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Abstract

Consistent resting brain activity patterns have been repeatedly demonstrated using measures derived from resting BOLD
fMRI data. While those metrics are presumed to reflect underlying spontaneous brain activity (SBA), it is challenging to
prove that association because resting BOLD fMRI metrics are purely model-free and scale-free variables. Cerebral blood
flow (CBF) is typically closely coupled to brain metabolism and is used as a surrogate marker for quantifying regional brain
function, including resting function. Assessing the correlations between resting BOLD fMRI measures and CBF correlation
should provide a means of linking of those measures to the underlying SBA, and a means to quantify those scale-free
measures. The purpose of this paper was to examine the CBF correlations of 3 widely used neuroimaging-based SBA
measures, including seed-region based functional connectivity (FC), regional homogeneity (ReHo), and amplitude of low
frequency fluctuation (ALFF). Test-retest data were acquired to check the stability of potential correlations across time.
Reproducible posterior cingulate cortex (PCC) FC vs regional CBF correlations were found in much of the default mode
network and visual cortex. Dorsal anterior cingulate cortex (ACC) FC vs CBF correlations were consistently found in bilateral
prefrontal cortex. Both ReHo and ALFF were found to be reliably correlated with CBF in most of brain cortex. None of the
assessed SBA measures was correlated with whole brain mean CBF. These findings suggest that resting BOLD fMRI-derived
measures are coupled with regional CBF and are therefore linked to regional SBA.
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Introduction

The human brain consumes about 20% of the body’s energy [1]

and most of the ‘‘energy budget’’ in the brain is spent on the

intrinsic or spontaneous activity supporting communication

among neurons and their supporting cells [2]. This striking

neurophysiologic phenomenon motivates the increasing interest in

examining spontaneous brain activity (SBA) using BOLD fMRI

data acquired at rest. Various data-derived resting brain activity

measures have been assumed to reflect underlying SBA including

seed-region based functional connectivity (SRFC), regional coher-

ence, and regional low frequency fluctuations [2–12]. Evidence

demonstrates that such SBA measures, derived from resting

functional neuroimaging, can be altered by either functional tasks

[8,11,13,14] or brain disorders [15–18]. While these investigations

support the notion of using resting BOLD fMRI-based SBA

measures as potential biomarkers for brain disorders or treatment

effects, most of these measures have yet to be linked with

underlying brain metabolism. Examining that link is important for

verifying the physiological significance of these SBA metrics since

the metrics themselves are unitless.

Cerebral blood flow (CBF) is closely coupled with brain

metabolism [19] and has been used an indirect measure of brain

energy demand for over a century [20,21]. Using PET imaging,

changes in regional CBF have been shown to be comparable to

changes in regional glucose metabolism in response to task

activation [22–29]. Although this coupling is still in debate when

the brain is under the condition of task activation [20,21,30,31], it

sustains since it was demonstrated in the resting brain more than

two decades ago [11,22,23]. More evidence of the CBF-brain

function coupling comes from arterial spin labeling (ASL)

perfusion MRI, which provides a noninvasive methodology for

quantifying CBF [32,33] and has been increasingly adopted to

visualize brain functions via assessing the resting CBF or its

changes in response to exogenous stimuli or even medication [33–

40]. In summary, CBF has been widely demonstrated to be

coupled with brain functions and it has been shown to be coupled

to brain metabolism, including during resting states. It is then

reasonable to hypothesize that CBF is reflective of SBA and

assessing the correlations between ASL CBF and resting BOLD

fMRI metrics should provide a means of linking BOLD fMRI-

based SBA metrics to the underlying brain energy demands.

Using ASL MRI, our group have demonstrated that brain

regions within the default mode network have higher resting CBF

than other places [41], which was replicated by Zou et al. [42].

Such similarity between resting CBF distribution and fMRI-

derived SBA patterns suggests a possible correlation between the

apparent SBA patterns and CBF. However, a direct SBA-CBF

association study is still missing.
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In this study, we acquired repeat resting ASL data and resting

BOLD data from the same cohort of normal subjects to assess the

potential SBA-CBF correlations and their test-retest stability. Part

of this work has been presented in a conference [43] (see the File

S1).

Materials and Methods

Subjects
The resting BOLD fMRI data have been used in a recent

publication [44]. 15 young healthy subjects (mean age = 25,

range = 20–35, SD = 4.75, 8 male) were scanned twice 2 months

apart. Signed written consent forms approved by local IRB were

collected before each of the scan. Careful screening was conducted

to exclude any neurological diseases that could alter brain blood

flow or brain functions. The subjects had no history of drug or

alcohol abuse and were not using any medication that can alter

blood flow. They did not make any long-distance travel during the

2 months before the second MR scan so they had no exposure to

jet lags which might change blood flow. All subjects were told to

not drink any caffeinated beverages 12 hours before the scan time.

Image acquisition
MR imaging was conducted in a 3-T whole-body scanner

(Siemens Medical Systems, Erlangen, Germany). Each session

contained an anatomical scan, a resting ASL scan, and a resting

BOLD fMRI scan. High-resolution structural images were

acquired for spatial brain normalization using a 3D MPRAGE

sequence (TR/TE/TI = 1620/3/950 ms). ASL imaging utilized

an amplitude modulated continuous ASL (CASL) perfusion

imaging sequence optimized for 3.0 T [45] with a standard

transmit/receive (Tx/Rx) head coil (Bruker BioSpin, USA). The

head coil and foam pads were positioned carefully to reduce head

movement. Acquisition parameters were TR = 3.8 s, TE = 17 ms,

FOV = 2206220 mm2, matrix = 64664612, slice thick-

ness = 7 mm, inter-slice space = 2.35 mm, labeling time = 2 s, post

label delay time = 1 sec, bandwidth = 3 kHz/pixel, flip an-

gle = 90u. 50 label/control image pairs were acquired for each

subject. Gradient-echo echo-planar imaging sequence was used for

BOLD fMRI data acquisition with parameters of: TR = 3 s,

TE = 30 ms, FOV = 2206220 mm2, matrix = 64664, 40 inter-

leaved slices with thickness = 3 mm, 220 images. Participants were

asked to lie still in the scanner at rest, keep their eyes open, and

think about nothing.

Data analysis
The following data processing was used for both sessions of

BOLD data and ASL data.

Image preprocessing
All BOLD resting data preprocessing was performed using

SPM8 (http://www.fil.ion.ucl.ac.uk/spm) based batch scripts [46].

The processing steps consisted of: realignment, coregistration,

smoothing with an isotropic Gaussian filter (FWHM = 6 mm),

low-pass filtering with a Butterworth filter (cutoff frequen-

cy = 0.08 Hz), and a high-pass Butterworth filtering (cutoff

frequency = 0.009 Hz). Diffeomorphic Anatomical Registration

Through Exponential Lie Algebra (DARTEL) [47] was used to

generate a local template for all subjects based on their high-

resolution structural images and warp each individual’s BOLD

images to the local template space. For each individual subject, a

brain mask was generated based on the mean control image after

skull stripping. This mask was used to calculate the whole brain

mean signal for each acquired BOLD image. The time course of

that mean signal was termed the global BOLD signal. The CSF

and white matter ROIs were defined as spheres of 6 mm radius

within CSF and white matter, and were used to extract mean CSF

signal and WM signal as nuisances to be included in SPM8. Head

motion time courses, the global BOLD signal time course, the

mean CSF signal time course and mean white matter signal time

course were filtered out from the normalized BOLD images at

each voxel using simple regression [48].

ASL images were motion corrected using the same routine as

that used for BOLD data after removing the effects of spin labeling

by regressing out the labeling paradigm [49]. No low-pass filtering

was applied for ASL data. Other preprocessing steps were the

same as those for BOLD images and have been described in the

ASL data processing pipeline implemented in the ASL data

processing toolbox, ASLtbx [46]. One mean CBF map was

generated from the 50 label/control ASL image pairs. The above

mentioned whole brain mask was used to calculate each subject’s

whole brain mean CBF, which is called global CBF hereafter. The

mean CBF images were normalized to the local template space

using the same transformation matrix generated by DARTEL.

Seed region-based functional connectivity
Seed regions of interest (ROI, voxels within a sphere of 6 mm

radius) were defined in the anterior cingulate cortex (ACC) and

posterior cingulate cortex (PCC) using the Pickatlas utility [50].

Because ACC is relatively a large brain region with different

functions in different sections [51], 4 ACC ROIs were used

including 3 in the ventral ACC (vACC) and 1 in the dorsal ACC

(dACC). The mean signals of the ACC ROIs and PCC ROI were

extracted from each subject’s spatially normalized BOLD resting

images and were subsequently used as regressors in a whole brain

linear regression analysis, respectively. For each subject, all voxels’

correlation coefficients of the two SRFC analyses were collected as

the ACC-FC and PCC-FC maps, respectively.

Regional coherence
The Kendall’s coefficient concordance (KCC, also known as

Kendall’s W) [52], and called ReHo in [53], was calculated at

each voxel using a predefined neighborhood. A sphere with a

radius of 6 mm was used in this paper. Kendall’s W ranges from 0

to 1, where 0 means no coherence and 1 means coherent. The

collection of all voxels’ Kendall’s W formed the so-called ReHo

map.

ALFF
Each voxel’s BOLD time series was transformed into the

frequency domain using MATLAB (Mathworks Inc., Natick, MA)

and the mean amplitude of the spectrum over the frequency range

of 0.01–0.08 Hz was calculated as the ALFF [54].

Group analysis
Across-subjects average CBF, ReHo and ALFF maps were

calculated to illustrate the spatial distribution patterns of each

measure. Each subject’s CBF, ReHo and ALFF images were

divided by the whole brain mean of each type of maps to generate

relative maps of each metric. For each of the 3 relative maps (CBF,

ReHo, and ALFF), a one sample t-test was performed at each

voxel to assess whether the across subject mean is significantly

different from 1 or not. The positive t-map and negative t-map

were used to identify brain regions with significantly higher (or

lower) than average CBF/ReHo/ALFF values, respectively, for

each type of the 3 measures. The same analyses were performed

for each scan session (day 1 and day 2) separately.

SBA CBF Correlations
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SBA-CBF association analyses. Pearson’s correlation coef-

ficient (CC) calculated in MATLAB was used to assess correlations

between 1) global SBA vs global CBF, 2) regional SBA at each

voxel vs global CBF, and 3) regional SBA vs regional CBF. In

analysis 1, CC was directly calculated from the global SBA values

and the global CBF values of all subjects. Global SBA was

calculated from the corresponding SBA maps using the same brain

mask used for calculating whole brain mean CBF. In analysis 2,

CC at each voxel was calculated between the global CBF values

and SBA values of that voxel from all subjects. CC’s of all voxels

were grouped into a CC map. In analysis 3, CC at each voxel was

calculated between that voxel’s CBF values and SBA values from

the same subjects. CC’s of all voxels were grouped into a CC map.

The same association analyses were performed for both of 2 scan

sessions. ReHo vs CBF ratio and ALFF vs CBF ratio at each voxel

was calculated to directly demonstrate the spatial homogeneity of

the ReHo-CBF and ALFF-CBF correlations.

The CBF/FC/ReHo/ALFF distribution analysis results were

thresholded at p,0.001 and the voxel-wise SBA vs CBF

correlation results were thresholded at p,0.005 (CC.0.683,

uncorrected for multiple comparisons). The results were also

thresholded with cluster extent .30 voxels. The overlap percent-

age of the two scan sessions’ suprathreshold SBA vs CBF CC maps

was calculated to evaluate the test-retest reliability for each of the

assessed SBA-CBF associations.

An additional analysis was performed to test whether various

brain networks can be ranked or quantified using their CBF

values. Brain networks were identified using group independent

component analysis (ICA) network analysis [55] on all subjects’

BOLD images (after being registered to the MNI space) using

MELODIC (Multivariate Exploratory Linear Decomposition into

Independent Components) Version 3.09, part of FSL (FMRIB’s

Software Library, www.fmrib.ox.ac.uk/fsl). Two resting state

networks were identified as examples to test the hypothesis: the

default mode network (DMN) and executive control network

(ECN) [4]. The mean CBF in each of the two network regions

were extracted for each subject and statistically compared for each

session.

Results

Group level distributions of CBF, ReHo and ALFF
Fig. 1 shows the across-subject resting mean CBF maps (Fig. 1a

and 1b) and the group level resting CBF distribution patterns

(Fig. 1c and 1d) for scan session 1 and session 2, respectively. As

shown in the results of group level one sample T test based on the

relative CBF images (Fig. 1c and 1d), higher than average CBF

was found in medial orbitofrontal cortex (mOFC), frontal cortex

(FC), cingulate cortex, insula, middle and superior temporal cortex

(TC), putamen, precuneus, bilateral parietal cortex (PC), and

visual cortex (VC) in both sessions. White matter showed lower

than average CBF, as expected.

Fig. 2 shows the group level results of ReHo analysis. Except for

a scale difference, the mean ReHo maps (Fig. 2a and 2b) appeared

to be very similar to the CBF maps as shown in Fig. 1a and 1b.

ReHo in WM were found to be more homogeneous than CBF in

Figure 1. Group level CBF analysis results. a) Mean CBF map of session 1, b) mean CBF map of session 2, c) CBF distribution map of session 1,
and d) CBF distribution map of session 2. Red and blue in c) and d) mean higher than average CBF and lower than average CBF, respectively. c) and d)
were thresholded with p,0.001 (uncorrected).
doi:10.1371/journal.pone.0044556.g001

SBA CBF Correlations
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WM. ReHo distribution patterns (Fig. 2c and 2d) were similar to

CBF distribution patterns (Fig. 1c and 1d) in most brain areas. The

lower than average ReHo pattern in inferior thalamus, temporal

lobe, and inferior insula (the left 2 slices in Fig. 2c, 2d) was more

spatially distributed than the lower than average CBF pattern (the

left 2 slices in Fig. 1c, 1d), while the higher than average ReHo

pattern in VC and inferior TC (iTC) (the left 2 slices in Fig. 2c, 2d)

was less spatially distributed than that of the higher than average

CBF pattern (the left 2 slices in Fig. 1c, 1d).

Fig. 3 shows the group level results of ALFF analysis. The mean

ALFF maps (Fig. 3a, 3b) demonstrated similar GM/WM contrast

to that of the mean CBF maps (Fig. 1a, 1b) or the mean ReHo

maps (Fig. 2a, 2b). Significant higher than average ALFF was

found in cingulate cortex, precuneus, bilateral PC, VC, putamen,

insula, fusiform, and middle TC (mTC). Similar to the group level

results of CBF and ReHo analysis, ALFF in WM was significantly

lower than average.

Group level PCC-FC and ACC-FC
Significant PCC-FC correlations were found in PCC, ACC,

mOFC, prefrontal cortex (PFC), mTC, bilateral PC, and

precuneus in both sessions (Fig. 4c and 4d). Significant dACC-

FC (Fig. 5c and 5d) correlations were found in ACC including

vACC and dACC, mOFC, insula, and bilateral PFC. (vACC-FC

maps were not displayed because no significant correlations were

found between regional CBF and vACC-FC using any of the 3

vACC ROIs).

SBA-CBF association analyses results
No significant correlations were found between global CBF and

any of the 4 SBA metrics either globally (global CBF vs global

SBA) or regionally (global CBF vs each voxel’s SBA). Both global

ReHo and global ALFF showed a trend of correlation to global

CBF. The CC of global ReHo vs global CBF was 0.19 and 0.28

for session 1 and session 2, respectively; CC of global ALFF vs

global CBF was 0.41 and 0.43 for session 1 and session 2,

respectively.

Significant voxel-wise correlation between regional absolute

CBF and PCC-FC in mOFC, VC, PCC/precuneus, bilateral PC,

and left dorsal lateral PFC (DLPFC) were demonstrated in both

sessions (Fig. 4a and 4b). Most of these positively correlated

regions are in the significant PCC FC regions shown in Fig. 4c and

4d. Correlations in other brain regions were not reproduced in

both test-retest sessions. 11.68% of the suprathreshold voxels of the

two sessions overlapped.

Positive voxel-wise correlations between regional CBF and

dACC-FC were consistently demonstrated in bilateral PFC in both

sessions (Fig. 5a and 5b), which overlapped with the significant

dACC-FC regions as shown in Fig. 5c and 5d. Repeat CBF vs

dACC-FC correlations in iTC did not overlap with the significant

dACC-FC correlations. CBF vs dACC-FC correlations in other

areas were not reproducible. 10.72% of the suprathreshold voxels

of the two sessions overlapped. Reproducible regional CBF vs

ReHo correlations were found in bilateral TC, mOFC, lateral

orbitofrontal cortex (lOFC), bilateral DLPFC, bilateral PC, and

precuneus in both the test and retest sessions (Fig. 6a and 6b).

Figure 2. Group level ReHo analysis results. a) Mean ReHo map of session 1, b) mean ReHo map of session 2, c) ReHo distribution map of
session 1, and d) ReHo distribution map of session 2. Red and blue in c) and d) mean higher than average ReHo and lower than average ReHo,
respectively. c) and d) were thresholded with p,0.001 (uncorrected).
doi:10.1371/journal.pone.0044556.g002

SBA CBF Correlations
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33.59% of the suprathreshold voxels of the two sessions

overlapped. ALFF was found to correlate with CBF across both

test-retest sessions in most of the brain cortices except for middle

and posterior insula, putamen, PCC, and left iTC (Fig. 7). 44.42%

of the suprathreshold voxels of the two sessions overlapped.

Fig. 8 and 9 show the mean and standard deviation maps of the

ReHo/CBF (Fig. 8) and ALFF/CBF (Fig. 9) ratios for both scan

sessions. A uniform and stable (low standard deviation) ReHo/

CBF ratio was found throughout GM except for part of iTC,

precuneus, and VC in both sessions (Fig. 8). WM and ventricle

areas showed high ReHo/CBF ratios with high standard

deviations. Similar findings occurred in the ALFF/CBF ratio

analysis (Fig. 9).

Discussion

Regional CBF obtained with ASL MRI provides a means to

assess the links between resting BOLD imaging-derived SBA

measures and underlying brain metabolism. This study provides

the first evidence that the resting BOLD imaging-based SBA

measures are related to regional CBF.

Group level CBF, FC, ReHo, and ALFF patterns were first

assessed for each of the 2 scan sessions to check the similarity of the

distribution patterns of CBF and each of the 3 SBA measures (FC,

ReHo, and ALFF). Consistent with the findings reported in the

literature [11,41,42], a set of reliable high CBF (higher than whole

brain mean) regions was found in both sessions, consisting of

mOFC, lOFC, PFC, putamen, insula, temporal cortex, ACC,

PCC, VC, precuneus, and bilateral PC. The significant high

ReHo regions overlapped with the high CBF regions in mOFC,

PFC, ACC, putamen, PCC, precuneus, and bilateral PC,

suggesting that the relatively high coherent resting brain activity

in those regions is associated with increased resting brain

metabolism. A set of high ALFF (higher than whole brain average)

regions was identified in mOFC, insula, iTC, putamen, VC, PCC,

precuneus, VC, and bilateral PC, which also overlaps with the

high CBF and high ReHo regions described above. This overlap

suggests that increased brain metabolism might be required to

support regionally coherent and slowly fluctuating resting brain

activity. WM showed lower than average CBF/ReHo/ALFF as

expected, and WM CBF is known to be lower than GM CBF [56].

Low WM ReHo and WM ALFF suggest that resting brain activity

in WM is sporadic across voxels and random across time, which

may require relatively lower energy support than that for GM, as

reflected by the relatively lower CBF. The overlap between the

high CBF regions and PCC-FC and dACC-FC network regions

suggest a potential CBF modulation for each of the FC in the

overlapped regions.

Repeatable regional PCC-FC vs regional CBF correlations were

observed in bilateral PC, precuneus, VC, DLPFC, and mOFC,

indicating a direct CBF modulation to the resting PCC-FC within

the DMN (bilateral PA and precuneus), visual system, and the

executive cognitive network (DLPFC and OFC). Similar to what

was reported in [57], dACC-FC and vACC-FC (to save space, the

latter was not displayed in Results) showed different networks.

Only dACC-FC demonstrated reliable (across two time points)

Figure 3. Group level ALFF analysis results. a) Mean ALFF map of session 1, b) mean ALFF map of session 2, c) ALFF distribution map of session
1, and d) ALFF distribution map of session 2. Red and blue in c) and d) mean higher than average ALFF and lower than average ALFF, respectively. c)
and d) were thresholded with p,0.001 (uncorrected).
doi:10.1371/journal.pone.0044556.g003

SBA CBF Correlations
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correlations to regional CBF which were located in bilateral PFC,

left inferior and superior temporal cortex. Reproducible vACC-FC

vs CBF correlations were identified in bilateral PFC, PCC, and

superior temporal cortex when the significance level was reduced

to p,0.05. This difference of regional ACC-FC vs regional CBF

association might be induced by the small sample size involved in

this study as well as the use of CASL, which is noisier than current

methods [58]. No correlations were found between global CBF

and global or regional FC, indicating no linear modulations of

global CBF to FC. Since CBF modulations on regional FC were

only observed in certain regions, the region constrained CBF vs

FC correlations are likely suppressed when considering the whole

brain average, which might explain why there were no correlations

between global CBF and FC.

Stable correlations between regional CBF and SBA coherence

(ReHo) or the low frequency fluctuation magnitudes (ALFF) were

demonstrated in most of the brain cortex. The ReHo/CBF ratio

and ALFF/CBF ratio-based analyses also suggest that a spatially

uniform and stable linear relation between regional CBF and the

two local SBA measures exists in GM, except for VC and

precuneus. Global CBF showed no significant correlations to both

regional ReHo, suggesting that regional SBA is not linearly

modulated by the overall brain energy supply. A trend of

correlation was found between the global CBF and global ReHo

or global ALFF, which can be understood from the massive

regional CBF vs ReHo or ALFF correlation as the correlation of

global CBF vs global ReHo or ALFF can be approximated to

certain extent by a summation of the regional CBF vs regional

ReHo or ALFF. As compared to the regional FC vs regional CBF

correlation, regional ReHo and ALFF showed spatially more

distributed correlations to regional CBF. FC is derived from the

correlation of any brain voxel’s time series to that of the seed

region, and might be modulated by CBF of the current voxel as

well as that of the seed. Consequently, regional CBF might

contribute only certain part of the FC variations across subject,

which explains why regional FC vs regional CBF showed

correlations in fewer brain regions than regional ReHo and ALFF

vs regional CBF.

The value of these SBA vs CBF associations is twofold. First, it

helps to link the apparent fMRI-derived parameters to a

physiological meaningful measure. Though resting BOLD fMRI

is assumed to be able to capture resting brain activity [2–12], these

fMRI-derived parameters using either SRFC, ReHo, ALFF or

even ICA cannot directly refer any physiological meanings. As

baseline CBF reflects the baseline brain energy demand, relating

those measures to CBF provides a way to appreciate their

physiological underpinnings in brain metabolism. Second, it

provides a way to normalize these purely data-dependent SBA

metrics by using resting regional CBF, or alternatively the

variations due to regional CBF can be removed in order to

improve across subject comparisons, which might be very useful

for clinical treatment or medicine study since both treatment and

medicine can change regional CBF. Various brain networks might

also be ranked or quantified using their CBF values. For example,

in an additional analysis, we identified two resting brain networks,

default mode network (DMN) and executive control network

(ECN), using ICA on the BOLD data. We found that DMN

Figure 4. PCC-FC vs regional CBF association analysis results. a) and b) are the PCC-FC vs CBF correlation map (thresholded with p,0.005,
uncorrected) for session 1 and 2, respectively. c) and d) are the group level PCC-FC maps (p,0.001, uncorrected) for session 1 and 2, respectively.
doi:10.1371/journal.pone.0044556.g004

SBA CBF Correlations
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regions showed higher mean CBF than ECN regions consistently

at both time points (Fig. 10).

It is worth to note that the significant FC vs CBF correlation

clusters appeared to be small, which raises a concern of noise

interference. To reduce noise confounds, we used several

preprocessing strategies including filtering, WM/CSF and global

signal regression. More importantly, we used test-retest data from

the same cohort of subjects with careful screening for any possible

factors that may affect blood flow or even resting brain activity. As

FC measures the correlations between two spatially distinct

regions, it might be modulated by CBF from both regions.

Two limitations exist in this CBF-SBA association study. First,

the data sample size is moderate and an uncorrected significance

level was used for thresholding the results. Second, the retest data

were acquired 2 months later. The small sample size might explain

why we did not find any significant (even an uncorrected threshold

was used) correlation between vACC FC and regional CBF and

why we did not find any correlation between SBA and the global

CBF if there were. The multiple comparison issue applies to the

Figure 5. dACC-FC vs regional CBF association analysis results. a) and b) are the dACC-FC vs CBF correlation map (thresholded with p,0.005,
uncorrected) for session 1 and 2, respectively. c) and d) are the group level dACC-FC maps (p,0.001, uncorrected) for session 1 and 2, respectively.
doi:10.1371/journal.pone.0044556.g005

Figure 6. ReHo vs regional CBF correlation maps for a) session 1 and b) session 2 thresholded at p,0.005 (uncorrected).
doi:10.1371/journal.pone.0044556.g006

SBA CBF Correlations
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FC vs CBF correlation analysis but not to the ReHo vs CBF or

ALFF vs CBF analyses since the suprathreshold clusters of the

correlation of ReHo and ALFF to regional CBF survived the false

detection rate (FDR)-based multiple comparison correction

(q,0.05) [59,60]. For FC vs CBF correlation analysis, although

15 subjects might not have enough power to reveal all possible

SBA-CBF correlations, our findings were based on within-subject

test-retest data, which partly compromised the sample size issue

since these SBA-CBF associations repeated in 15 subjects should

be reproducible when more subjects are recruited. A larger sample

size and a more stringent thresholding criterion will be required in

future work to confirm the findings reported here.

The test-retest data used in this paper were acquired in a project

designed to test the stability of SBA measures and resting CBF

with a long time interval (results were reported in a separate

paper). Although a 2 month gap could conceivably introduce

physiological or psychological variations to the data, we still found

repeated SBA-CBF associations. One reason could be that these

Figure 7. ALFF vs regional CBF correlation maps for a) session 1 and b) session 2 thresholded at p,0.005 (uncorrected).
doi:10.1371/journal.pone.0044556.g007

Figure 8. The mean and standard deviation maps of the ReHo/CBF ratio. a) and b) are the mean ReHo/CBF ratio map for session 1 and
session 2, respectively. c) and d) are the standard deviation maps of the ReHo/CBF ratio for session 1 and 2, respectively. The map intensity was
multiplied by 10000 for the purpose of illustration.
doi:10.1371/journal.pone.0044556.g008
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associations are stable over this duration in healthy subjects.

Another explanation could be that the physiological and

psychological variations affect SBA and CBF in the same way so

their effects on the SBA-CBF correlation are canceled. Although

we have screened for caffeine use and neurological disorders,

several other factors, including breathing pattern, consumption of

alcohol or caffeine, blood pressure, and activities of the autonomic

nerve systems could alter blood flow. Since resting BOLD signals

Figure 9. The mean and standard deviation maps of the ALFF/CBF ratio. a) and b) are the mean ALFF/CBF ratio maps for session 1 and
session 2, respectively. c) and d) are the standard deviation maps of the ALFF/CBF ratio for session 1 and 2, respectively. The map intensity was
multiplied by 10000 for the purpose of illustration.
doi:10.1371/journal.pone.0044556.g009

Figure 10. Default Mode Network (DMN) and executive control network (ECN) presenting significant (p,0.0004) different CBF at
both sessions.
doi:10.1371/journal.pone.0044556.g010
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are modulated by CBF [61,62], CBF fluctuations will likely be

propagated into the resting BOLD-based SBA measures, resulting

in apparent SBA-CBF correlations. One way to reduce these

artificial SBA-CBF correlations is to use relative CBF maps instead

of absolute CBF maps in the correlation analysis. Using the

relative CBF maps (obtained by dividing absolute CBF map by the

whole brain average absolute CBF) we found very similar

correlation results (data not shown), which suggests that the

demonstrated SBA-CBF correlations are not affected by those

physiological variations and supports the findings of no-significant

correlations of regional SBA to global CBF.

Various additional network-related measures [63–65] have also

been used to assess SBA. Limited by the scope of this paper, we did

not include them, though future work will cover the relations

between more resting BOLD-based SBA measures like functional

brain network properties [66]. Resting ASL MRI has been

demonstrated to be capable for assessing SBA [42,67]. But we did

not include the ASL MRI-based SBA measures due to the limit of

space.

In summary, we investigated the correlations between different

SBA measures with CBF and their test-retest reproducibility. In

our analysis, reliable correlations were demonstrated between CBF

and PCC FC as well as dACC FC in many of the significant FC

regions, respectively. Reliable correlations to regional CBF were

found in ReHo and ALFF in most of gray matter area. No

correlations were found between global CBF and these SBA

measures. These results demonstrate that dynamic SBA measures

based on BOLD fMRI are related to the static baseline CBF,

which confirms a link between these apparent BOLD fMRI-based

metrics and underlying SBA.
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