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Abstract

Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of
genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While
genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate
genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process
necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic
approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that
reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake
trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci
had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to
previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well
as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of
arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-
networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses
revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration
of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus,
in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape
underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent
of the genetic regulatory mechanisms of this complex and universal behavior.
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Introduction

The behavioral states of sleep and wake, as defined by

electroencephalogram (EEG) and electromyogram (EMG) activity,

are composed of multiple sub-component measures with sleep

itself being divided into the primary states of Rapid Eye

Movement (REM) and Non Rapid Eye Movement (NREM) sleep

in mammals [1,2]. Although there is considerable evidence

supporting a strong genetic basis for some sleep-wake traits and

sleep disorders [3], as well as speculation on the polygenic nature

of sleep due to the complexity of the behavior [4], little has been

done to unravel the complex network of genetic and physiological

interactions that must underlie this universal behavior in

mammals. While sleep-wake recordings in recombinant mouse

strains have identified a limited number of significant or

‘‘suggestive’’ quantitative trait loci (QTL) for a few sleep-wake

measurements [5,6,7], and a small number of genes in these QTL

have been found to be associated with some individual sleep-wake

properties [8,9], no previous attempts have been made to record

sleep in a large genetically segregating population of mice in order

to utilize modern genetic and genomic approaches to study sleep.

As a first step to understand the full genetic complexity (i.e., the

genetic landscape) underlying the regulation of sleep, we carried

out a genome wide scan for the various components of this

complex mammalian behavior by examining linkage between

2,310 informative single nucleotide polymorphisms (SNPs) and 20

sleep-wake traits in 269 male mice from a genetically segregating

population. In addition, we examined the relationships among the
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different traits to assess whether sleep-wake traits that have been

presumed to be related actually share common genetic influences.

The breeding scheme to produce a segregating mouse

population was set up to enable both the identification of QTL,

as well as to allow for the mapping of a chemically-induced

unknown mutation that resulted in a greater amount of

wakefulness (referred to as the Sleepless mutation) on a C57BL/6J

(B6) background. To increase genetic variants for QTL analysis,

we selected a counter strain that had substantially different sleep-

wake characteristics from B6; the BALB/cByJ (BALB) strain

showed significant differences in sleep fragmentation (e.g. more

stage shifts, shorter sleep/wake bout durations) but similar

amounts of wake compared to wild-type B6 mice. The Sleepless

mutation segregates as a single autosomal dominant mutation,

making the cross potentially useful in genetically mapping Sleepless.

Male B6 mice presumed heterozygous for Sleepless based on

phenotype were mated to female BALB mice from the Jackson

Laboratory to create F1 animals. F1 male mice showing a high

wake phenotype (presumably carrying the mutation) were then

crossed with wild-type female B6 mice to create 269

[B66(BALBxB6)F1]N2 (N2) male progeny. Thus, the N2 mice

produced represented a genetically heterogeneous population with

which we hoped to investigate: 1) mapping of the Sleepless

mutation, which we will not elaborate on here, 2) a genome wide

analysis for linkage between multiple sleep-wake traits and

genomic regions and 3) the functional relationships among

different sleep-wake traits.

Results and Discussion

Comparison of Sleep-wake Traits
Full EEG and EMG recordings over 48 hrs were collected from

each N2 animal and sleep-wake parameters, defined by visually

characterizing each 10 second epoch as wake, NREM or REM

sleep, and performing EEG spectral analysis, allowed for the

measurement of 72 parameters (See Supporting Information)

defining sleep structure and continuity as well as EEG waveform

activity. Before undertaking any of the analyses presented here, we

selected from the 72 parameters we measure 20 traits that are most

commonly used in the literature to describe sleep in rodent

models. Applying factor analysis [10] to 1000 bootstrapped

samples of the 20 sleep-wake traits over the 24-hr period allowed

for an unbiased identification of structure within the multitude of

variables (Table 1 and Supporting Information Table S2 for the

bootstrapped 95% confidence intervals). These factors clustered

into five trait dimensions that represent state amount, sleep

fragmentation, REM sleep traits, latency to REM or NREM sleep

and relative EEG spectral power. These five factors validate and

confirm our a priori expectations that there are distinct and

separable aspects of sleep. A similar approach has recently been

Table 1. Factor Analysis of Sleep-Wake Traits.

Trait Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Fragmentation REM Sleep State Amount Power Bands Latency

nb Wake 20.82 20.20 0.03 0.26 20.04

db Wake 0.77 0.22 20.31 20.23 0.09

nb NREM 20.96 20.07 0.19 20.02 20.08

db NREM 0.95 0.13 0.22 0.02 0.09

db TS 0.96 0.08 0.19 0.03 0.10

# Arousals 20.69 0.13 0.27 20.30 20.08

# Shifts 20.95 20.13 0.19 20.02 20.09

Onset REM 0.85 0.16 0.33 0.04 0.11

REM min 20.17 20.91 20.02 0.08 0.02

% REM/TS 20.14 20.83 20.43 0.10 0.05

nb REM 20.21 20.89 0.05 0.00 20.21

Inter REM 0.03 0.85 20.09 0.05 0.19

Wake min 0.06 0.04 20.98 0.05 0.08

NREM min 20.03 0.12 0.98 20.06 20.09

NREM rel Delta 0.03 20.02 0.01 0.81 0.03

REM rel Theta I 0.14 0.10 0.02 20.78 0.00

REM rel Theta II 20.07 20.06 0.07 20.83 0.02

lat NREM 0.18 20.07 20.01 20.14 0.86

lat REM 0.10 0.18 20.02 20.02 0.87

db REM 0.04 0.14 20.11 0.15 0.39

Proportion of Total Variance
Explained

31.4% 16.5% 12.9% 11.2% 9.1%

TOTAL 81.1%

Factor loadings (Statistica, StatSoft, Inc.) of the 20 sleep-wake variables in the 24-hr period are shown with the factor-determining loading values bolded (generally
greater than 60.75). The 5 factors account for 81 percent of the total variance in the data. See Supporting Information for complete trait descriptions, and Supporting
Information Table S2 for a 10006bootstrap-obtained estimate of the 95% confidence intervals of the factor loading values.
doi:10.1371/journal.pone.0005161.t001

Landscape of Sleep-Wake Traits
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used on human data to identify three principal components of

human sleep that involved 1) sleep duration, 2) NREM intensity

and 3) sleep continuity [11]. Means and standard deviations of the

20 sleep traits in the N2 population are presented in Supporting

Information Table S1.

Quantitative Trait Loci Analysis
Linkage analysis was conducted with a set of 2,310 informative

SNPs across the 19 autosomes from 269 N2 mice for which both

complete and high quality genotype and sleep-wake phenotype data

were obtained. The 48-hr sleep recording period was partitioned

into two 24-hr periods and further into a light and dark phase

yielding four recording time domains per animal during which each

sleep trait was computed (see Supporting Information for further

details on the statistical methods). Linkage analysis revealed a total

of 52 significant QTL (comprising a minimum of 20 genomic loci)

for the traits studied in this cross with LOD scores ranging from 2.5

to 7.6 (Fig. 1 and Table 2). Over half of these (28) reflected trait

variation occurring across the full 24-hr day, indicating that much of

the genetic control of sleep acts consistently across the light and dark

periods. However, 12 additional QTL, termed ‘‘mixed-effect

QTL’’, reflected trait variation across the full 24-hr period where

the direction and/or magnitude of the effect of the locus on the trait

is statistically different between the light and dark periods. This

indicates that the genotype at a locus can have the opposite or a

quantifiably different effect on the same trait during the light versus

the dark phase. In some cases, this effect was quite dramatic, as was

observed for the wake min QTL at Q17@29 (LOD 7.6) where the

estimated effect of the BALB genotype at this locus was 8.1 min in

the light but 224.7 min in the dark (Supporting Information Table

S3). Finally, some QTL were only detected in the dark (N = 9) or in

the light (N = 3), indicating that the genotype at some loci only

influenced sleep-wake traits during certain periods of the 24-hr day.

We found that the QTL associated with any specific trait can be

highly time- dependent, adding another dimension to the richness

of the genetic landscape underlying sleep-wake traits. For example,

while REM min over 24 hrs mapped to Q5@49 (LOD 4.2) and

Q13@23 (LOD 6.3), REM min during the light mapped to

Q7@40 (LOD 3.6), while a mixed effect on REM min mapped to

Q17@29 (LOD 4.9). We also found that different trait groups

show a bias as to whether they are affected by QTL in a similar

manner across the 24-hr day, as opposed to QTL having different

effects on the traits in the light versus the dark. For example, 19 of

the 21 fragmentation QTL (Fig. 1, red symbols) were linked to the

trait in the dark period or over the full 24 hrs, while all 4 of the

EEG power band QTL fell in the mixed-effect category (Fig. 1,

yellow symbols). These findings indicated that the genetic

regulation of a single sleep-wake trait was highly dependent on

circadian time or the environmental light-dark cycle.

Analysis of such a large genotype/phenotype data set allowed us

to observe intricacies in the genetic landscape in the control of

specific sleep-wake traits not previously detected. For example,

while both db REM and nb REM together determined the total

amount of REM sleep, these two REM traits were at least partially

under differential genetic control (Fig. 1), since QTL for db REM

mapped to Q5@49 (LOD 6.3) and Q13@23 (LOD 3.3), while

QTL for nb REM mapped to Q7@32 (LOD 4.3) and Q17@29

(LOD 3.0). While it may be expected that QTL for mathemat-

ically related sleep-wake traits (e.g. measures of fragmentation such

as nb NREM and db Wake) might map to the same region, QTL

for less directly related traits (e.g. # Arousals and NREM delta

power, or wake min and REM latency) might not have been

expected to map to the same loci as occurred in Q1@75 (LOD

2.5–4.5) and Q13@2 (LOD 2.5–5.1) (Table 2). These unexpected

genetic relationships raise the possibility that shared genetic

regulatory mechanisms may underlie different sleep-wake traits

that were not previously thought to be related.

It should be noted that two genomic regions, on chromosomes 7

and 13, were associated with high wake and the B6 genotype. As

the Sleepless mutation has a high wake phenotype, these represent

candidate regions for the mutation. In addition, the presence of

the Sleepless mutation segregating in this N2 population may have

influenced the genetic effect of some of our identified QTL.

Previous studies have shown that the presence of a mutation can

reveal epistatic effects of other genes that may otherwise not be

apparent [12]. Therefore some of the specific QTL presented here

might be present because the locus represents Sleepless or because it

is a region that interacts with Sleepless. However, analysis of

epistatic interactions with these two regions failed to identify any

significant interactions with the region on chromosome 13, and

only one region of significant interaction with chromosome 7 (see

Supporting Information Figure S2). Thus, it appears the presence

of Sleepless segregating in the N2 population influenced the QTL

results at most at two loci, if the Sleepless locus is not normally

polymorphic between B6 and BALB.

Bayesian network analysis
In order to create a dynamic model that allows for the

visualization of relationships among multiple sleep phenotypes and

multiple sleep QTL in a context specific manner we used Bayesian

analysis. Construction of a Bayesian network facilitated visualiza-

tion of the strongest links between the sleep phenotypes and QTL

and identification of sub-networks and patterns defined by those

links that otherwise might not be seen [13,14]. While some links

are obvious (e.g. a QTL causing decreased wake over 24 hrs can

be expected to cause an increased amount of NREM over 24 hrs),

the network revealed a number of less intuitive links. Using a

stringent set of criteria by limiting the identification of nodes and

edges (Supporting Information), Fig. 2 exposes a network of the

strongest statistically defined interactions between different sleep-

wake traits during the light, dark or full 24-hr period, as well as

between these traits and the QTL identified in this cross. Trait by

trait correlations (Supporting Information Table S4) and a less

stringent Bayesian network (Supporting Information Fig. S1) are

also provided. Incorporating this large amount of data into one

cohesive network represents a novel model for understanding the

complex behavior of sleep and the interactions of sleep-wake traits

at the genetic and trait by trait levels.

One of the most salient features of the network shown in Fig. 2

was the clustering of sleep phenotypes into sub-networks according

to trait type. The sub-networks are comprised of small,

interconnected groups of traits that, in this case, align with the

previously defined loading factors (Table 1). The most conserved

sub-network by trait type in both the light and dark phases was

REM sleep. Between both phases, the pattern was maintained

with arcs leading from % REM/TS and nb REM to inter-REM

interval. In fact, all trait nodes were directly linked to other nodes

of the same trait type, with only one exception. The nodes for

number of brief arousals, in the light and dark phases, were

detached from other fragmentation nodes, although in both cases

there was only a single degree of separation. The connection of

brief arousals to power bands may be a reflection of the links

between sleep depth and excitability [5]. The link between sleep

continuity and intensity in our network is particularly interesting in

view of the finding that in two different gene deletion models

(prion protein and alpha1G T-type Ca2+ channels) there is a

decrease in NREM power density accompanied by an increase in

the number of brief awakenings [15,16].

Landscape of Sleep-Wake Traits

PLoS ONE | www.plosone.org 3 April 2009 | Volume 4 | Issue 4 | e5161



Aside from power band and fragmentation factors, there was

only one edge linking a light and dark node in Fig. 2, NREM min

in the light with % REM/TS in the dark. This one clear edge led

us to take a closer look at wake time in the light (or dark) phase

with REM sleep time in the dark (or light phase). Such an analysis

led to the surprising discovery that while there was no significant

correlation between REM time within the light versus the dark

phases, there were significant correlations such that the amount of

wake in the dark was connected with the amount of REM sleep in

the light, while the amount of wake in the light was correlated with

the amount of REM in the dark (Supporting Information Table

S4). Such an unexpected relationship raises a number of new

questions about the relationship of wake time to subsequent REM

sleep and/or how REM sleep time effects subsequent wake time.

Figure 1. 52 QTL for 20 sleep-wake traits. 52 QTL shown by chromosome and cM positions that were identified for each of the sleep-wake traits
listed in Table 1. The colored bands represent the position of the peak LOD score for each QTL and the fill of the bands denote the time period for the
trait linkage as shown in the insert legend. Based on the factor analysis depicted in Table 1, the traits are grouped into 1 of 5 categories designated by
the color of the bands as noted in the insert legend. The precise peak (in cM and Mb) and LOD score of the QTL, as well as the specific sleep-wake
trait represented by each of the colored bands, are provided in Table 2. Further information on the size of the QTL are provided in Supporting
Information Table S3.
doi:10.1371/journal.pone.0005161.g001

Landscape of Sleep-Wake Traits
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Table 2. Peak Location and LOD Score of Each QTL Depicted in Figure 1.

Name Trait Trait_Type Chr Peak (cM) Peak (Mb) LOD FDR* Period

Q1@39 Onset REM Fragmentation 1 38.470 109.044 4.445 .006 24 hour

Q1@39 db TS Fragmentation 1 39.120 115.677 3.453 .034 24 hour

Q1@39 db NREM Fragmentation 1 39.120 115.677 3.438 .034 24 hour

Q1@39 nb NREM Fragmentation 1 42.400 133.902 3.485 .026 24 hour

Q1@39 # Shifts Fragmentation 1 42.400 133.902 3.076 .033 24 hour

Q1@64 # Arousals Fragmentation 1 62.230 172.886 4.231 .004 24 hour

Q1@64 lat REM Latency 1 62.230 172.886 2.941 .046 24 hour

Q1@64 db Wake Fragmentation 1 62.230 172.886 3.991 .019 Dark

Q1@64 nb Wake Fragmentation 1 63.680 176.451 3.285 .018 Dark

Q1@64 REM rel Theta I Power Bands 1 63.680 176.451 2.790 .040 Mixed

Q1@75 lat NREM Latency 1 74.200 187.588 4.528 .001 24 hour

Q1@75 db TS Fragmentation 1 74.200 187.588 3.252 .023 Dark

Q1@75 lat NREM Latency 1 74.200 187.588 2.796 .019 Dark

Q1@75 NREM rel Delta Power Bands 1 74.200 187.588 3.097 .044 Mixed

Q1@75 Onset REM Fragmentation 1 74.580 188.870 3.475 .009 Dark

Q1@75 db NREM Fragmentation 1 76.960 189.312 3.176 .027 Dark

Q1@75 # Arousals Fragmentation 1 76.960 189.312 2.493 .041 Dark

Q3@12 NREM rel Delta Power Bands 3 12.180 30.690 2.745 .042 Mixed

Q3@71 lat NREM Latency 3 71.060 146.067 3.244 .027 24 hour

Q5@49 % REM/TS REM 5 45.290 65.322 4.225 .008 24 hour

Q5@49 db REM REM 5 49.320 70.388 6.339 .001 24 hour

Q5@49 REM REM 5 51.940 73.499 4.224 .005 24 hour

Q6@70 # Shifts Fragmentation 6 70.000 135.767 3.111 .040 24 hour

Q6@70 nb NREM Fragmentation 6 70.000 135.767 3.079 .033 24 hour

Q6@70 db Wake Fragmentation 6 70.000 135.767 3.666 .024 24 hour

Q7@1 db Wake Fragmentation 7 0.980 7.882 3.113 .045 24 hour

Q7@1 nb Wake Fragmentation 7 0.980 7.882 4.064 .012 24 hour

Q7@32 nb REM REM 7 31.770 50.217 4.288 .002 Mixed

Q7@40 REM min REM 7 40.200 67.412 3.608 .004 Light

Q7@63 Inter REM REM 7 59.900 102.969 4.014 .046 Mixed

Q7@63 Wake min State Length 7 62.850 114.066 4.812 .022 Mixed

Q7@63 NREM min State Length 7 65.140 114.924 4.443 .027 Light

Q9@15 lat NREM Latency 9 15.160 46.527 3.062 .026 24 hour

Q12@28 db TS Fragmentation 12 27.580 71.050 3.111 .035 24 hour

Q12@28 db NREM Fragmentation 12 27.580 71.050 3.119 .036 24 hour

Q13@2 # Arousals Fragmentation 13 0.000 4.692 2.536 .049 Light

Q13@2 lat REM Latency 13 1.640 14.548 2.829 .042 24 hour

Q13@2 Wake min State Length 13 1.970 16.724 5.139 .001 24 hour

Q13@2 NREM min State Length 13 1.970 16.724 3.593 .049 24 hour

Q13@23 db REM REM 13 20.030 60.142 3.299 .026 24 hour

Q13@23 REM min REM 13 22.660 68.690 6.302 ,.001 24 hour

Q13@23 % REM/TS REM 13 22.660 68.690 6.473 ,.001 24 hour

Q13@23 Inter REM REM 13 25.940 72.819 3.928 .012 24 hour

Q14@73 lat REM Latency 14 72.980 121.782 3.058 .046 24 hour

Q15@26 % REM/TS REM 15 26.300 82.415 4.040 .002 Dark

Q16@24 REM rel Theta I Power Bands 16 23.660 51.539 3.039 .037 Mixed

Q17@13 % REM/TS REM 17 3.940 24.849 4.263 .002 Mixed

Q17@13 db TS Fragmentation 17 13.120 44.789 2.601 .049 Mixed

Q17@29 nb REM REM 17 28.590 65.200 3.021 .014 Mixed

Q17@29 REM min REM 17 28.590 65.200 4.870 ,.001 Mixed

Landscape of Sleep-Wake Traits
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Name Trait Trait_Type Chr Peak (cM) Peak (Mb) LOD FDR* Period

Q17@29 Wake min State Length 17 30.230 65.622 7.562 ,.001 Mixed

Q17@29 NREM min State Length 17 30.230 65.622 5.954 .001 Dark

QTL were detected by R package QTL as were the peak LOD scores. The QTL peak was defined as the position within the QTL with the highest LOD score. Trait type was
determined by factor analysis (Table 1). Chr = chromosome, LOD = logarithm of odds. FDR = False Discovery Rate (probability). See Supplementary Information for
complete trait descriptions. See Supporting Information Table S3 for further information about each QTL.
*To account for multiple testing using a non-parametric approach, FDR estimates were computed genome-wide within each sleep trait by permuting individual
identifiers for the genotype data and repeating the analyses on 1000 replicate permuted data sets [25]. To eliminate the influence of markers in high linkage
disequilibrium, chromosome-wide peak marker LOD scores were used for all FDR computations.

doi:10.1371/journal.pone.0005161.t002

Table 2. cont.

Figure 2. QTL and Sleep-wake Trait Network Analysis. Bayesian network of sleep traits and significant QTL. Sleep-wake traits with QTL that
differed in effects between the light and dark periods were represented in the network as two distinct traits, measured in the light and dark periods,
denoted by diamond shapes (and suffix ‘l’) and parallelograms (and suffix ‘d’), respectively. The remaining sleep traits were averaged over the light
and dark periods, denoted by rectangles (and suffix ‘24’). QTL are represented by ellipses, ,chromosome.@,centiMorgan.. Edge labels include the
confidence, which is the proportion of 1500 Markov Chain Monte Carlo (MCMC) learned networks that included the edge, and the Pearson correlation
between nodes, respectively. Node colors represent trait types described in text; green: wake, black: REM, red: fragmentation, yellow: power band
and blue: latency to REM. Edges that were present in greater than 50 percent of the MCMC runs were included in the network. Details of Bayesian
network construction can be found in Supporting Information.
doi:10.1371/journal.pone.0005161.g002

Landscape of Sleep-Wake Traits
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Such relationships are particularly intriguing in view of the

possible role of REM sleep on a variety of higher brain functions,

including learning [17,18], memory [19], and mood [20,21], as

well as the possible genetics underlying these relationships.

Materials and Methods

Animals and Housing
All experimental mice were housed and handled according to

the Federal Animal Welfare guidelines and all studies were

approved in advance by the Animal Care and Use Committee at

Northwestern University. All animals were maintained continu-

ously on a 14 hr light: 10 hr dark cycle (LD 14:10) from birth at a

room temperature of 2362uC and were weaned at 4 weeks of age.

Food and water were available ad libitum.

All animals used for genotype and phenotype (N = 269) analysis

were N2 offspring from 26 male F1 mice that were themselves the

progeny of female BALB/cByJ (BALB) from the Jackson

Laboratory and 11 C57BL/6J (B6) male mice (G4–6 males) from

a line of B6 mice maintained at Northwestern University. This line

descended from a single first generation B6 male offspring of a

male mouse treated with the chemical mutagen N-ethyl-N-

nitrosourea. This line was maintained as a possible mutant line

with an altered sleep-wake phenotype because it showed increased

wake (820621 min) over 24 hours compared to wild-type B6

males (718649 min), and hence the line was called Sleepless. The

high wake phenotype in this line segregates as a single locus

autosomal dominant mutation, and has been maintained by

backcrossing affected males to wild-type B6 females obtained from

the Jackson Laboratory at each generation to eliminate other

possible induced mutations segregating in the line. The 11 B6

males used in the first generation cross for this study were high

wake males from the 4th–6th generation of Sleepless animals (and

thus presumably, Sleepless heterozygotes) which were then crossed

to BALB females from Jackson Laboratories to produce 124

(BALB6B6*)F1 males. F1 males were screened and examined for

sleep-wake phenotype, and 26 animals selected for high wake

minutes as presumptive Sleepless heterozygotes were backcrossed to

wild-type B6 females from Jackson Laboratories to produce 269

[B66(BALB6B6*)F1]N2 males. Thus, in addition to a 50:50

chance of carrying the induced Sleepless mutation, the 269 N2 mice

each have a 50:50 probability of being either homozygous B6/B6

or heterozygous BALB/B6 at any genomic region. Therefore, in

this cross of two inbred mouse strains, genetic polymorphisms can

be used to map segregation of sleep-wake traits.

Sleep-wake recordings in adult mice
At 10 to 12 weeks of age, male mice were prepared for

monitoring of EEG/EMG signals [22]. A minimum 10-day post-

surgery recovery period was observed before sleep recording was

initiated. Mice were acclimated to housing individually in

cylindrical (25.5 cm diameter) sleep recording cages with free

access to food and water for a minimum of five days during this

time. EEG/EMG data were collected [22] for 48 continuous hours

starting at light onset. With the use of a custom software package

(SleepReport, Actimetrics, Evanston, IL), EEG and EMG

recordings were divided into 10-second epochs and scored via

visual inspection as either wake, NREM or REM. For a detailed

account of sleep and EEG analysis see Supplemental Information.

Genotyping
All DNA samples were genotyped on the Affymetrix MegA-

lleleTM genotyping mouse 5 K SNP panel: (http://www.affyme-

trix.com/support/technical/datasheets/parallele_mouse5k_data-

sheet.pdf). This panel consists of approximately 5,500 SNPs evenly

distributed across the genome with approximately 2,310 of these

SNPs being informative for the B6 and BALB inbred lines. DNA

was prepared from mouse tail using the DNAeasy kit according to

the manufacturer’s protocols (Qiagen). Tails were stored frozen

until DNA preparation, and DNA was stored at 220uC. DNA was

quantified for quality control by fluorometry using PicoGreen

(Invitrogen). It was shipped on dry ice and concentration adjusted

per the manufacturer’s instructions prior to genotyping. Expected

genotype probabilities were computed using the R package QTL

R/qtl: QTL with Haldane’s map function [23]. Details on

computing the expected genotype probabilities can be found in

Supporting Information.

Network Analysis
A Bayesian network is a directed acyclic graph (DAG) which

includes a collection of nodes and arcs connecting nodes [24]. The

nodes represent random variables and the arcs represent condi-

tional probabilistic dependency between nodes, where the distribu-

tion of each node is dependent on its parent nodes but conditionally

independent of all other nodes. Thus, Bayesian networks are

constructed to represent not only correlation but causality. That is,

X is a parent of Y, or the presence of a directed path from node X to

node Y implies X causes (controls) Y. Thus, the network structure

allows one to distinguish between the simple correlation or

clustering and the more interesting notion of directed or causal

dependence. Details of the construction of the network presented

here are found in the Supplemental Information.
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Text S1

Found at: doi:10.1371/journal.pone.0005161.s001 (0.05 MB

DOC)

Figure S1 Expanded Bayesian Network

Found at: doi:10.1371/journal.pone.0005161.s002 (0.23 MB

DOC)

Figure S2 Epistasis LOD Plot

Found at: doi:10.1371/journal.pone.0005161.s003 (0.04 MB

DOC)

Table S1 Sleep-Wake Traits in Light and Dark Periods

Found at: doi:10.1371/journal.pone.0005161.s004 (0.06 MB

DOC)

Table S2 Bootstrap Obtained 95% Confidence Intervals of

Factor Analysis

Found at: doi:10.1371/journal.pone.0005161.s005 (0.09 MB

DOC)

Table S3 Expanded QTL Data

Found at: doi:10.1371/journal.pone.0005161.s006 (0.31 MB

DOC)

Table S4 Correlation Tables

Found at: doi:10.1371/journal.pone.0005161.s007 (0.07 MB

DOC)

Table S5 Bootstrap Results for Bayesian Network

Found at: doi:10.1371/journal.pone.0005161.s008 (0.03 MB

DOC)
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