOE) gene polymorphism, particularly the presence of

an e4 allele (or APOE4 isoform), are frequently linked, not only to

hyperlipoproteinemia, but also to AD and cognitive impairment in

non-demented adults [8], [19].

The importance of a multifactorial approach to the evaluation

of both traditional and newer markers of vascular risk has been

shown to augment the predictive accuracy of global estimates of

CV risk [1], [20]. Thus there is an important need for increased

understanding of the prevalence of these risk factors as well as their

covariation. However, the assessment of a multiplicity of risk

factors often involves the use of laboratory values with no

‘‘natural’’ cut-off between ‘‘normal’’ and ‘‘abnormal’’ levels

primarily because some of these measurements (e.g., lipid levels)

are continuous. Moreover, the threshold or cut-point at which a

potential risk factor in the continuum of risk exposure can be

considered a ‘‘true’’ risk is a subject of debate [21–22]. For

instance, specific thresholds for arterial hypertension and hyper-

lipidaemia are on an arbitrary dichotomy [23]. It is also possible

that cut-off criteria for conventional vascular risk factors may in

fact vary systematically by gender, race/ethnicity or socio-cultural

background. Indeed, global measures of risk based on a graded

summation of factors, such as Framingham-based risk scores, have

required re-calibration to improve accurate risk estimation in older

women [24] and in ethnic minorities [25]. Moreover, the

interactive influence of these characteristics may give rise to

complex differential effects on health outcomes. Even when the

assessment of vascular disease risk yields results within clinically

‘acceptable’ ranges there can be considerable between- and

within-individual heterogeneity in the measures considered in

the global evaluation of ‘‘risk.’’

Using a finite mixture modeling approach, [26] this study aimed

at elucidating potential phenotypic heterogeneity in risk based on

multiple measures of vascular disease risk obtained at baseline

from a cohort of postmenopausal women enrolled in the Kronos

Early Estrogen Prevention Study (KEEPS) [27]. We hypothesized

that 1) co-variation among multiple manifest vascular disease risk

factors could be fully explained by a discrete latent variable (latent

groups) capturing heterogeneity in the sample and 2) latent group

or class membership will be associated with demographic, racial/

ethnic, genetic, and cognitive function variables.

Methods

Sample Description and Setting
KEEPS and KEEPS-Cog studies were reviewed and approved

by Institutional Review Boards at all nine enrollment sites and at

the University of Wisconsin, the KEEPS Cognitive and Affective

(KEEPS-Cog) coordinating site. IRB numbers for KEEPS

institutions: The central KEEPS and Phoenix KEEPS (IRB

protocol by the Western IRB): STUDY NUM: 1058663 and

WIRB PRO NUM: 20040792KEEPS (main study & cognitive

substudy) #10-02980 and MDBHAS #11-05383. Brigham and

Women’s Hospital (Partners): #2004-P-002144 BWH. Mayo

Clinic: 2241-04. Columbia: IRB#: AAAA-8062. Yale:

0409027022. University of Utah: 13257. Einstein/Montefiore:

04-08-213. University of Wisconsin, Madison: H-2005-0059.

University of California, San Francisco (UCSF): KEEPS (main

study & cognitive substudy) #10-02980. University of Washing-

ton: IRB #26702; VAPSHCS IRB #01048.

All participants provided written informed consent to partici-

pate in the main KEEPS study and in the KEEPS-cog ancillary

study. The ethics committees approved the consent procedure

utilized in the study. Enrollment occurred between August 2005

and July 2008 with final visits completed in 2012.

Data for this study were obtained from the multisite KEEPS

and KEEPS-Cog substudy. The parent study, KEEPS, was a

randomized, blinded, placebo-controlled clinical trial designed to

compare the effect of 48 months of treatment with low-dose oral

conjugated equine estrogen and transdermal estradiol to placebo

on cardiovascular endpoints in recently menopausal women [27–

28]. The KEEPS-Cog ancillary study aimed to evaluate the

potential differential efficacy of the two forms of menopausal

hormone therapy (MHT) on cognitive and mood function.

Participants were recruited from nine sites across the nation.

Exclusion criteria for the trial included the presence of past or

current CV or cerebrovascular disease, uncontrolled hypertension,

and use of lipid lowering medications. Determinations of ‘‘low

risk’’ for CV disease were based on body mass index (BMI), blood

pressure, fasting cholesterol and glucose values, tobacco use, and

assessment of coronary artery calcification (CAC) measured by

computerized tomography (CT). For a more detailed overview of

the KEEPS study design, sample enrollment criteria, and

randomization and data collection procedures, please refer to

the comprehensive descriptions provided in Harman et al. [27]

and Miller et al. [29].

The mixture modeling analysis used baseline (pre-randomiza-

tion) data from 727 postmenopausal women, between the ages of

42 and 58, who were within 3 years of their final menstrual period.

Table 1 presents a summary of the sample characteristics at study

entry. In terms of demographic characteristics, the sample was

predominantly non-Hispanic white (80.5%), averaged 53

Vascular Disease Risk in Postmenopausal Women
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Table 1. Selected Demographic and Clinical Characteristics of the Total Sample at Baseline.

Characteristics (N, Mean 6 SD, Range; unless otherwise noted)

Demographic N Mean 6 SD) Range

Age (years) 727 52.68±2.60) 42 to 58

Years since menopause 725 1.44±0.73) 1 to 3

Self-reported race/ethnicity (N, %) (692)

Asian or Pacific Islander 21(3.03) –

Black/African American 54 (7.80) –

Non-Hispanic White/Caucasian 557 (80.49) –

Hispanic 53 (7.70)

Other 7 (1.01) –

Education (N, %) (717)

Grade school 3 (0.42) –

Some high school 3 (0.42) –

High school diploma or GED 52 (7.25) –

Some college or vocational school 132 (18.41) –

College graduate 293 (40.86) –

Some graduate or professional school 34 (4.74) –

Graduate or professional degree 200 (27.89) –

Apolipoprotein E e4 allele (APOE4) (N, %) (596) –

156 (26.2)

Vascular Disease Risk Factors

Body mass index (BMI) (kg/m2) 727 26.19±4.31 16 to 35

Waist Circumference (cm) 716 83.2±15.20 57.2 to 256.5

Total Cholesterol (mg/dL) 727 208.10±33.7 122 to 315

Mean systolic blood pressure (sBP) (mm/Hg) 727 117.43±14.90 82 to 189

Mean diastolic blood pressure (dBP) (mm/Hg) 727 75.30±9.22 50 to 113

Mean arterial blood pressure (MAP) [1] 727 89.62±10.31 63.3 to 132.3

Low density lipoprotein-cholesterol (LDL-C) (mg/dL) 727 110.90±27.8- 11 to 194

High density lipoprotein-cholesterol (HDL-C) (mg/dL) 727 72.0±14.60 24 to 129

Triglycerides (mg/dL) 727 87.00±55.90 7.0 to 374

Fasting blood glucose (FBG) (mg/dL) 727 79.60±10.00 55 to 126

Total Framingham Point Score (FPS) 727 4.00±3.19 25 to 14

Current tobacco use (N, %) (727) –

50 (6.90)

Measures of Vascular Disease

Coronary artery calcification (CAC) volume score 727 1.33±5.18 0 to 50.00

Carotid artery intima-media thickness (CIMT) 727 0.72±0.09 0.53 to 1.17

Clinical - Cognitive Scores

Factor Scores

Global Cognition 662 0.0±0.88 23.06 to 2.54

Verbal Learning & Memory 662 0.0±0.87 22.96 to 2.40

Auditory Attention & Working Memory 662 0.0±0.75 22.73 to 2.09

Visual Attention & Executive Function 662 0.0±0.73 22.15 to 2.01

Speeded Language & Mental Flexibility 662 0.0±0.79 22.50 to 2.50

Mini Mental State Examination (MMSE) 647 29.1±1.40 22 to 30

(1) MAP was estimated as 2dBPzsBPð Þ
3

.
doi:10.1371/journal.pone.0068741.t001
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(SD = 2.6) years of age, and 73.5% reported having obtained a

minimum of a college degree. Additionally, of those consenting to

DNA testing (N = 596), 26% had at least one APOE e4 allele; a

genetic risk marker often associated with adverse changes in

cognitive functioning occurring prematurely during the aging

process, [30–31] CV disorders in middle age, [32–33] and shown

to interact with female gender [34–35]. Most participants (87%)

were entirely free of CAC at baseline. The remaining 13% of the

sample had CAC volume scores ranging from 0.015 to 50.

Selected anthropometric, clinical, serum, and behavioral

indicators of vascular disease risk for the total sample at baseline

are also summarized in Table 1. The mean body mass index

(BMI) was 26.19 kg/m2 (SD = 4.31) with close to 50% of the

sample with a BMI ranging from 26 to 35 kg/m2, which is

considered overweight or obese as defined by published standards

[36]. Approximately 33% of the sample had a waist circumference

above the cut-off score for female central/abdominal obesity

(.88 cm) among Caucasians in the United States [37]. Waist

circumference measures for the total sample ranged from 57 to

256.5 cm (M = 83.2, SD = 15.2). A relatively small percentage of

women in the sample (6.9%) self-identified as current smokers.

Although mean values for other vascular disease risk factors shown

in Table 1 were within ‘normal’ reference standards, the lower

(e.g., HDL-C) or upper (e.g., total cholesterol, triglycerides, LDL-

C) limit for the range of measures, in most risk factors, were

slightly beyond the boundaries of ‘clinically desirable levels.

Laboratory Analyses and Anthropometric Measurements
Seven vascular disease risk variables were used as surrogates for

latent class membership in the analysis. These included six absolute

measures (BMI, carotid artery intima-media thickness (CIMT),

LDL-C, fasting blood glucose (FBG), HDL-C, and triglycerides)

and a global average value of risk based on Framingham point

scores (FPS) [38]. All participants underwent venous blood draws

in the morning after at least 12 hours of fasting. Blood samples for

lipid, glucose, and triglycerides levels measurements were sent to

and analyzed by Kronos Science Laboratories (Phoenix, AZ).

Blood pressure readings were taken in the morning at least 30

minutes before the blood draws or weight measurement. CIMT

was measured by high-resolution B-mode ultrasound [39]. FPS

were computed following standard procedures for points assign-

ment and summation described in Wilson et al. [38] from the

following six variables: 1) age, 2) systolic blood pressure, 3) diastolic

blood pressure, 4) smoking, 5) HDL-C, and 6) total cholesterol.

For each of these risk factors, points were assigned according to the

level of associated risk.

Height (cm) and weight (kg) measurements were obtained as

part of KEEPS health examination protocol and BMI was

calculated as weight divided by height squared (kg/m2). Table 2
summarizes the zero-order correlations for the seven vascular

disease risk variables at baseline. As expected, all variables were

significantly correlated with at least one other variable in the set;

with triglycerides and HDL-C having the highest inverse

correlation (r = 20.486; p,0.002).

APOE Genotyping
APOE genotype was determined from DNA extracted from

venous blood samples obtained from subjects who gave informed

consent for genetic analysis. Blood samples were collected in

ethylenediaminetetraacetic (EDTA) tubes during participants’

health examination. DNA was amplified by polymerase chain

reaction using specific primers for the APOE gene. The DNA was

then sequenced and analyzed for genotype using the FinchTV

program (Version 1.3; Geospiza, Inc). APOE4, as well as age,

race/ethnicity, and education (as an indicator of socio-economic

status-SES) were modeled as predictors of latent class membership.

Assessment of Cognitive Function
As part of the KEEPS-Cog substudy protocol, 662 participants

were administered a comprehensive neuropsychological test

battery by personnel trained in standardized assessment and

scoring procedures. In order to efficiently analyze the cognitive

functioning of study participants, a total of 25 test variables were

first grouped into cognitive domains based on theoretical

considerations. By summarizing our neuropsychological battery

into cognitive domains, we limited capitalizing on chance

associations in subsequent statistical analyses. These theoretical

groupings were then tested iteratively using confirmatory factor

analyses (CFA) [40]. We used multiple criteria and recommended

thresholds for model selection [41]. These included: 1) compar-

ative fit index (CFI) and Tucker-Lewis index (TLI) greater than

0.95, 2) root mean squared error of approximation (RMSEA) [42]

less than 0.05, and 3) the smallest Bayesian information criterion

(BIC) [43] value. All models were estimated using maximum

likelihood (ML) estimation procedures with standard errors robust

to non-normality of observations. The statistics software R,

Version 2.15.1 (http://cran.r-project.org/) and the package lavaan,

[44] Version 0.4–14, were used to fit the CFA models.

Table 2. Bivariate Correlations for the Vascular Disease Risk Variables at Baseline.

Variable 1 2 3 4 5 6 7

1 BMI 1

2 CIMT 0.057 1

3 LDL-C 0.157 0.030 1

4 HDL-C 20.336 20.046 20.129 1

5 Triglycerides 0.330 0.073 0.231 20.486 1

6 Fasting Glucose 0.276 20.018 0.068 20.200 0.214 1

7 FPS 0.376 0.152 0.399 20.485 0.458 0.238 1

Correlations greater than the absolute value of r = 0.12 were significant using a per-test Sidak-adjusted.
p,0.002 and a family-wise alpha of 0.05.
BMI = Body mass index; CIMT = carotid artery intima-media thickness; LDL-C = Low-density lipoprotein cholesterol; HDL-C = High-density lipoprotein cholesterol;
FPS = Framingham point scores.
doi:10.1371/journal.pone.0068741.t002
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After testing a series of competing models, a bi-factor structure,

[45] including a final set of 18 test variables sharing a common

underlying construct, provided the best fit to the data. (For a

detailed list of the tests included in the final model and an

illustration of the bi-factor model, see Figure 1 and Table S1.

Table S2 presents a summary of the bi-factor solution. The bi-

factor model included a single broad, general construct or factor

(labeled global cognition) and four specific and distinct factors

uncorrelated with and varying independently of the general or

global cognition factor. The four specific factors were labeled as 1)

verbal learning & memory 2) auditory attention & working

memory, 3) visual attention & executive function and 4) speeded

Figure 1. Bi-factor model for the cognitive baseline data. Eighteen variables from nine tests were used to estimate the model with a global
cognitive factor capturing covariation across all variables and four independent secondary factors explaining specific shared covariations beyond that
shared with other variables.
doi:10.1371/journal.pone.0068741.g001
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language & mental flexibility. Scores on these five factors were

modeled as outcomes conditioned upon latent class membership.

Analytical Approach
To examine sample heterogeneity or clustering, we used

multiple vascular disease risk indicators as responses in a finite

mixture modeling approach. As mentioned above, the vascular

disease indicators included: BMI, HDL-C, LDL-C, triglycerides,

FBG, CIMT, and FPS. Since the components of finite mixture

densities are modeled as latent classes, the analysis is also known in

the literature as latent class cluster analysis or latent profile (LP)

analysis [46–47]. Within this modeling framework, the clusters or

‘‘classes’’ are not predefined; they are estimated by the model.

That is, class membership is unobservable and termed latent. It is

reasonable to expect that these indicators will be statistically

dependent; for instance, people with elevated triglyceride levels

also tend to have low HDL-C levels and other conditions such as

obesity and metabolic syndrome. An underlying assumption in the

LP analysis is that indicators are associated because the study

population is comprised of a mixture of subpopulations or classes

[48]. A related underlying principle is that as the number of classes

increases the indicators become more ‘‘homogeneous’’ or ‘‘locally

independent’’ within class. That is, the mutually exclusive classes

derived by the LP model maximize between-group variance and

minimize within-group variance.

To determine sample heterogeneity as a function of vascular

disease risk, we iteratively examined the plausibility of LP models

with one, two, and three-latent class solutions. Models were

compared by examining multiple fit criteria: [49] 1) a comparison

of an c-class solution to an (c+1)-class using a Lo-Mendel Rubin

likelihood-ratio tests (LRT) [50] with the choice of the most

parsimonious model, 2) BIC, and 3) overall model interpretability.

We also used relative entropy as a model selection criterion and

the requirement of at least 5% of the sample in each class. Relative

entropy is a measure of how well the observed indicators predict

class membership with values ranging from 0 to 1 and higher

numbers indicating better classification. The final decision on the

number of classes needed to test the mixture model hypothesis not

only took into account model fit indexes, but also an observed

separation of classes showing structure and response patterns that

were interpretable and meaningful from a theoretical and clinical

perspective.

After rigorous model fit and selection procedures for uncondi-

tional models (no covariates) using the full pre-randomized sample

(N = 727), we incorporated four predictors of class membership

into the model, in the same step in which the measurement model

was run, and re-assessed the composition of the classes. The

predictors included: 1) age in years, 2) education level (dichoto-

mized as college degree or higher versus below a college degree), 3)

APOE4 status (carriers of the e3/4 or the e4/4 genotype were

categorized as ‘‘1;’’ the absence of the e4 allele was categorized as

‘‘0’’), and 4) racial/ethnic background (categorized as non-

Hispanic White, non-Hispanic Black, or Hispanic). Other races/

ethnicities were excluded from the analysis performed at this stage,

because the number of participants in these groups was not large

enough to support meaningful comparisons and ensure some

prevalence of the predictor level across classes.

Upon the final model selection, each participant was allocated

to the most probable latent class, that is, the class with the highest

posterior probability of membership. The posterior probability is a

function of the parameters of the LP model, covariates, and the

participant’s vascular risk profile.

Finally, estimated latent classes were modeled as explanatory

variables of cognition in separate analyses; one for each of the five

independent cognitive outcomes. The Wald test, a chi-square

analog of an F-statistic in analysis of variance, was used to assess

the significance of the association between latent classes and

cognitive function. (The full model is illustrated in Figure 2.) A

total of 162 cases in the pre-randomized sample (22%) had at least

one missing data point on the predictors and/or cognitive

outcomes. (Figure 3 shows a schematic diagram of the steps in

the analysis process.).

The nature of each latent class or ‘‘phenotype’’ was examined

by plotting the class-specific estimated mean values against each

vascular disease risk variable across classes and inspecting the

characteristics of the latent class in terms of CV disease risk profile.

To examine the degree to which each class membership could be

impacted by demographic and genetic covariates, we used

multinomial logistic regression. Odds ratios (ORs) were reported

comparing the association between covariates and latent class

membership. All LP models were estimated in MPLUS, Version

6.10, using full information ML methods via the expectation-

maximization (EM) algorithm to handle missing data [51–52]. ML

estimation was performed under the assumption of missing at

random (MAR). [52] We estimated robust standard errors to

account for the non-normality of indicator variables. Results

yielding a p-value less than 0.05 were deemed statistically

significant.

Figure 2. Diagram illustrating the latent profile model. BMI = Body mass index; CIMT = Carotid artery intima-media thickness; LDL-C = Low
density lipoprotein-cholesterol; HDL-C = High density lipoprotein-cholesterol; FSG = Fasting blood glucose.
doi:10.1371/journal.pone.0068741.g002
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Cross-validation Through Supervised Machine Learning
Bias due to over-fitting is a common criticism of ‘‘in-sample’’

model selection in latent class modeling. We used a supervised

random-forest (RF) classification algorithm with a 10-fold cross-

validation estimator [53] to assess overall classification accuracy

(or error rate). Latent class membership was modeled as the

outcome conditioned upon vascular risk variables. Details of the

RF procedure are explained elsewhere [53–54]. Briefly, in an

attempt to reduce the bias of a ‘‘single tree’’ prediction of classes,

ntree bootstrap samples are drawn from the total data set and for

each of the samples, a classification tree is grown. The split of each

node in the tree is based on a random sample of predictors. New

data are predicted by aggregating the ntree classification trees (i.e.,

the majority votes for the classification). The accuracy or ‘‘error

rate’’ is estimated by predicting the data not in the bootstrap

sample (generally 1/3 of the sample) using the classification tree

obtained with the bootstrap sample (2/3 of the sample). All these

predictions are aggregated to obtain an estimate of misclassifica-

tion or error rate. In our analysis, we grew a total of ntree = 1,000

trees. As part of the algorithm, RF estimates variable importance

measures for each tree through permutation of variable values.

Variable importance is defined as the average increase in error

over all the trees (mean decrease accuracy) grown in the classifier.

The analyses were performed with the randomForest [55] package

in R, Version 2.15.1 (http://cran.r-project.org/).

Results

Latent Profile Analysis
Results for the sequence of unconditional models fitted to the

joint distribution of the seven CV disease risk factors indicated that

a 2-class LP model adequately fit the data. As shown in Table 3,

the unconditional 2-class model had the highest classification

accuracy or Entropy (0.802), the lowest BIC value, and a

Figure 3. Schematic diagram of the principal steps in the analysis. Models were estimated via full information (direct) maximum likelihood
algorithms using all available data.
doi:10.1371/journal.pone.0068741.g003
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reasonable classification of vascular disease risk patterns. The

classification accuracy was substantially lower (0.684) for the 3-

class model. Despite the rejection of the Lo-Mendell-Rubin LRT

test in favor of the 3-class model (marginal p-value = 0.04), the

separation of classes was less interpretable. Including age,

education level, race/ethnicity, and APOE4 as predictors of class

membership (that is, the conditional model) improved overall

model fit and did not change significantly the prevalence of risk in

the two classes. BIC values were lower than those obtained in the

unconditional model and the Entropy for the 2-class model

increased to 0.811. Additionally, the LRT test indicated that a

three-class solution did not represent a significant improvement

over the two-class model (p = 0.054). Therefore, a 2-class model

was chosen as the best fitting model.

The patterns of estimated vascular disease risk measures and

posterior probabilities assigned to each individual were used to

label the latent classes. The first class was labeled ‘‘high-risk’’

because participants were more likely to have lower values on

HDL-C and higher values on triglycerides, BMI, LDL-C, FBG,

CIMT, and FPS (see Figure 4). The opposite was observed in the

second class, labeled as ‘‘low-risk.’’ That is, participants tended to

have higher HDL-C levels and lower triglycerides, LDL-C, FBG,

CIMT, and FPS values. The prevalence in the ‘‘high-risk’’ and

‘‘low-risk’’ class was 38% and 62%, respectively. Table 4 shows

the observed and model-estimated means for all the vascular

disease risk variables by latent class. Using an independent samples

t-test, mean differences between groups were highly significant for

all vascular disease risk variables (p-values,0.001).

Table 3. Fit of the Latent Class Profile Models.

Model
No. of Parameters
Estimated Entropy BIC

Lo-Mendell-Rubin
Adjusted LRT (p-value)

Unconditional Model

1-Class 15 – 14,444 –

2-Class versus 1-Class 28 0.802 13,821 0.000

3-Class versus 2-Class 30 0.644 13,824 0.040

Conditional Model

1-Class 20 – 11,177 –

2-Class versus 1-Class 33 0.811 10,719 0.000

3-Class versus 2-Class 40 0.694 10,724 0.054

BIC = Bayesian information criterion; LRT = Likelihood ratio test.
doi:10.1371/journal.pone.0068741.t003

Figure 4. Estimated Mean Vascular Disease Risk for Each Latent Group. BMI = Body mass index; CIMT = Carotid artery intima-media
thickness; LDL-C = Low density lipoprotein-cholesterol; HDL-C = High density lipoprotein-cholesterol; FSG = Fasting blood glucose.
doi:10.1371/journal.pone.0068741.g004
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Predictors of Class Membership
Age, education, and race/ethnicity were predictive of class

membership (see Table 5). Older age and a Hispanic background

increased the probability of being in the ‘‘high-risk’’ class

(OR = 1.140, p = 0.002; OR = 2.621, p = 0.012; respectively). Wom-

en with a college degree or above were more likely to be in the

‘‘low-risk’’ class (OR = 0.63, p = 0.044). The prevalence rate of

women with at least one APOE-e4 allele was also higher in the

‘‘high-risk’’ class compared with rates in the ‘‘low-risk’’ class

(OR = 1.52). However, APOE4 was not predictive of class

membership (p = 0.073).

Association between Latent Classes and Cognitive
Function

The Wald test of parameter constraints yielded a statistically

significant association between latent classes and two cognitive

factor scores obtained from the bi-factor solution: 1) speeded

language & mental flexibility (x2
(1df) = 6.995; p = 0.008) and 2) the

general global cognition factor (x2
(1df) = 4.786; p = 0.029). The

estimated mean cognitive scores were significantly better in the

‘‘low-risk’’ class for speeded language & flexibility (M = 0.068) and

global cognition (M = 0.772) compared to those obtained in the

‘‘high-risk’’ class (M = 20.139; M = 20.110, respectively). In a

post-hoc analysis, we estimated the effect of posterior probabilities

of class membership on cognitive performance across all domains

after controlling for group differences in age and education. The

relationship between the probability associated with membership

in the ‘‘high’’ risk class and performance in speeded language and

flexibility tasks remained highly significant (p = 0.001). That is, the

higher the probability of being in the ‘‘high’’ risk class, the lower

the score in speeded language and flexibility. However, differences

in global cognition outcomes, as a function of class probabilities

and age and education covariates, were attenuated (p = 0.06). In

both analyses, latent classes were not associated with performance

on three specific factors in the bi-factor model, namely, verbal

learning & memory, auditory attention & working memory, and

visual attention & executive function.

Cross-validation through Random Forests
We used the classifications obtained through LP analysis as a

dependent variable conditioned upon vascular risk and predictor

variables to assess the performance of a RF algorithm at predicting

class membership. A 10-fold cross-validation estimator was used to

assess overall error rate. The RF algorithm yielded an estimated

Table 4. Estimated and Observed Within-Class Means and Standard Errors for Vascular Disease Risk Variables From the Two-Class
Model.

Vascular Disease Risk Variables Estimated Within-Class Means1 Observed Within-Class Means t p-value

Class 1: Low Risk Class 2: High Risk Class 1: Low Risk Class 2: High Risk

Mean SE Mean SE Mean SE Mean SE

BMI 20.324 0.057 0.630 0.073 24.80 3.88 28.97 3.73 12.57 ,0.001

CIMT 20.194 0.051 0.216 0.082 0.70 0.07 0.74 0.10 5.250 ,0.001

LDL-C 20.240 0.064 0.323 0.069 121.89 28.91 138.35 28.23 6.620 ,0.001

HDL-C 0.498 0.055 20.779 0.065 74.13 15.20 51.22 9.80 221.751 ,0.001

Triglycerides 20.510 0.051 0.755 0.086 66.73 25.74 129.26 60.24 14.402 ,0.001

FSG 20.188 0.049 0.361 0.083 87.31 8.46 92.73 9.78 6.718 ,0.001

FPS 20.564 0.059 0.857 0.063 2.16 2.25 6.89 2.14 25.926 ,0.001

Latent Prevalence (Marginal Probability) 62% 38%

1The estimated within-class means represent the mean difference between the vascular disease risk score of that particular class compared with the overall mean.
Estimated means are based on standardized measures.
BMI = Body mass index; CIMT = Carotid artery intima-media thickness; LDL-C = Low density lipoprotein-cholesterol; HDL-C = High density lipoprotein-cholesterol;
FSG = Fasting blood glucose; FPS = Framingham point scores.
doi:10.1371/journal.pone.0068741.t004

Table 5. Conditional Odds Ratios.

Variable

Wald 95%
Confidence Limits

Odds Ratio Lower Upper p-value 95% CLR

High Class on

Education (college degree or higher relative to below college degree) 0.627 0.398 0.987 0.044 2.5

Hispanic (relative to non-Hispanic White) 2.621 1.236 5.56 0.012 4.5

Non- Hispanic Black (relative to non-Hispanic White) 0.951 0.426 2.122 0.902 5.0

Age 1.140 1.05 1.238 0.002 1.2

APOE4 1.521 0.961 2.406 0.073 2.5

Abbreviations: CLR = confidence limit ratio.
doi:10.1371/journal.pone.0068741.t005
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classification accuracy of 96%. That is, the classifier allocated

individuals into the ‘‘correct’’ or ‘‘LP-estimated class’’ with

approximately 4% error rate. These results support the previously

obtained solution and the observed pattern of vascular disease risk

measures meaningfully separating individuals into two distinct

groups or phenotypes. Interestingly, the weights assigned to each

vascular disease risk variable ranking their ‘‘importance’’ as

predictors in the RF classifier (see Figure 5) corresponded closely

to the observed separation of classes. For example, the four

variables with the highest importance weights (HDL-C, FPS,

triglycerides, and BMI) also produced the highest separation

between the latent classes illustrated in Figure 4.

Discussion

A latent profile (LP) analysis, using seven clinically-relevant

variables for CV disease risk obtained at baseline from a cohort of

recently menopausal women enrolled in the KEEPS study,

revealed two distinct classes or phenotypes, depicting low versus

high CV risk. The low CV risk group was, as expected, larger,

with 62% of the respondents, while the high risk group comprised

the remaining 38%. Our results supported the hypothesis that

genetic and demographic variables were predictive of the model-

identified classes or phenotypes. An interesting finding is that

latent class membership was significantly associated with perfor-

mance in cognitive tasks. That is, individuals in the low CV risk

group, on average, obtained significantly higher scores particularly

on executive function tasks measuring speeded language and

mental flexibility compared to those in the high CV risk group.

The speeded language and mental flexibility factor score was

composed of tests of letter and category word list generation,

which have been frequently used to investigate the semantic

fluency deficits related to the progression of AD [56–57] and

ischemic vascular dementia [58–59].

Midlife CV risk factors are well-known non-genetic risk factors

for incident AD and cognitive decline. Published studies have also

shown a relationship between higher systolic blood pressure or

total cholesterol and LDL-C concentrations in midlife and

increased risk of cognitive impairment or AD [60–62]. For

example, Knopman et al. [60] found an association between

hypertension and decline in processing speed tasks over a 6-year

period. The relationship between BMI and cognitive function

appears more complex, possibly varying depending on the location

of adiposity. A recent study [63] using baseline data from the

seminal Women’s Health Initiative (WHI) hormone trials cohort

reported an inverse association between BMI and performance on

the Modified Mini-Mental State examination (3MSE); a measure

of global cognitive functioning. Interestingly, this association was

stronger in women with smaller waist to hip ratio (WHR) (,0.78)

and weaker with higher WHR and BMI measurements. These

findings suggested a relationship between BMI and cognitive

function conditioned upon abdominal obesity in cognitively

normal older postmenopausal women. A second study using 4-

year follow-up data from women enrolled in WHI Memory Study

(WHIMS) [64] found significant interactions between BMI,

WHR, and incident cognitive impairment and probable dementia.

That is, in women with BMIs between 20 and 29.9 kg/m2, central

adiposity (WHR$0.80) was associated with an increased risk of

cognitive impairment and probable dementia. Although the

mechanisms underlying the complex associations between both

indices of obesity and cognitive function are unclear, our study

demonstrated the synergistic role of obesity, as measured by BMI,

in identifying unobserved group heterogeneity.

The present study suggests that even within a relatively healthy

sample of postmenopausal women at ‘‘low’’ CV risk, vascular

disease risk factors exhibit important heterogeneity. The LP

approach captured cross-sectional group differences in CV disease

risk associated with demographic, genetic, and cognitive variables.

To the best of our knowledge, this is the first study investigating

whether model-based CV disease risk profiles or groups, based on

multiple risk criteria, are associated with cognitive function in

recently menopausal women. It is possible that the latent ‘‘at risk’’

group identified by this analysis is capturing women at increased

risk for the vascular pathway to AD. The use of model-based

analytical approaches to identify systematic heterogeneity and

complex ‘‘within-class’’ inter-relationships among multiple bio-

markers of risk may be more informative than using standard

group-based approaches or ‘‘total’’ sample average scores of

vascular risk variables. The accuracy and utility of single estimates

of CV risk, such as FPS, can be greatly enhanced by considering

additional factors that may help explain the considerable

individual variability in risk that may exist in the larger population.

Absolute risk in the Framingham population for a given set of

factors may not be the same as that for all other populations with

differing characteristics such as ethnicity. Therefore, the risk

assigned by the FPS may miss a large number of individuals

destined for CV events. Newer biomarkers such as CIMT and

CAC scores, and both predisposing (e.g., BMI, physical inactivity,

and abdominal obesity) and conditional (e.g., inflammatory

markers and elevated serum triglycerides and lipoprotein) risk

factors may potentially modify the magnitude of risk for

individuals [65–66]. Our findings imply that a mixture-based

approach can have potential to study the relatedness of multiple

risk variables beyond single risk scores measures representing

average values.

Our phenotypes portray a pattern consistent with a large

number of studies showing the varying prevalence of risk factors

and the underlying rates of CV disease events according to age,

education level (as an indicator of SES), and race/ethnicity [67–

72]. For example, in the Framingham study, women with less than

12 years of education had nearly a four-fold higher risk of

developing CV disease than women with higher education level

[69], [71]. The same study also reported a higher incidence of CV

Figure 5. Variable Importance Measures Estimated by Mean
Decreased Accuracy. BMI = Body mass index; CIMT = Carotid artery
intima-media thickness; LDL-C = Low density lipoprotein-cholesterol;
HDL-C = High density lipoprotein-cholesterol; FSG = Fasting blood
glucose; FRAM = Framingham Point scores; TRIG = Triglycerides.
doi:10.1371/journal.pone.0068741.g005
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disease among postmenopausal women (up to the age of 55) than

that found in younger pre-menopausal women. The Cardiovas-

cular Health Study, a longitudinal study designed to examine risk

factors for coronary artery disease in a large population of 5,201

men and women, reported that heavier weight at age 50 (i.e., a

BMI $27) had a stronger association with prevalent CV disease in

women than current weight at age 65 or older [72].

Present findings are also convergent with studies reporting a

higher prevalence of vascular disease risk factors among Hispanics

compared to non-Hispanic Whites [67], [73–76]. Risk factors

observed in these studies included obesity, lower levels of physical

activity, incidence of metabolic syndrome, and lipid abnormalities.

The observed upward prevalence trends in APOE e4 carriers

among women in the ‘‘high risk’’ class in our study is also in

agreement with findings from a large number of studies showing

associations between APOE polymorphisms and cardiovascular

risk and lipid profile phenotypes [8], [77–78]. Other studies have

also demonstrated that a decrease in plasma estrogen levels after

menopause and APOE may jointly affect lipid and triglyceride

levels [79].

A limitation of the current study was the use of a selected

number of CV risk factors in the LP analysis. However, these

measures differentiated between distinct subclinical phenotypes

and suggested a patterning of and unique co-variation in risk

associated with cognitive function and demographic features.

Further studies could explore the reproducibility of the results in

ethnically-varied samples of postmenopausal women. Future

longitudinal studies should also investigate the utility of the

combination of CV disease risk variables used as surrogates for

class membership in this study in predicting not only CV disease,

but also cognitive impairment across multiple domains.

We acknowledge that questions remain regarding the complex

nature of the interrelationships between vascular risk biomarkers

included and not included in the present analysis and their dual

prognostic utility for cognitive decline and CV events. Nonethe-

less, this study highlights the importance of a multifactorial

approach to vascular disease risk. The use of an LP framework for

the identification of empirically-derived qualitative phenotypes of

risk based on a combination of both traditional and newer risk

markers can be extremely useful in defining risk scoring systems

with better prediction accuracy and clinical relevance for

postmenopausal women and ethnic minority groups. Future work

designed to evaluate the evolution of phenotypes could in turn

contribute to the understanding of preclinical disease and the role

of screening and preventive interventions.
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